test_imperative_selected_rows.py 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.optimizer import SGDOptimizer
import numpy as np
import paddle.fluid.core as core
21
import paddle
22
from paddle.fluid.framework import _test_eager_guard
23 24


25
class SimpleNet(paddle.nn.Layer):
26

Y
Youwei Song 已提交
27 28
    def __init__(self, vocab_size, hidden_size, dtype):
        super(SimpleNet, self).__init__()
29 30 31 32
        self.emb = fluid.dygraph.Embedding(size=[vocab_size, hidden_size],
                                           dtype=dtype,
                                           param_attr='emb.w',
                                           is_sparse=True)
33 34 35 36 37 38 39

    def forward(self, input):
        input_emb = self.emb(input)
        return input_emb, self.emb


class TestSimpleNet(unittest.TestCase):
40

41
    def func_selectedrows_gradient1(self):
42 43 44 45 46 47 48
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for dtype in ["float32", "float64"]:
                for sort_sum_gradient in [True, False]:
49
                    paddle.disable_static(place)
50 51
                    fluid.set_flags(
                        {'FLAGS_sort_sum_gradient': sort_sum_gradient})
52
                    # grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)
53

54
                    input_word = np.array([[1, 2], [2, 1]]).astype('int64')
Z
Zhou Wei 已提交
55
                    input = paddle.to_tensor(input_word)
56

57
                    simplenet = SimpleNet(20, 32, dtype)
58 59 60
                    adam = SGDOptimizer(learning_rate=0.001,
                                        parameter_list=simplenet.parameters()
                                        )  # grad_clip=grad_clip
61
                    input_emb, emb = simplenet(input)
62

63 64
                    self.assertTrue(emb.weight.gradient() is None)
                    self.assertTrue(input_emb.gradient() is None)
65

66
                    input_emb.backward()
67 68
                    adam.minimize(input_emb)
                    self.assertTrue(emb.weight.gradient() is not None)
69

70 71
                    emb.clear_gradients()
                    self.assertTrue(emb.weight.gradient() is None)
72

73 74 75
                    input_emb.clear_gradient()
                    self.assertTrue(input_emb.gradient() is not None)
                    paddle.enable_static()
76

77
    def test_selectedrows_gradient1(self):
78
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
79 80 81
        with _test_eager_guard():
            self.func_selectedrows_gradient1()
        self.func_selectedrows_gradient1()
82
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
83 84

    def func_selectedrows_gradient2(self):
85 86 87 88 89 90 91
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))

        for place in places:
            for sort_sum_gradient in [True, False]:
                with fluid.dygraph.guard(place):
92 93
                    fluid.set_flags(
                        {'FLAGS_sort_sum_gradient': sort_sum_gradient})
94
                    grad_clip = fluid.clip.GradientClipByGlobalNorm(5.0)
95

Y
Youwei Song 已提交
96
                    input_word = np.array([[1, 2], [2, 1]]).astype('int64')
97 98
                    input = to_variable(input_word)

Y
Youwei Song 已提交
99
                    simplenet = SimpleNet(20, 32, "float32")
100 101 102
                    adam = SGDOptimizer(learning_rate=0.001,
                                        parameter_list=simplenet.parameters(),
                                        grad_clip=grad_clip)
103 104
                    input_emb, emb = simplenet(input)

105 106
                    self.assertTrue(emb.weight.gradient() is None)
                    self.assertTrue(input_emb.gradient() is None)
107

108
                    input_emb.backward()
109
                    adam.minimize(input_emb)
110
                    self.assertTrue(emb.weight.gradient() is not None)
111 112

                    emb.clear_gradients()
113
                    self.assertTrue(emb.weight.gradient() is None)
114 115

                    input_emb.clear_gradient()
116
                    self.assertTrue(input_emb.gradient() is not None)
117

118
    def test_selectedrows_gradient2(self):
119
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
120 121 122
        with _test_eager_guard():
            self.func_selectedrows_gradient2()
        self.func_selectedrows_gradient2()
123
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
124

125 126 127

if __name__ == '__main__':
    unittest.main()