“8ba38e07ed51b008c1be176064420c15875558ee”上不存在“doc/fluid/api_cn/tensor_cn/bmm_cn.rst”
auto_parallel_fp16.py 26.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict

import paddle
from paddle.framework import core
from paddle.fluid import unique_name
from .pass_base import register_pass
from paddle.distributed.fleet.meta_optimizers.common import OpRole
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type
from paddle.distributed.auto_parallel.utils import set_var_dist_attr, naive_set_dist_op_attr_for_program_by_mesh_and_mapping
from paddle.distributed.auto_parallel.process_group import get_world_process_group
from paddle.fluid.contrib.mixed_precision.fp16_utils import AutoMixedPrecisionLists
from paddle.fluid.contrib.mixed_precision.fp16_utils import _keep_layer_norm_scale_bias_to_fp32, _need_keep_fp32, _valid_types, _dtype_to_str
from paddle.distributed.auto_parallel.dist_attribute import OperatorDistributedAttribute
from paddle.distributed.auto_parallel.utils import is_forward_op, is_backward_op
from .auto_parallel_amp import AMPPass

world_process_group = get_world_process_group()
# if user use python "+, -, * /" for network, there might be cast in vanilla program
__amp_skip_ops__ = [
    'create_py_reader',
    'create_double_buffer_reader',
    'while',
    'cast',
]


def set_op_dtype_to_fp16(op):
    if op.has_attr('in_dtype') and op.attr(
            'in_dtype') == core.VarDesc.VarType.FP32:
        op._set_attr('in_dtype', core.VarDesc.VarType.FP16)
    if op.has_attr('out_dtype') and op.attr(
            'out_dtype') == core.VarDesc.VarType.FP32:
        op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
    if op.has_attr('dtype') and op.attr('dtype') == core.VarDesc.VarType.FP32:
        op._set_attr('dtype', core.VarDesc.VarType.FP16)


# adapot for backward op
def _keep_fp32_input(op, in_name):
    op_type = op.type
    if op_type == 'batch_norm':
        # Scale, Bias, Mean, Variance should be float32.
        return in_name != 'X'
    if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
        return in_name != 'X'
    if op_type == 'fused_bn_add_activation':
        return in_name not in {'X', 'Z'}
    if op_type == 'resnet_unit':
        return in_name not in {'X', 'FilterX', 'Z', 'FilterZ'}
    if op_type in ['fused_attention', 'fused_feedforward']:
        return in_name in {
            'LnScale', 'LnBias', 'Ln2Scale', 'Ln2Bias', "Ln1Scale", "Ln1Bias"
        }
    # backward
    if op_type in ['batch_norm_grad']:
        return in_name not in {'X', 'Y@GRAD'}
    if op_type in ['layer_norm_grad']:
        return in_name not in {'X', 'Y@GRAD'}
    return False


def _keep_fp32_output(op, out_name):
    op_type = op.type
    if op_type in ['batch_norm', 'fused_bn_add_activation']:
        return out_name != 'Y'
    if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
        return out_name != 'Y'
    if op_type == 'resnet_unit':
        return out_name not in {'Y', 'ConvX', 'ConvZ'}
    if op_type in ['fused_attention', 'fused_feedforward']:
        return out_name in {
            'LnMean', 'LnVariance', 'Ln2Mean', 'Ln2Variance', 'Ln1Mean',
            'Ln1Variance'
        }
    # backward
    if op_type in ['layer_norm_grad']:
        return out_name != 'X@GRAD'
    if op_type in ['batch_norm_grad']:
        return out_name != 'X@GRAD'
    return False


class FP16State(object):
98 99 100 101 102 103
    def __init__(self,
                 program,
                 amp_list,
                 dist_context,
                 use_fp16_guard,
                 input_data_var_names=None):
104 105 106 107 108
        self.program = program
        self.amp_list = amp_list
        self.use_fp16_guard = use_fp16_guard
        self.dist_context = dist_context
        self.grad_op_to_op_map = self.dist_context.dist_op_context.grad_op_id_to_op_id
109 110 111 112
        if input_data_var_names:
            self.input_data_var_names = input_data_var_names
        else:
            self.input_data_var_names = []
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        self._op_fp16_dict = {
        }  # op_id --> True/False. 'True' means that the op is should run in fp16 mode.
        # a trick to determine leaf tensor node in program {varname: generator_op_id}
        self.forward_non_leaf_tensors = {}
        # record the cast ops that are inserted for a forward
        self.forward_input_cast_ops = defaultdict(
            list
        )  # {forward_op_id: [(output_name, input_name, out_dtype, in_dtype, slot_name), ]}
        self.is_train = False

    def _is_fp16_op(self, op_id):
        return self._op_fp16_dict.get(op_id, None)

    def _build_state(self):
        """
        mark the execution mode (fp16 or fp32) for ops in all blocks 
        include forward ops & backward ops
        """
        # mark op dtype
        # assume all backward block are behind forward blocks
        for block in self.program.blocks:
            for op in block.ops:
                self._mark_op(op)

        # set forward tensor dtype
        for block in self.program.blocks:
            self.resolute_tensor_dtype(block)

        # insert cast ops
        for block in self.program.blocks:
            self.cast_block(block)

        return self.is_train

    def _mark_op(self, op):

        if op.type in __amp_skip_ops__:
            return

        if is_forward_op(op):

            # ernie inference trick
            if op.type == "assign" and "array_" in op.input_arg_names[0]:
156
                self._op_fp16_dict[op.desc.original_id()] = False
157 158 159
                return
            if _need_keep_fp32(op, self.amp_list.unsupported_list,
                               self.use_fp16_guard):
160
                self._op_fp16_dict[op.desc.original_id()] = False
161
            else:
162
                self._op_fp16_dict[op.desc.original_id()] = True
163 164 165 166 167 168
            for var_name in op.output_arg_names:
                # assert var_name not in self.forward_non_leaf_tensors, "{}".format(var_name)
                self.forward_non_leaf_tensors[var_name] = op.desc.id()

        elif is_backward_op(op) == int(OpRole.Backward):

169 170
            if op.desc.original_id() in self.grad_op_to_op_map:
                fwd_op_id = self.grad_op_to_op_map[op.desc.original_id()]
171
                assert fwd_op_id in self._op_fp16_dict, "{}".format(str(op))
172 173
                self._op_fp16_dict[op.desc.original_id()] = self._op_fp16_dict[
                    fwd_op_id]
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197

        if int(op.attr('op_role')) == 257:
            self.is_train = True

    def set_var_to_fp16(self, var_name, block):
        var = None
        try:
            var = block.var(var_name)
        except ValueError as e:
            var = self.program.global_block().var(var_name)

        # NOTE(JZ-LIANG) "array_" is a hack to adopt for ernie3.0 inference, since there is  
        # a trick which make the LOD_TENSOR_ARRAY to the float32 in while block to reset the LOD_TENSOR_ARRAY
        if var is None or var.type not in _valid_types or "array_" in var_name:
            return

        if var.dtype == core.VarDesc.VarType.FP32:
            var.desc.set_dtype(core.VarDesc.VarType.FP16)

    def resolute_tensor_dtype(self, block):

        for op in block.ops:
            if is_forward_op(op):
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
198 199
                if self._is_fp16_op(op.desc.original_id()) == True \
                    or op.type == "cast":
200 201 202 203
                    for in_name in op.input_names:
                        if _keep_fp32_input(op, in_name):
                            continue
                        for in_var_name in op.input(in_name):
204
                            if in_var_name not in self.forward_non_leaf_tensors and in_var_name not in self.input_data_var_names:
205 206 207 208 209 210 211 212
                                self.set_var_to_fp16(in_var_name, block)
                    for out_name in op.output_names:
                        if _keep_fp32_output(op, out_name):
                            continue
                        for out_var_name in op.output(out_name):
                            self.set_var_to_fp16(out_var_name, block)
                    set_op_dtype_to_fp16(op)
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
213
                elif self._is_fp16_op(op.desc.original_id()) == False:
214 215 216 217 218 219 220
                    for out_var_name in op.output_arg_names:
                        out_var = block.vars.get(out_var_name)
                        if out_var is None or out_var.type not in _valid_types:
                            continue
                        if out_var.dtype == core.VarDesc.VarType.FP16:
                            out_var.desc.set_dtype(core.VarDesc.VarType.FP32)
            elif is_backward_op(op):
221
                if self._is_fp16_op(op.desc.original_id()) == True:
222 223 224 225 226 227 228
                    for out_name in op.output_names:
                        if _keep_fp32_output(op, out_name):
                            continue
                        for out_var_name in op.output(out_name):
                            self.set_var_to_fp16(out_var_name, block)
                    set_op_dtype_to_fp16(op)
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
229
                elif self._is_fp16_op(op.desc.original_id()) == False:
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
                    for out_var_name in op.output_arg_names:
                        out_var = block.vars.get(out_var_name)
                        if out_var is None or out_var.type not in _valid_types:
                            continue
                        if out_var.dtype == core.VarDesc.VarType.FP16:
                            out_var.desc.set_dtype(core.VarDesc.VarType.FP32)

    def cast_block(self, block):
        dist_op_context = self.dist_context.dist_op_context
        idx = 0
        while idx < len(block.ops):
            op = block.ops[idx]
            num_cast_ops = 0

            if op.type in __amp_skip_ops__:
                idx += 1
                continue
            elif is_forward_op(op):
248
                if self._is_fp16_op(op.desc.original_id()) == False:
249 250 251
                    num_cast_ops = self._insert_forward_cast_ops(
                        op, idx, block, core.VarDesc.VarType.FP16,
                        core.VarDesc.VarType.FP32, self.dist_context)
252
                elif self._is_fp16_op(op.desc.original_id()) == True:
253 254 255 256
                    num_cast_ops = self._insert_forward_cast_ops(
                        op, idx, block, core.VarDesc.VarType.FP32,
                        core.VarDesc.VarType.FP16, self.dist_context)
            elif is_backward_op(op):
257 258
                if op.desc.original_id() in dist_op_context.grad_op_id_to_op_id:
                    if self._is_fp16_op(op.desc.original_id()) == False:
259 260 261
                        num_cast_ops = self._insert_backward_cast_ops(
                            op, idx, block, core.VarDesc.VarType.FP16,
                            core.VarDesc.VarType.FP32, self.dist_context)
262
                    elif self._is_fp16_op(op.desc.original_id()) == True:
263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
                        num_cast_ops = self._insert_backward_cast_ops(
                            op, idx, block, core.VarDesc.VarType.FP32,
                            core.VarDesc.VarType.FP16, self.dist_context)
                elif op.type == "sum":
                    # all inputs dtype of sum should be equal and output dtype should follow input
                    out_var_name = op.output_arg_names[0]
                    in_var_name = op.input_arg_names[0]
                    out_var = block.var(out_var_name)
                    in_var = block._find_var_recursive(in_var_name)
                    for in_var_name in op.input_arg_names:
                        assert in_var.dtype == block.var(
                            in_var_name).dtype, "{}, {}, {}".format(
                                in_var, block.var(in_var_name), str(op))
                    out_var.desc.set_dtype(in_var.dtype)

            idx += num_cast_ops + 1
        block._sync_with_cpp()

    def _insert_forward_cast_ops(self, op, idx, block, src_dtype, dst_dtype,
                                 dist_context):

        num_cast_ops = 0

        for in_name in op.input_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
                    op, in_name):
                continue

            consume_op_attr = dist_context.get_op_dist_attr_for_program(op)
            assert consume_op_attr is not None
            for in_var_name in op.input(in_name):
                in_var = block._find_var_recursive(in_var_name)
                if in_var is None or in_var.type not in _valid_types or in_var.dtype == dst_dtype:
                    continue

                if in_var.dtype == src_dtype:
                    cast_name = in_var.name + '.cast_' + _dtype_to_str(
                        dst_dtype)
                    cast_var = block.vars.get(cast_name)
302
                    self.forward_input_cast_ops[op.desc.original_id()] += [(
303 304 305 306 307
                        cast_name, in_var.name, dst_dtype, src_dtype, in_name)]

                    in_var_dist_attr = consume_op_attr.get_input_dist_attr(
                        in_var.name)
                    assert in_var_dist_attr is not None
308
                    # truly insert cast op
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
                    if cast_var is None or cast_var.dtype != dst_dtype:
                        # NOTE we make the cast op and var's dist attr as the op that consume the
                        # cast var instead of the op which generates the var
                        # refine op's dist_attr
                        ref_mesh = in_var_dist_attr.process_mesh
                        ref_mapping = in_var_dist_attr.dims_mapping

                        cast_var = block.create_var(
                            name=cast_name,
                            dtype=dst_dtype,
                            persistable=False,
                            stop_gradient=in_var.stop_gradient)
                        set_var_dist_attr(dist_context, cast_var, ref_mapping,
                                          ref_mesh)

                        cast_op = block._insert_op_without_sync(
                            idx,
                            type="cast",
                            inputs={"X": in_var},
                            outputs={"Out": cast_var},
                            attrs={
                                "in_dtype": in_var.dtype,
                                "out_dtype": cast_var.dtype,
                            })
                        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                            cast_op, ref_mesh, ref_mapping, dist_context)
                        num_cast_ops += 1

                    op._rename_input(in_var.name, cast_name)
                    consume_op_attr.set_input_dist_attr(cast_name,
                                                        in_var_dist_attr)

        if op.has_attr('out_dtype') and op.attr('out_dtype') != -1:
            assert op.attr('out_dtype') == dst_dtype

        return num_cast_ops

    def _insert_backward_cast_ops(self, op, idx, block, src_dtype, dst_dtype,
                                  dist_context):

        num_cast_ops = 0
        op_id = op.desc.id()
351
        original_id = op.desc.original_id()
352
        dist_op_context = dist_context.dist_op_context
353
        forward_op_id = dist_op_context.grad_op_id_to_op_id[original_id]
354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

        grad_op_attr = dist_context.get_op_dist_attr_for_program(op)
        assert grad_op_attr is not None

        for out_var_name in op.output_arg_names:
            out_var = block.var(out_var_name)
            if _keep_fp32_output(op, out_var.name):
                continue
            assert out_var.dtype == dst_dtype, "{}, {}".format(
                str(out_var), dst_dtype)

        for cast_name, src_name, dst_dtype, src_dtype, slot_name in self.forward_input_cast_ops[
                forward_op_id]:

            # rename input
            assert src_name in op.input(
                slot_name), "var: {} not in op's {}. {}".format(src_name,
                                                                slot_name,
                                                                str(op))
            src_var_dist_attr = grad_op_attr.get_input_dist_attr(src_name)
            assert src_var_dist_attr is not None
            op._rename_input(src_name, cast_name)
            grad_op_attr.set_input_dist_attr(cast_name, src_var_dist_attr)

            # create cast grad
            grad_slot_name = slot_name + "@GRAD"
            assert grad_slot_name in op.output_names
            assert len(op.output(grad_slot_name)) == 1
            grad_name = op.output(grad_slot_name)[0]
            grad = block.var(grad_name)
            grad_dist_attr = grad_op_attr.get_output_dist_attr(grad_name)
            assert grad_dist_attr is not None, "{}".format(grad_name)
            ref_mesh = grad_dist_attr.process_mesh
            ref_mapping = grad_dist_attr.dims_mapping

            cast_grad = block.create_var(
                name=unique_name.generate_with_ignorable_key("".join(
                    [cast_name, '@GRAD'])),
                dtype=dst_dtype,
                shape=grad.shape,
                type=grad.type,
                persistable=grad.persistable,
                stop_gradient=grad.stop_gradient)
            dist_context.set_tensor_dist_attr_for_program(cast_grad,
                                                          grad_dist_attr)
            op._rename_output(grad_name, cast_grad.name)
            grad_op_attr.set_output_dist_attr(cast_grad.name, grad_dist_attr)

            # add cast
            cast_op = block._insert_op_without_sync(
                idx + 1,
                type="cast",
                inputs={"X": [cast_grad.name]},
                outputs={"Out": [grad.name]},
                attrs={
                    "in_dtype": dst_dtype,
                    "out_dtype": src_dtype,
                })
            grad.desc.set_dtype(src_dtype)

            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
                cast_op, ref_mesh, ref_mapping, dist_context)
            num_cast_ops += 1

        return num_cast_ops


def _check_and_update_gradient(grads, loss_scaling, name, dist_context):

    main_block = paddle.static.default_main_program().global_block()
    main_block._sync_with_cpp()

    check_type(grads, 'x', (tuple, list), 'check_finite_and_unscale')
    for e in grads:
        check_variable_and_dtype(e, "x", ['float16', 'float32', 'float64'],
                                 'check_finite_and_unscale')

    found_inf = main_block.create_var(
        name=unique_name.generate_with_ignorable_key(".".join(
            ['find_infinite_scale', name])),
        shape=[1],
        dtype='bool',
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
        stop_gradient=False)
    set_var_dist_attr(dist_context, found_inf, [-1], world_process_group.ranks)

    inputs = {'X': grads, 'Scale': loss_scaling}
    outputs = {'Out': grads, 'FoundInfinite': found_inf}
    attrs = {'op_role': OpRole.Backward}
    new_op = main_block.append_op(
        type='check_finite_and_unscale',
        inputs=inputs,
        outputs=outputs,
        attrs=attrs)

    new_op_dist_attr = OperatorDistributedAttribute()
    new_op_dist_attr.process_mesh = world_process_group.ranks
    new_op_dist_attr.impl_idx = 0
    if len(world_process_group.ranks) > 1:
        new_op_dist_attr.impl_type = "check_finite_and_unscale"
    for g in grads:
        g_dist_attr = dist_context.get_tensor_dist_attr_for_program(g)
        assert g_dist_attr is not None
        new_op_dist_attr.set_input_dims_mapping(g.name,
                                                g_dist_attr.dims_mapping)
        new_op_dist_attr.set_output_dims_mapping(g.name,
                                                 g_dist_attr.dims_mapping)
    dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)
    return grads, found_inf


def _split_grads(params_grads):
    grads = [g for _, g in params_grads]
    fp32_grads = [g for g in grads if g.dtype == core.VarDesc.VarType.FP32]
    fp16_grads = [g for g in grads if g.dtype == core.VarDesc.VarType.FP16]
    assert len(fp32_grads) + len(fp16_grads) == len(grads), \
        "Data types of all grads must be either fp16 or fp32."
    return grads, fp32_grads, fp16_grads


def _set_op_dist_attr_with_ranks(new_op, ranks, block, dist_context):
    new_op_dist_attr = OperatorDistributedAttribute()
    new_op_dist_attr.process_mesh = ranks
    new_op_dist_attr.impl_idx = 0
    for var_name in new_op.input_arg_names:
        var = block.var(var_name)
        var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        assert var_dist_attr is not None
        new_op_dist_attr.set_input_dims_mapping(var_name,
                                                var_dist_attr.dims_mapping)
    for var_name in new_op.output_arg_names:
        var = block.var(var_name)
        var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        assert var_dist_attr is not None
        new_op_dist_attr.set_output_dims_mapping(var_name,
                                                 var_dist_attr.dims_mapping)
    dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


@register_pass("auto_parallel_fp16")
class FP16Pass(AMPPass):
    def __init__(self):
        super(FP16Pass, self).__init__()

    # NOTE: why FP16Pass can override apply_single_impl instead of 
    # apply_impl? AMP is an optimization pass for serial program, 
    # in distributed scenario, all ranks should have the same modification.
    def _apply_single_impl(self, main_program, startup_program, context):
        self.dist_context = self.get_attr("dist_context")
        params_grads = self.get_attr("params_grads")

        amp_list = AutoMixedPrecisionLists(
            set(self.get_attr("custom_white_list")),
            set(self.get_attr("custom_black_list")), None)

510 511 512 513
        # NOTE don't not change input data dtype, since it is controled by dataloader 
        # and which is out of control of FP16 Pass
        input_data_var_names = [var.name for var in self.get_attr("input_data")]

514 515
        with paddle.static.program_guard(main_program, startup_program):
            fp16_state = FP16State(main_program, amp_list, self.dist_context,
516 517
                                   self.get_attr("use_fp16_guard"),
                                   input_data_var_names)
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583
            is_train = fp16_state._build_state()

        if is_train:
            with paddle.static.program_guard(main_program, startup_program):
                # TODO (JZ-LIANG)support cast forward program only when inference 
                self._init_amp_var()
                self._scale_loss()

                grads, fp32_grads, fp16_grads = _split_grads(params_grads)

                if self.get_attr("use_dynamic_loss_scaling") or self.get_attr(
                        "init_loss_scaling") != 1.0:
                    found_infs = []
                    if fp32_grads:
                        with main_program._backward_role_guard():
                            _, found_inf_fp32 = _check_and_update_gradient(
                                fp32_grads, self._loss_scaling, "@fp32",
                                self.dist_context)
                        found_infs.append(found_inf_fp32)
                    if fp16_grads:
                        with main_program._backward_role_guard():
                            _, found_inf_fp16 = _check_and_update_gradient(
                                fp16_grads, self._loss_scaling, "@fp16",
                                self.dist_context)
                        found_infs.append(found_inf_fp16)
                    with main_program._backward_role_guard():
                        block = main_program.global_block()

                        all_infs = paddle.fluid.layers.concat(found_infs)
                        set_var_dist_attr(self.dist_context, all_infs, [-1],
                                          world_process_group.ranks)
                        new_op = block.ops[-1]
                        assert new_op.type == "concat"
                        _set_op_dist_attr_with_ranks(new_op,
                                                     world_process_group.ranks,
                                                     block, self.dist_context)

                        found_inf = paddle.fluid.layers.reduce_any(all_infs)
                        set_var_dist_attr(self.dist_context, found_inf, [-1],
                                          world_process_group.ranks)
                        new_op = block.ops[-1]
                        assert new_op.type == "reduce_any"
                        _set_op_dist_attr_with_ranks(new_op,
                                                     world_process_group.ranks,
                                                     block, self.dist_context)

                if self.get_attr("use_dynamic_loss_scaling"):
                    with main_program._backward_role_guard():
                        if fp32_grads:
                            self._update_loss_scaling(fp32_grads, found_inf)
                        if fp16_grads:
                            self._update_loss_scaling(fp16_grads, found_inf)

            # modify optimizer
            base_opt = self.get_attr("base_opt")
            base_opt._multi_precision = True
            if self.get_attr("use_optimizer_fp16"):
                base_opt._multi_precision = False
            if isinstance(base_opt, (paddle.fluid.optimizer.Adam,
                                     paddle.optimizer.AdamW)):
                # with main_program._optimized_guard([]):
                #     found_inf = paddle.tensor.creation._memcpy(
                #         found_inf, paddle.CPUPlace())
                base_opt._set_auxiliary_var('found_inf', found_inf.name)
            elif hasattr(base_opt, "_set_auxiliary_var"):
                base_opt._set_auxiliary_var('found_inf', found_inf.name)