auto_parallel_fp16.py 36.6 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict

import paddle
18
from paddle.common_ops_import import check_type, check_variable_and_dtype
19 20 21 22
from paddle.distributed.auto_parallel.static.dist_attribute import (
    OperatorDistAttr,
)
from paddle.distributed.auto_parallel.static.process_group import (
23 24
    get_world_process_group,
)
25
from paddle.distributed.auto_parallel.static.utils import (
26 27 28 29
    is_backward_op,
    is_forward_op,
    naive_set_dist_op_attr_for_program_by_mesh_and_mapping,
    set_var_dist_attr,
30
)
31
from paddle.distributed.fleet.meta_optimizers.common import OP_ROLE_KEY, OpRole
32 33
from paddle.framework import core
from paddle.static import default_main_program, default_startup_program
34 35 36

# NOTE bf16 and fp16 may have diff logic for _keep_layer_norm_scale_bias_to_fp32
from paddle.static.amp.fp16_utils import _keep_layer_norm_scale_bias_to_fp32
37
from paddle.utils import unique_name
38

39
from ..auto_parallel.process_mesh import ProcessMesh
40
from .auto_parallel_amp import AMPPass
41
from .pass_base import register_pass
42 43 44 45 46 47 48 49 50

world_process_group = get_world_process_group()
# if user use python "+, -, * /" for network, there might be cast in vanilla program
__amp_skip_ops__ = [
    'create_py_reader',
    'create_double_buffer_reader',
    'while',
    'cast',
]
51 52
__target_dtype__ = None
__amp_utils__ = None
53 54 55


def set_op_dtype_to_fp16(op):
56 57 58 59
    if (
        op.has_attr('in_dtype')
        and op.attr('in_dtype') == core.VarDesc.VarType.FP32
    ):
60
        op._set_attr('in_dtype', __target_dtype__)
61 62 63 64
    if (
        op.has_attr('out_dtype')
        and op.attr('out_dtype') == core.VarDesc.VarType.FP32
    ):
65
        op._set_attr('out_dtype', __target_dtype__)
66
    if op.has_attr('dtype') and op.attr('dtype') == core.VarDesc.VarType.FP32:
67 68 69 70 71 72 73
        op._set_attr('dtype', __target_dtype__)

    if __target_dtype__ == core.VarDesc.VarType.BF16:
        if op.has_attr('use_mkldnn'):
            op._set_attr('use_mkldnn', True)
        if op.has_attr('mkldnn_data_type'):
            op._set_attr('mkldnn_data_type', 'bfloat16')
74 75 76


# adapot for backward op
77
# TODO check if bf16 and fp16 still share the same logic
78 79 80 81 82 83 84 85 86 87 88 89 90
def _keep_fp32_input(op, in_name):
    op_type = op.type
    if op_type == 'batch_norm':
        # Scale, Bias, Mean, Variance should be float32.
        return in_name != 'X'
    if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
        return in_name != 'X'
    if op_type == 'fused_bn_add_activation':
        return in_name not in {'X', 'Z'}
    if op_type == 'resnet_unit':
        return in_name not in {'X', 'FilterX', 'Z', 'FilterZ'}
    if op_type in ['fused_attention', 'fused_feedforward']:
        return in_name in {
91 92 93 94 95 96
            'LnScale',
            'LnBias',
            'Ln2Scale',
            'Ln2Bias',
            "Ln1Scale",
            "Ln1Bias",
97 98 99 100 101 102 103 104 105
        }
    # backward
    if op_type in ['batch_norm_grad']:
        return in_name not in {'X', 'Y@GRAD'}
    if op_type in ['layer_norm_grad']:
        return in_name not in {'X', 'Y@GRAD'}
    return False


106
# TODO check if bf16 and fp16 still share the same logic
107 108 109 110 111 112 113 114 115 116
def _keep_fp32_output(op, out_name):
    op_type = op.type
    if op_type in ['batch_norm', 'fused_bn_add_activation']:
        return out_name != 'Y'
    if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
        return out_name != 'Y'
    if op_type == 'resnet_unit':
        return out_name not in {'Y', 'ConvX', 'ConvZ'}
    if op_type in ['fused_attention', 'fused_feedforward']:
        return out_name in {
117 118 119 120 121 122
            'LnMean',
            'LnVariance',
            'Ln2Mean',
            'Ln2Variance',
            'Ln1Mean',
            'Ln1Variance',
123 124 125 126 127 128 129 130 131
        }
    # backward
    if op_type in ['layer_norm_grad']:
        return out_name != 'X@GRAD'
    if op_type in ['batch_norm_grad']:
        return out_name != 'X@GRAD'
    return False


132
class FP16State:
133 134 135 136 137 138 139 140
    def __init__(
        self,
        program,
        amp_list,
        dist_context,
        use_fp16_guard,
        input_data_var_names=None,
    ):
141 142 143 144
        self.program = program
        self.amp_list = amp_list
        self.use_fp16_guard = use_fp16_guard
        self.dist_context = dist_context
145 146 147
        self.grad_op_to_op_map = (
            self.dist_context.dist_op_context.grad_op_id_to_op_id
        )
148 149 150 151
        if input_data_var_names:
            self.input_data_var_names = input_data_var_names
        else:
            self.input_data_var_names = []
152 153 154
        self._op_fp16_dict = (
            {}
        )  # op_id --> True/False. 'True' means that the op is should run in fp16 mode.
155 156 157 158 159 160 161
        # a trick to determine leaf tensor node in program {varname: generator_op_id}
        self.forward_non_leaf_tensors = {}
        # record the cast ops that are inserted for a forward
        self.forward_input_cast_ops = defaultdict(
            list
        )  # {forward_op_id: [(output_name, input_name, out_dtype, in_dtype, slot_name), ]}
        self.is_train = False
162
        self.out_var_op_deps = {}
163 164 165 166 167 168

    def _is_fp16_op(self, op_id):
        return self._op_fp16_dict.get(op_id, None)

    def _build_state(self):
        """
169
        mark the execution mode (fp16 or fp32) for ops in all blocks
170 171 172 173 174 175
        include forward ops & backward ops
        """
        # mark op dtype
        # assume all backward block are behind forward blocks
        for block in self.program.blocks:
            for op in block.ops:
176 177 178 179 180 181 182 183
                for name in op.output_arg_names:
                    if name not in self.out_var_op_deps:
                        self.out_var_op_deps[name] = [op.desc.original_id()]
                    else:
                        self.out_var_op_deps[name].extend(
                            [op.desc.original_id()]
                        )

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
                self._mark_op(op)

        # set forward tensor dtype
        for block in self.program.blocks:
            self.resolute_tensor_dtype(block)

        # insert cast ops
        for block in self.program.blocks:
            self.cast_block(block)

        return self.is_train

    def _mark_op(self, op):

        if op.type in __amp_skip_ops__:
            return

        if is_forward_op(op):

            # ernie inference trick
            if op.type == "assign" and "array_" in op.input_arg_names[0]:
205
                self._op_fp16_dict[op.desc.original_id()] = False
206
                return
207 208 209 210 211 212 213 214 215 216 217 218
            # If assign op is inplace-operation, assign op exec mode should be same with the created op of output_var.
            if op.type == "assign":
                out_name = op.output_arg_names[0]
                if len(self.out_var_op_deps[out_name]) > 1:
                    if not self._op_fp16_dict[
                        self.out_var_op_deps[out_name][0]
                    ]:
                        self._op_fp16_dict[op.desc.original_id()] = False
                    else:
                        self._op_fp16_dict[op.desc.original_id()] = True
                    return

219
            if __amp_utils__._need_keep_fp32(
220 221
                op, self.amp_list.unsupported_list, self.use_fp16_guard
            ):
222
                self._op_fp16_dict[op.desc.original_id()] = False
223
            else:
224
                self._op_fp16_dict[op.desc.original_id()] = True
225 226 227 228 229 230
            for var_name in op.output_arg_names:
                # assert var_name not in self.forward_non_leaf_tensors, "{}".format(var_name)
                self.forward_non_leaf_tensors[var_name] = op.desc.id()

        elif is_backward_op(op) == int(OpRole.Backward):

231 232
            if op.desc.original_id() in self.grad_op_to_op_map:
                fwd_op_id = self.grad_op_to_op_map[op.desc.original_id()]
233
                assert fwd_op_id in self._op_fp16_dict, f"{str(op)}"
234 235 236
                self._op_fp16_dict[op.desc.original_id()] = self._op_fp16_dict[
                    fwd_op_id
                ]
237 238 239 240 241 242 243 244 245

        if int(op.attr('op_role')) == 257:
            self.is_train = True

    def set_var_to_fp16(self, var_name, block):
        var = None
        try:
            var = block.var(var_name)
        except ValueError as e:
246 247
            var = block._var_recursive(var_name)
            # var = self.program.global_block().var(var_name)
248

249
        # NOTE(JZ-LIANG) "array_" is a hack to adopt for ernie3.0 inference, since there is
250
        # a trick which make the LOD_TENSOR_ARRAY to the float32 in while block to reset the LOD_TENSOR_ARRAY
251 252 253 254 255
        if (
            var is None
            or var.type not in __amp_utils__._valid_types
            or "array_" in var_name
        ):
256 257 258
            return

        if var.dtype == core.VarDesc.VarType.FP32:
259
            var.desc.set_dtype(__target_dtype__)
260 261 262 263 264 265

    def resolute_tensor_dtype(self, block):

        for op in block.ops:
            if is_forward_op(op):
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
266 267 268 269
                if (
                    self._is_fp16_op(op.desc.original_id()) is True
                    or op.type == "cast"
                ):
270 271 272 273
                    for in_name in op.input_names:
                        if _keep_fp32_input(op, in_name):
                            continue
                        for in_var_name in op.input(in_name):
274 275 276 277
                            if (
                                in_var_name not in self.forward_non_leaf_tensors
                                and in_var_name not in self.input_data_var_names
                            ):
278 279 280 281 282 283 284 285
                                self.set_var_to_fp16(in_var_name, block)
                    for out_name in op.output_names:
                        if _keep_fp32_output(op, out_name):
                            continue
                        for out_var_name in op.output(out_name):
                            self.set_var_to_fp16(out_var_name, block)
                    set_op_dtype_to_fp16(op)
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
286
                elif self._is_fp16_op(op.desc.original_id()) is False:
287 288
                    for out_var_name in op.output_arg_names:
                        out_var = block.vars.get(out_var_name)
289 290 291 292
                        if (
                            out_var is None
                            or out_var.type not in __amp_utils__._valid_types
                        ):
293
                            continue
294
                        if out_var.dtype == __target_dtype__:
295 296
                            out_var.desc.set_dtype(core.VarDesc.VarType.FP32)
            elif is_backward_op(op):
297
                if self._is_fp16_op(op.desc.original_id()) is True:
298 299 300 301 302 303 304
                    for out_name in op.output_names:
                        if _keep_fp32_output(op, out_name):
                            continue
                        for out_var_name in op.output(out_name):
                            self.set_var_to_fp16(out_var_name, block)
                    set_op_dtype_to_fp16(op)
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
305
                elif self._is_fp16_op(op.desc.original_id()) is False:
306 307
                    for out_var_name in op.output_arg_names:
                        out_var = block.vars.get(out_var_name)
308 309 310 311
                        if (
                            out_var is None
                            or out_var.type not in __amp_utils__._valid_types
                        ):
312
                            continue
313
                        if out_var.dtype == __target_dtype__:
314 315 316 317 318 319 320 321 322 323 324 325 326
                            out_var.desc.set_dtype(core.VarDesc.VarType.FP32)

    def cast_block(self, block):
        dist_op_context = self.dist_context.dist_op_context
        idx = 0
        while idx < len(block.ops):
            op = block.ops[idx]
            num_cast_ops = 0

            if op.type in __amp_skip_ops__:
                idx += 1
                continue
            elif is_forward_op(op):
327
                if self._is_fp16_op(op.desc.original_id()) is False:
328
                    num_cast_ops = self._insert_forward_cast_ops(
329 330 331
                        op,
                        idx,
                        block,
332
                        __target_dtype__,
333 334 335
                        core.VarDesc.VarType.FP32,
                        self.dist_context,
                    )
336
                elif self._is_fp16_op(op.desc.original_id()) is True:
337
                    num_cast_ops = self._insert_forward_cast_ops(
338 339 340 341
                        op,
                        idx,
                        block,
                        core.VarDesc.VarType.FP32,
342
                        __target_dtype__,
343 344
                        self.dist_context,
                    )
345
            elif is_backward_op(op):
346
                if op.desc.original_id() in dist_op_context.grad_op_id_to_op_id:
347
                    if self._is_fp16_op(op.desc.original_id()) is False:
348
                        num_cast_ops = self._insert_backward_cast_ops(
349 350 351
                            op,
                            idx,
                            block,
352
                            __target_dtype__,
353 354 355
                            core.VarDesc.VarType.FP32,
                            self.dist_context,
                        )
356
                    elif self._is_fp16_op(op.desc.original_id()) is True:
357
                        num_cast_ops = self._insert_backward_cast_ops(
358 359 360 361
                            op,
                            idx,
                            block,
                            core.VarDesc.VarType.FP32,
362
                            __target_dtype__,
363 364
                            self.dist_context,
                        )
365 366 367 368 369 370 371
                elif op.type == "sum":
                    # all inputs dtype of sum should be equal and output dtype should follow input
                    out_var_name = op.output_arg_names[0]
                    in_var_name = op.input_arg_names[0]
                    out_var = block.var(out_var_name)
                    in_var = block._find_var_recursive(in_var_name)
                    for in_var_name in op.input_arg_names:
372 373 374 375 376
                        assert (
                            in_var.dtype == block.var(in_var_name).dtype
                        ), "{}, {}, {}".format(
                            in_var, block.var(in_var_name), str(op)
                        )
377 378 379 380 381
                    out_var.desc.set_dtype(in_var.dtype)

            idx += num_cast_ops + 1
        block._sync_with_cpp()

382 383 384
    def _insert_forward_cast_ops(
        self, op, idx, block, src_dtype, dst_dtype, dist_context
    ):
385 386 387 388 389

        num_cast_ops = 0

        for in_name in op.input_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
390 391
                op, in_name
            ):
392 393 394 395 396 397
                continue

            consume_op_attr = dist_context.get_op_dist_attr_for_program(op)
            assert consume_op_attr is not None
            for in_var_name in op.input(in_name):
                in_var = block._find_var_recursive(in_var_name)
398 399
                if (
                    in_var is None
400
                    or in_var.type not in __amp_utils__._valid_types
401 402
                    or in_var.dtype == dst_dtype
                ):
403 404 405
                    continue

                if in_var.dtype == src_dtype:
406
                    cast_name = (
407 408 409
                        in_var.name
                        + '.cast_'
                        + __amp_utils__._dtype_to_str(dst_dtype)
410
                    )
411
                    cast_var = block.vars.get(cast_name)
412 413 414
                    self.forward_input_cast_ops[op.desc.original_id()] += [
                        (cast_name, in_var.name, dst_dtype, src_dtype, in_name)
                    ]
415 416

                    in_var_dist_attr = consume_op_attr.get_input_dist_attr(
417 418
                        in_var.name
                    )
419
                    assert in_var_dist_attr is not None
420
                    # truly insert cast op
421 422 423 424 425 426 427 428 429 430 431
                    if cast_var is None or cast_var.dtype != dst_dtype:
                        # NOTE we make the cast op and var's dist attr as the op that consume the
                        # cast var instead of the op which generates the var
                        # refine op's dist_attr
                        ref_mesh = in_var_dist_attr.process_mesh
                        ref_mapping = in_var_dist_attr.dims_mapping

                        cast_var = block.create_var(
                            name=cast_name,
                            dtype=dst_dtype,
                            persistable=False,
432 433 434 435 436
                            stop_gradient=in_var.stop_gradient,
                        )
                        set_var_dist_attr(
                            dist_context, cast_var, ref_mapping, ref_mesh
                        )
437

438 439 440
                        op_namescope = "/"
                        if op.has_attr('op_namescope'):
                            op_namescope = op.attr('op_namescope')
441 442 443 444 445 446 447 448
                        cast_op = block._insert_op_without_sync(
                            idx,
                            type="cast",
                            inputs={"X": in_var},
                            outputs={"Out": cast_var},
                            attrs={
                                "in_dtype": in_var.dtype,
                                "out_dtype": cast_var.dtype,
449 450 451
                                OP_ROLE_KEY: OpRole.Forward,
                            },
                        )
452 453 454
                        cast_op._set_attr(
                            'op_namescope', op_namescope
                        )  # for recompute
455
                        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
456 457
                            cast_op, ref_mesh, ref_mapping, dist_context
                        )
458 459 460
                        num_cast_ops += 1

                    op._rename_input(in_var.name, cast_name)
461 462 463
                    consume_op_attr.set_input_dist_attr(
                        cast_name, in_var_dist_attr
                    )
464 465 466 467 468 469

        if op.has_attr('out_dtype') and op.attr('out_dtype') != -1:
            assert op.attr('out_dtype') == dst_dtype

        return num_cast_ops

470 471 472
    def _insert_backward_cast_ops(
        self, op, idx, block, src_dtype, dst_dtype, dist_context
    ):
473 474 475

        num_cast_ops = 0
        op_id = op.desc.id()
476
        original_id = op.desc.original_id()
477
        dist_op_context = dist_context.dist_op_context
478
        forward_op_id = dist_op_context.grad_op_id_to_op_id[original_id]
479 480 481 482 483 484 485 486 487

        grad_op_attr = dist_context.get_op_dist_attr_for_program(op)
        assert grad_op_attr is not None

        for out_var_name in op.output_arg_names:
            out_var = block.var(out_var_name)
            if _keep_fp32_output(op, out_var.name):
                continue
            assert out_var.dtype == dst_dtype, "{}, {}".format(
488 489
                str(out_var), dst_dtype
            )
490

491 492 493 494 495 496 497
        for (
            cast_name,
            src_name,
            dst_dtype,
            src_dtype,
            slot_name,
        ) in self.forward_input_cast_ops[forward_op_id]:
498

499
            # rename input
500
            # some forward output is not need by backward computation, e.g. logit in softmax_with_cross_entropy
501
            if slot_name in op.input_names:
502

503 504 505 506 507 508 509 510 511
                assert src_name in op.input(
                    slot_name
                ), "var: {} not in op's {}. {}".format(
                    src_name, slot_name, str(op)
                )
                src_var_dist_attr = grad_op_attr.get_input_dist_attr(src_name)
                assert src_var_dist_attr is not None
                op._rename_input(src_name, cast_name)
                grad_op_attr.set_input_dist_attr(cast_name, src_var_dist_attr)
512 513 514

            # create cast grad
            grad_slot_name = slot_name + "@GRAD"
515 516 517 518 519 520
            if grad_slot_name in op.output_names:
                # some forward input maybe stop_gradient=True, e.g. input_mask
                if len(op.output(grad_slot_name)) == 0:
                    continue
                assert (
                    len(op.output(grad_slot_name)) == 1
521
                ), f"[{grad_slot_name}], Current Op: {str(op)}"
522 523 524
                grad_name = op.output(grad_slot_name)[0]
                grad = block.var(grad_name)
                grad_dist_attr = grad_op_attr.get_output_dist_attr(grad_name)
525
                assert grad_dist_attr is not None, f"{grad_name}"
526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
                ref_mesh = grad_dist_attr.process_mesh
                ref_mapping = grad_dist_attr.dims_mapping

                cast_grad = block.create_var(
                    name=unique_name.generate_with_ignorable_key(
                        "".join([cast_name, '@GRAD'])
                    ),
                    dtype=dst_dtype,
                    shape=grad.shape,
                    type=grad.type,
                    persistable=grad.persistable,
                    stop_gradient=grad.stop_gradient,
                )
                dist_context.set_tensor_dist_attr_for_program(
                    cast_grad, grad_dist_attr
                )
                op._rename_output(grad_name, cast_grad.name)
                grad_op_attr.set_output_dist_attr(
                    cast_grad.name, grad_dist_attr
                )
546

547 548 549 550 551 552 553 554 555 556 557 558 559
                # add cast
                cast_op = block._insert_op_without_sync(
                    idx + 1,
                    type="cast",
                    inputs={"X": [cast_grad.name]},
                    outputs={"Out": [grad.name]},
                    attrs={
                        "in_dtype": dst_dtype,
                        "out_dtype": src_dtype,
                        OP_ROLE_KEY: OpRole.Backward,
                    },
                )
                grad.desc.set_dtype(src_dtype)
560

561 562 563 564
                naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                    cast_op, ref_mesh, ref_mapping, dist_context
                )
                num_cast_ops += 1
565 566 567 568 569 570 571 572 573 574 575

        return num_cast_ops


def _check_and_update_gradient(grads, loss_scaling, name, dist_context):

    main_block = paddle.static.default_main_program().global_block()
    main_block._sync_with_cpp()

    check_type(grads, 'x', (tuple, list), 'check_finite_and_unscale')
    for e in grads:
576 577 578 579 580 581
        check_variable_and_dtype(
            e,
            "x",
            ['float16', 'float32', 'float64'],
            'check_finite_and_unscale',
        )
582 583

    found_inf = main_block.create_var(
584 585 586
        name=unique_name.generate_with_ignorable_key(
            ".".join(['find_infinite_scale', name])
        ),
587 588 589 590
        shape=[1],
        dtype='bool',
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
591 592
        stop_gradient=False,
    )
593 594 595 596
    set_var_dist_attr(dist_context, found_inf, [-1], world_process_group.ranks)

    inputs = {'X': grads, 'Scale': loss_scaling}
    outputs = {'Out': grads, 'FoundInfinite': found_inf}
597
    attrs = {'op_role': OpRole.Optimize}
598 599 600 601 602 603
    new_op = main_block.append_op(
        type='check_finite_and_unscale',
        inputs=inputs,
        outputs=outputs,
        attrs=attrs,
    )
604

605 606 607 608
    # Constructing dist attr from op_desc can
    # give all inputs and outputs default dist attrs
    new_op_dist_attr = OperatorDistAttr(new_op.desc)
    new_op_dist_attr.process_mesh = ProcessMesh(world_process_group.ranks)
609 610 611 612 613 614
    new_op_dist_attr.impl_idx = 0
    if len(world_process_group.ranks) > 1:
        new_op_dist_attr.impl_type = "check_finite_and_unscale"
    for g in grads:
        g_dist_attr = dist_context.get_tensor_dist_attr_for_program(g)
        assert g_dist_attr is not None
615 616 617 618 619 620
        new_op_dist_attr.set_input_dims_mapping(
            g.name, g_dist_attr.dims_mapping
        )
        new_op_dist_attr.set_output_dims_mapping(
            g.name, g_dist_attr.dims_mapping
        )
621 622 623 624 625 626 627
    dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)
    return grads, found_inf


def _split_grads(params_grads):
    grads = [g for _, g in params_grads]
    fp32_grads = [g for g in grads if g.dtype == core.VarDesc.VarType.FP32]
628
    fp16_grads = [g for g in grads if g.dtype == __target_dtype__]
629 630 631
    assert len(fp32_grads) + len(fp16_grads) == len(
        grads
    ), "Data types of all grads must be either fp16 or fp32."
632 633 634 635
    return grads, fp32_grads, fp16_grads


def _set_op_dist_attr_with_ranks(new_op, ranks, block, dist_context):
636 637
    new_op_dist_attr = OperatorDistAttr()
    new_op_dist_attr.process_mesh = ProcessMesh(ranks)
638 639 640 641 642
    new_op_dist_attr.impl_idx = 0
    for var_name in new_op.input_arg_names:
        var = block.var(var_name)
        var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        assert var_dist_attr is not None
643 644 645
        new_op_dist_attr.set_input_dims_mapping(
            var_name, var_dist_attr.dims_mapping
        )
646 647 648 649
    for var_name in new_op.output_arg_names:
        var = block.var(var_name)
        var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        assert var_dist_attr is not None
650 651 652
        new_op_dist_attr.set_output_dims_mapping(
            var_name, var_dist_attr.dims_mapping
        )
653 654 655
    dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


656 657 658
def _get_memcopy_idx(block, found_inf_var):
    # use reduce_any op for check_nan_inf as the anchor for now
    for idx, op in enumerate(block.ops):
659 660 661 662
        if (
            op.type == 'reduce_any'
            and op.output_arg_names[0] == found_inf_var.name
        ):
663 664 665
            return idx + 1

    raise RuntimeError(
666 667
        "not found the correct location for memcopy for found_inf_var."
    )
668 669 670 671


def _insert_memcopy(block, idx, src_var, dist_context, direction="D2H"):
    src_name = src_var.name
672 673 674 675 676 677 678 679 680 681
    output_var = block.create_var(
        name=unique_name.generate_with_ignorable_key(
            src_name.join(['memcopy_'])
        ),
        dtype=src_var.dtype,
        shape=src_var.shape,
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
        stop_gradient=src_var.stop_gradient,
    )
682

683 684 685 686 687 688
    set_var_dist_attr(
        dist_context,
        output_var,
        [-1 for i in src_var.shape],
        world_process_group.ranks,
    )
689

J
jjyaoao 已提交
690
    # TODO to support CUDAPinned/XPU Places
691 692 693 694
    if direction == "D2H":
        dst_place_type = 0
    else:
        raise NotImplementedError(
695
            f"direction [{direction}] is not supported yet."
696
        )
697 698

    attrs = {'dst_place_type': dst_place_type}
699 700
    new_op = block._insert_op_without_sync(
        index=idx,
701
        type='memcpy_d2h',
702 703 704 705 706 707 708
        inputs={'X': [src_var]},
        outputs={'Out': [output_var]},
        attrs=attrs,
    )
    _set_op_dist_attr_with_ranks(
        new_op, world_process_group.ranks, block, dist_context
    )
709 710 711 712
    block._sync_with_cpp()
    return output_var


713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
def cast_startup_program():
    main_program = default_main_program()
    startup_program = default_startup_program()

    param_to_dtype = {}
    for block in main_program.blocks:
        for p in block.all_parameters():
            param_to_dtype[p.name] = p.dtype

    def is_initialization_op(op):
        comm_op_prefix = "c_"
        op_type = op.type
        if op_type.startswith(comm_op_prefix):
            return False

        if len(op.output_arg_names) != 1 and len(op.input_arg_names) != 0:
            return False

        return True

    for op in startup_program.global_block().ops:
        if is_initialization_op(op):
            output_name = op.output_arg_names[0]
736
            if param_to_dtype.get(output_name, None) == __target_dtype__:
737 738 739
                assert op.has_attr(
                    'dtype'
                ), "initialization op is supported to has dtype attribute but got {}.".format(
740 741
                    str(op)
                )
742 743 744
                out_var = startup_program.global_block().var(output_name)
                if out_var.dtype == core.VarDesc.VarType.FP32:
                    out_var.desc.set_dtype(__target_dtype__)
745
                if op.attr('dtype') == core.VarDesc.VarType.FP32:
746
                    op._set_attr('dtype', __target_dtype__)
747 748


749 750 751
@register_pass("auto_parallel_fp16")
class FP16Pass(AMPPass):
    def __init__(self):
752
        super().__init__()
753

754 755
    # NOTE: why FP16Pass can override apply_single_impl instead of
    # apply_impl? AMP is an optimization pass for serial program,
756 757 758
    # in distributed scenario, all ranks should have the same modification.
    def _apply_single_impl(self, main_program, startup_program, context):
        self.dist_context = self.get_attr("dist_context")
759
        self.target_dtype = self.get_attr("dtype")
760 761
        params_grads = self.get_attr("params_grads")

762 763 764 765 766 767 768 769 770 771 772 773
        self.use_optimizer_fp16 = self.get_attr("use_optimizer_fp16", None)
        if self.use_optimizer_fp16 is None:
            self.use_optimizer_fp16 = self.get_attr("level", None) == "o3"

        # swith enviroment for fp16 / bf16.
        if self.target_dtype == "float16":
            import paddle.static.amp.fp16_utils as amp_utils

            AMPList = amp_utils.AutoMixedPrecisionLists
            __target_dtype = core.VarDesc.VarType.FP16

        elif self.target_dtype == "bfloat16":
774
            from paddle.static.amp.bf16 import amp_utils
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789

            AMPList = amp_utils.AutoMixedPrecisionListsBF16
            __target_dtype = core.VarDesc.VarType.BF16

        else:
            raise NotImplementedError(
                "target dtype [{}] is for amp o2 not supported yet.".format(
                    self.target_dtype
                )
            )
        global __target_dtype__
        __target_dtype__ = __target_dtype
        global __amp_utils__
        __amp_utils__ = amp_utils
        amp_list = AMPList(
790
            set(self.get_attr("custom_white_list")),
791 792 793
            set(self.get_attr("custom_black_list")),
            None,
        )
794

795
        # NOTE don't not change input data dtype, since it is controled by dataloader
796 797 798
        # and which is out of control of FP16 Pass
        input_data_var_names = [var.name for var in self.get_attr("input_data")]

799
        with paddle.static.program_guard(main_program, startup_program):
800 801 802 803
            fp16_state = FP16State(
                main_program,
                amp_list,
                self.dist_context,
804 805 806
                self.get_attr(
                    "use_fp16_guard"
                ),  # TODO unify to use_amp_guard to be compatible with amp o1
807 808
                input_data_var_names,
            )
809 810
            is_train = fp16_state._build_state()

811 812
            cast_startup_program()

813
        if is_train:
814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
            if self.target_dtype == "fp16":
                with paddle.static.program_guard(main_program, startup_program):
                    # TODO (JZ-LIANG)support cast forward program only when inference
                    self._init_amp_var()
                    self._scale_loss()

                    grads, fp32_grads, fp16_grads = _split_grads(params_grads)

                    if (
                        self.get_attr("use_dynamic_loss_scaling")
                        or self.get_attr("init_loss_scaling") != 1.0
                    ):
                        found_infs = []
                        if fp32_grads:
                            with main_program._optimized_guard([]):
                                _, found_inf_fp32 = _check_and_update_gradient(
                                    fp32_grads,
                                    self._loss_scaling,
                                    "@fp32",
                                    self.dist_context,
                                )
                            found_infs.append(found_inf_fp32)
                        if fp16_grads:
                            with main_program._optimized_guard([]):
                                _, found_inf_fp16 = _check_and_update_gradient(
                                    fp16_grads,
                                    self._loss_scaling,
                                    "@fp16",
                                    self.dist_context,
                                )
                            found_infs.append(found_inf_fp16)
845
                        with main_program._optimized_guard([]):
846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
                            block = main_program.global_block()

                            # all_infs = paddle.fluid.layers.concat(found_infs)
                            all_infs = block.create_var(
                                name=paddle.utils.unique_name.generate_with_ignorable_key(
                                    ".".join(['concat', 'tmp'])
                                ),
                                dtype=found_infs[0].dtype,
                                shape=None,
                                lod_level=found_infs[0].lod_level,
                                type=found_infs[0].type,
                                persistable=False,
                                stop_gradient=False,
                            )
                            concat_op = block.append_op(
                                type='concat',
                                inputs={'X': found_infs},
                                outputs={'Out': [all_infs]},
                                attrs={'axis': 0},
                            )
                            set_var_dist_attr(
867
                                self.dist_context,
868 869 870
                                all_infs,
                                [-1],
                                world_process_group.ranks,
871
                            )
872 873 874 875
                            _set_op_dist_attr_with_ranks(
                                concat_op,
                                world_process_group.ranks,
                                block,
876 877
                                self.dist_context,
                            )
878

879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
                            # found_inf = paddle.fluid.layers.reduce_any(all_infs)
                            found_inf = block.create_var(
                                name=paddle.utils.unique_name.generate_with_ignorable_key(
                                    ".".join(['reduce_any', 'tmp'])
                                ),
                                dtype=all_infs.dtype,
                                shape=None,
                                lod_level=all_infs.lod_level,
                                type=all_infs.type,
                                persistable=False,
                                stop_gradient=False,
                            )
                            reduce_any_op = block.append_op(
                                type='reduce_any',
                                inputs={'X': all_infs},
                                outputs={'Out': found_inf},
                                attrs={
                                    'dim': [0],
                                    'keep_dim': False,
                                    'reduce_all': True,
                                },
                            )
                            set_var_dist_attr(
                                self.dist_context,
                                found_inf,
904
                                [-1 for i in found_inf.shape],
905 906 907 908 909 910 911 912
                                world_process_group.ranks,
                            )
                            _set_op_dist_attr_with_ranks(
                                reduce_any_op,
                                world_process_group.ranks,
                                block,
                                self.dist_context,
                            )
913

914 915 916 917 918 919
                    if self.get_attr("use_dynamic_loss_scaling"):
                        with main_program._optimized_guard([]):
                            if fp32_grads:
                                self._update_loss_scaling(fp32_grads, found_inf)
                            if fp16_grads:
                                self._update_loss_scaling(fp16_grads, found_inf)
920 921 922 923

            # modify optimizer
            base_opt = self.get_attr("base_opt")
            base_opt._multi_precision = True
924
            if self.use_optimizer_fp16:
925
                base_opt._multi_precision = False
926 927 928 929 930 931 932 933 934 935 936 937 938 939 940

            if self.target_dtype == "fp16":
                if isinstance(
                    base_opt, (paddle.static.Adam, paddle.optimizer.AdamW)
                ):
                    with main_program._optimized_guard([]):
                        # found_inf = paddle.tensor.creation._memcpy(
                        #     found_inf, paddle.CPUPlace())
                        insert_idx = _get_memcopy_idx(block, found_inf)
                        found_inf = _insert_memcopy(
                            block, insert_idx, found_inf, self.dist_context
                        )
                    base_opt._set_auxiliary_var('found_inf', found_inf.name)
                elif hasattr(base_opt, "_set_auxiliary_var"):
                    base_opt._set_auxiliary_var('found_inf', found_inf.name)