auto_parallel_fp16.py 31.0 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from collections import defaultdict

import paddle
from paddle.framework import core
19
from paddle.fluid.framework import default_main_program, default_startup_program
20 21 22
from paddle.fluid import unique_name
from .pass_base import register_pass
from paddle.fluid.data_feeder import check_variable_and_dtype, check_type
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
from paddle.distributed.auto_parallel.utils import (
    set_var_dist_attr,
    naive_set_dist_op_attr_for_program_by_mesh_and_mapping,
)
from paddle.distributed.auto_parallel.process_group import (
    get_world_process_group,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
    AutoMixedPrecisionLists,
)
from paddle.fluid.contrib.mixed_precision.fp16_utils import (
    _keep_layer_norm_scale_bias_to_fp32,
    _need_keep_fp32,
    _valid_types,
    _dtype_to_str,
)
from paddle.distributed.auto_parallel.dist_attribute import (
    OperatorDistributedAttribute,
)
from paddle.distributed.auto_parallel.utils import (
    is_forward_op,
    is_backward_op,
    OP_ROLE_KEY,
    OpRole,
)
48 49 50 51 52 53 54 55 56 57 58 59 60
from .auto_parallel_amp import AMPPass

world_process_group = get_world_process_group()
# if user use python "+, -, * /" for network, there might be cast in vanilla program
__amp_skip_ops__ = [
    'create_py_reader',
    'create_double_buffer_reader',
    'while',
    'cast',
]


def set_op_dtype_to_fp16(op):
61 62 63 64
    if (
        op.has_attr('in_dtype')
        and op.attr('in_dtype') == core.VarDesc.VarType.FP32
    ):
65
        op._set_attr('in_dtype', core.VarDesc.VarType.FP16)
66 67 68 69
    if (
        op.has_attr('out_dtype')
        and op.attr('out_dtype') == core.VarDesc.VarType.FP32
    ):
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        op._set_attr('out_dtype', core.VarDesc.VarType.FP16)
    if op.has_attr('dtype') and op.attr('dtype') == core.VarDesc.VarType.FP32:
        op._set_attr('dtype', core.VarDesc.VarType.FP16)


# adapot for backward op
def _keep_fp32_input(op, in_name):
    op_type = op.type
    if op_type == 'batch_norm':
        # Scale, Bias, Mean, Variance should be float32.
        return in_name != 'X'
    if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
        return in_name != 'X'
    if op_type == 'fused_bn_add_activation':
        return in_name not in {'X', 'Z'}
    if op_type == 'resnet_unit':
        return in_name not in {'X', 'FilterX', 'Z', 'FilterZ'}
    if op_type in ['fused_attention', 'fused_feedforward']:
        return in_name in {
89 90 91 92 93 94
            'LnScale',
            'LnBias',
            'Ln2Scale',
            'Ln2Bias',
            "Ln1Scale",
            "Ln1Bias",
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        }
    # backward
    if op_type in ['batch_norm_grad']:
        return in_name not in {'X', 'Y@GRAD'}
    if op_type in ['layer_norm_grad']:
        return in_name not in {'X', 'Y@GRAD'}
    return False


def _keep_fp32_output(op, out_name):
    op_type = op.type
    if op_type in ['batch_norm', 'fused_bn_add_activation']:
        return out_name != 'Y'
    if op_type == 'layer_norm' and _keep_layer_norm_scale_bias_to_fp32():
        return out_name != 'Y'
    if op_type == 'resnet_unit':
        return out_name not in {'Y', 'ConvX', 'ConvZ'}
    if op_type in ['fused_attention', 'fused_feedforward']:
        return out_name in {
114 115 116 117 118 119
            'LnMean',
            'LnVariance',
            'Ln2Mean',
            'Ln2Variance',
            'Ln1Mean',
            'Ln1Variance',
120 121 122 123 124 125 126 127 128 129
        }
    # backward
    if op_type in ['layer_norm_grad']:
        return out_name != 'X@GRAD'
    if op_type in ['batch_norm_grad']:
        return out_name != 'X@GRAD'
    return False


class FP16State(object):
130 131 132 133 134 135 136 137
    def __init__(
        self,
        program,
        amp_list,
        dist_context,
        use_fp16_guard,
        input_data_var_names=None,
    ):
138 139 140 141
        self.program = program
        self.amp_list = amp_list
        self.use_fp16_guard = use_fp16_guard
        self.dist_context = dist_context
142 143 144
        self.grad_op_to_op_map = (
            self.dist_context.dist_op_context.grad_op_id_to_op_id
        )
145 146 147 148
        if input_data_var_names:
            self.input_data_var_names = input_data_var_names
        else:
            self.input_data_var_names = []
149 150 151
        self._op_fp16_dict = (
            {}
        )  # op_id --> True/False. 'True' means that the op is should run in fp16 mode.
152 153 154 155 156 157 158 159 160 161 162 163 164
        # a trick to determine leaf tensor node in program {varname: generator_op_id}
        self.forward_non_leaf_tensors = {}
        # record the cast ops that are inserted for a forward
        self.forward_input_cast_ops = defaultdict(
            list
        )  # {forward_op_id: [(output_name, input_name, out_dtype, in_dtype, slot_name), ]}
        self.is_train = False

    def _is_fp16_op(self, op_id):
        return self._op_fp16_dict.get(op_id, None)

    def _build_state(self):
        """
165
        mark the execution mode (fp16 or fp32) for ops in all blocks
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        include forward ops & backward ops
        """
        # mark op dtype
        # assume all backward block are behind forward blocks
        for block in self.program.blocks:
            for op in block.ops:
                self._mark_op(op)

        # set forward tensor dtype
        for block in self.program.blocks:
            self.resolute_tensor_dtype(block)

        # insert cast ops
        for block in self.program.blocks:
            self.cast_block(block)

        return self.is_train

    def _mark_op(self, op):

        if op.type in __amp_skip_ops__:
            return

        if is_forward_op(op):

            # ernie inference trick
            if op.type == "assign" and "array_" in op.input_arg_names[0]:
193
                self._op_fp16_dict[op.desc.original_id()] = False
194
                return
195 196 197
            if _need_keep_fp32(
                op, self.amp_list.unsupported_list, self.use_fp16_guard
            ):
198
                self._op_fp16_dict[op.desc.original_id()] = False
199
            else:
200
                self._op_fp16_dict[op.desc.original_id()] = True
201 202 203 204 205 206
            for var_name in op.output_arg_names:
                # assert var_name not in self.forward_non_leaf_tensors, "{}".format(var_name)
                self.forward_non_leaf_tensors[var_name] = op.desc.id()

        elif is_backward_op(op) == int(OpRole.Backward):

207 208
            if op.desc.original_id() in self.grad_op_to_op_map:
                fwd_op_id = self.grad_op_to_op_map[op.desc.original_id()]
209
                assert fwd_op_id in self._op_fp16_dict, "{}".format(str(op))
210 211 212
                self._op_fp16_dict[op.desc.original_id()] = self._op_fp16_dict[
                    fwd_op_id
                ]
213 214 215 216 217 218 219 220 221

        if int(op.attr('op_role')) == 257:
            self.is_train = True

    def set_var_to_fp16(self, var_name, block):
        var = None
        try:
            var = block.var(var_name)
        except ValueError as e:
222 223
            var = block._var_recursive(var_name)
            # var = self.program.global_block().var(var_name)
224

225
        # NOTE(JZ-LIANG) "array_" is a hack to adopt for ernie3.0 inference, since there is
226 227 228 229 230 231 232 233 234 235 236 237
        # a trick which make the LOD_TENSOR_ARRAY to the float32 in while block to reset the LOD_TENSOR_ARRAY
        if var is None or var.type not in _valid_types or "array_" in var_name:
            return

        if var.dtype == core.VarDesc.VarType.FP32:
            var.desc.set_dtype(core.VarDesc.VarType.FP16)

    def resolute_tensor_dtype(self, block):

        for op in block.ops:
            if is_forward_op(op):
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
238
                if self._is_fp16_op(op.desc.original_id()) or op.type == "cast":
239 240 241 242
                    for in_name in op.input_names:
                        if _keep_fp32_input(op, in_name):
                            continue
                        for in_var_name in op.input(in_name):
243 244 245 246
                            if (
                                in_var_name not in self.forward_non_leaf_tensors
                                and in_var_name not in self.input_data_var_names
                            ):
247 248 249 250 251 252 253 254
                                self.set_var_to_fp16(in_var_name, block)
                    for out_name in op.output_names:
                        if _keep_fp32_output(op, out_name):
                            continue
                        for out_var_name in op.output(out_name):
                            self.set_var_to_fp16(out_var_name, block)
                    set_op_dtype_to_fp16(op)
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
255
                elif not self._is_fp16_op(op.desc.original_id()):
256 257 258 259 260 261 262
                    for out_var_name in op.output_arg_names:
                        out_var = block.vars.get(out_var_name)
                        if out_var is None or out_var.type not in _valid_types:
                            continue
                        if out_var.dtype == core.VarDesc.VarType.FP16:
                            out_var.desc.set_dtype(core.VarDesc.VarType.FP32)
            elif is_backward_op(op):
263
                if self._is_fp16_op(op.desc.original_id()):
264 265 266 267 268 269 270
                    for out_name in op.output_names:
                        if _keep_fp32_output(op, out_name):
                            continue
                        for out_var_name in op.output(out_name):
                            self.set_var_to_fp16(out_var_name, block)
                    set_op_dtype_to_fp16(op)
                # NOTE (JZ-LIANG) un-expected cast op when user call "+, -, *, /" in python
271
                elif not self._is_fp16_op(op.desc.original_id()):
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
                    for out_var_name in op.output_arg_names:
                        out_var = block.vars.get(out_var_name)
                        if out_var is None or out_var.type not in _valid_types:
                            continue
                        if out_var.dtype == core.VarDesc.VarType.FP16:
                            out_var.desc.set_dtype(core.VarDesc.VarType.FP32)

    def cast_block(self, block):
        dist_op_context = self.dist_context.dist_op_context
        idx = 0
        while idx < len(block.ops):
            op = block.ops[idx]
            num_cast_ops = 0

            if op.type in __amp_skip_ops__:
                idx += 1
                continue
            elif is_forward_op(op):
290
                if not self._is_fp16_op(op.desc.original_id()):
291
                    num_cast_ops = self._insert_forward_cast_ops(
292 293 294 295 296 297 298
                        op,
                        idx,
                        block,
                        core.VarDesc.VarType.FP16,
                        core.VarDesc.VarType.FP32,
                        self.dist_context,
                    )
299
                elif self._is_fp16_op(op.desc.original_id()):
300
                    num_cast_ops = self._insert_forward_cast_ops(
301 302 303 304 305 306 307
                        op,
                        idx,
                        block,
                        core.VarDesc.VarType.FP32,
                        core.VarDesc.VarType.FP16,
                        self.dist_context,
                    )
308
            elif is_backward_op(op):
309
                if op.desc.original_id() in dist_op_context.grad_op_id_to_op_id:
310
                    if not self._is_fp16_op(op.desc.original_id()):
311
                        num_cast_ops = self._insert_backward_cast_ops(
312 313 314 315 316 317 318
                            op,
                            idx,
                            block,
                            core.VarDesc.VarType.FP16,
                            core.VarDesc.VarType.FP32,
                            self.dist_context,
                        )
319
                    elif self._is_fp16_op(op.desc.original_id()):
320
                        num_cast_ops = self._insert_backward_cast_ops(
321 322 323 324 325 326 327
                            op,
                            idx,
                            block,
                            core.VarDesc.VarType.FP32,
                            core.VarDesc.VarType.FP16,
                            self.dist_context,
                        )
328 329 330 331 332 333 334
                elif op.type == "sum":
                    # all inputs dtype of sum should be equal and output dtype should follow input
                    out_var_name = op.output_arg_names[0]
                    in_var_name = op.input_arg_names[0]
                    out_var = block.var(out_var_name)
                    in_var = block._find_var_recursive(in_var_name)
                    for in_var_name in op.input_arg_names:
335 336 337 338 339
                        assert (
                            in_var.dtype == block.var(in_var_name).dtype
                        ), "{}, {}, {}".format(
                            in_var, block.var(in_var_name), str(op)
                        )
340 341 342 343 344
                    out_var.desc.set_dtype(in_var.dtype)

            idx += num_cast_ops + 1
        block._sync_with_cpp()

345 346 347
    def _insert_forward_cast_ops(
        self, op, idx, block, src_dtype, dst_dtype, dist_context
    ):
348 349 350 351 352

        num_cast_ops = 0

        for in_name in op.input_names:
            if src_dtype == core.VarDesc.VarType.FP32 and _keep_fp32_input(
353 354
                op, in_name
            ):
355 356 357 358 359 360
                continue

            consume_op_attr = dist_context.get_op_dist_attr_for_program(op)
            assert consume_op_attr is not None
            for in_var_name in op.input(in_name):
                in_var = block._find_var_recursive(in_var_name)
361 362 363 364 365
                if (
                    in_var is None
                    or in_var.type not in _valid_types
                    or in_var.dtype == dst_dtype
                ):
366 367 368
                    continue

                if in_var.dtype == src_dtype:
369 370 371
                    cast_name = (
                        in_var.name + '.cast_' + _dtype_to_str(dst_dtype)
                    )
372
                    cast_var = block.vars.get(cast_name)
373 374 375
                    self.forward_input_cast_ops[op.desc.original_id()] += [
                        (cast_name, in_var.name, dst_dtype, src_dtype, in_name)
                    ]
376 377

                    in_var_dist_attr = consume_op_attr.get_input_dist_attr(
378 379
                        in_var.name
                    )
380
                    assert in_var_dist_attr is not None
381
                    # truly insert cast op
382 383 384 385 386 387 388 389 390 391 392
                    if cast_var is None or cast_var.dtype != dst_dtype:
                        # NOTE we make the cast op and var's dist attr as the op that consume the
                        # cast var instead of the op which generates the var
                        # refine op's dist_attr
                        ref_mesh = in_var_dist_attr.process_mesh
                        ref_mapping = in_var_dist_attr.dims_mapping

                        cast_var = block.create_var(
                            name=cast_name,
                            dtype=dst_dtype,
                            persistable=False,
393 394 395 396 397
                            stop_gradient=in_var.stop_gradient,
                        )
                        set_var_dist_attr(
                            dist_context, cast_var, ref_mapping, ref_mesh
                        )
398 399 400 401 402 403 404 405 406

                        cast_op = block._insert_op_without_sync(
                            idx,
                            type="cast",
                            inputs={"X": in_var},
                            outputs={"Out": cast_var},
                            attrs={
                                "in_dtype": in_var.dtype,
                                "out_dtype": cast_var.dtype,
407 408 409
                                OP_ROLE_KEY: OpRole.Forward,
                            },
                        )
410
                        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
411 412
                            cast_op, ref_mesh, ref_mapping, dist_context
                        )
413 414 415
                        num_cast_ops += 1

                    op._rename_input(in_var.name, cast_name)
416 417 418
                    consume_op_attr.set_input_dist_attr(
                        cast_name, in_var_dist_attr
                    )
419 420 421 422 423 424

        if op.has_attr('out_dtype') and op.attr('out_dtype') != -1:
            assert op.attr('out_dtype') == dst_dtype

        return num_cast_ops

425 426 427
    def _insert_backward_cast_ops(
        self, op, idx, block, src_dtype, dst_dtype, dist_context
    ):
428 429 430

        num_cast_ops = 0
        op_id = op.desc.id()
431
        original_id = op.desc.original_id()
432
        dist_op_context = dist_context.dist_op_context
433
        forward_op_id = dist_op_context.grad_op_id_to_op_id[original_id]
434 435 436 437 438 439 440 441 442

        grad_op_attr = dist_context.get_op_dist_attr_for_program(op)
        assert grad_op_attr is not None

        for out_var_name in op.output_arg_names:
            out_var = block.var(out_var_name)
            if _keep_fp32_output(op, out_var.name):
                continue
            assert out_var.dtype == dst_dtype, "{}, {}".format(
443 444
                str(out_var), dst_dtype
            )
445

446 447 448 449 450 451 452
        for (
            cast_name,
            src_name,
            dst_dtype,
            src_dtype,
            slot_name,
        ) in self.forward_input_cast_ops[forward_op_id]:
453

454 455 456 457
            # some forward output is not need by backward computation, e.g. logit in softmax_with_cross_entropy
            if slot_name not in op.input_names:
                continue

458 459
            # rename input
            assert src_name in op.input(
460 461
                slot_name
            ), "var: {} not in op's {}. {}".format(src_name, slot_name, str(op))
462 463 464 465 466 467 468
            src_var_dist_attr = grad_op_attr.get_input_dist_attr(src_name)
            assert src_var_dist_attr is not None
            op._rename_input(src_name, cast_name)
            grad_op_attr.set_input_dist_attr(cast_name, src_var_dist_attr)

            # create cast grad
            grad_slot_name = slot_name + "@GRAD"
469 470 471
            assert (
                grad_slot_name in op.output_names
            ), "[{}], Current Op: {}".format(grad_slot_name, str(op))
472 473

            # some forward input maybe stop_gradient=True, e.g. input_mask
474 475
            if len(op.output(grad_slot_name)) == 0:
                continue
476 477 478
            assert (
                len(op.output(grad_slot_name)) == 1
            ), "[{}], Current Op: {}".format(grad_slot_name, str(op))
479 480 481 482 483 484 485 486
            grad_name = op.output(grad_slot_name)[0]
            grad = block.var(grad_name)
            grad_dist_attr = grad_op_attr.get_output_dist_attr(grad_name)
            assert grad_dist_attr is not None, "{}".format(grad_name)
            ref_mesh = grad_dist_attr.process_mesh
            ref_mapping = grad_dist_attr.dims_mapping

            cast_grad = block.create_var(
487 488 489
                name=unique_name.generate_with_ignorable_key(
                    "".join([cast_name, '@GRAD'])
                ),
490 491 492 493
                dtype=dst_dtype,
                shape=grad.shape,
                type=grad.type,
                persistable=grad.persistable,
494 495
                stop_gradient=grad.stop_gradient,
            )
496
            dist_context.set_tensor_dist_attr_for_program(
497 498
                cast_grad, grad_dist_attr
            )
499 500 501 502 503 504 505 506 507 508 509 510
            op._rename_output(grad_name, cast_grad.name)
            grad_op_attr.set_output_dist_attr(cast_grad.name, grad_dist_attr)

            # add cast
            cast_op = block._insert_op_without_sync(
                idx + 1,
                type="cast",
                inputs={"X": [cast_grad.name]},
                outputs={"Out": [grad.name]},
                attrs={
                    "in_dtype": dst_dtype,
                    "out_dtype": src_dtype,
511 512 513
                    OP_ROLE_KEY: OpRole.Backward,
                },
            )
514 515 516
            grad.desc.set_dtype(src_dtype)

            naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
517 518
                cast_op, ref_mesh, ref_mapping, dist_context
            )
519 520 521 522 523 524 525 526 527 528 529 530
            num_cast_ops += 1

        return num_cast_ops


def _check_and_update_gradient(grads, loss_scaling, name, dist_context):

    main_block = paddle.static.default_main_program().global_block()
    main_block._sync_with_cpp()

    check_type(grads, 'x', (tuple, list), 'check_finite_and_unscale')
    for e in grads:
531 532 533 534 535 536
        check_variable_and_dtype(
            e,
            "x",
            ['float16', 'float32', 'float64'],
            'check_finite_and_unscale',
        )
537 538

    found_inf = main_block.create_var(
539 540 541
        name=unique_name.generate_with_ignorable_key(
            ".".join(['find_infinite_scale', name])
        ),
542 543 544 545
        shape=[1],
        dtype='bool',
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
546 547
        stop_gradient=False,
    )
548 549 550 551
    set_var_dist_attr(dist_context, found_inf, [-1], world_process_group.ranks)

    inputs = {'X': grads, 'Scale': loss_scaling}
    outputs = {'Out': grads, 'FoundInfinite': found_inf}
552
    attrs = {'op_role': OpRole.Optimize}
553 554 555 556 557 558
    new_op = main_block.append_op(
        type='check_finite_and_unscale',
        inputs=inputs,
        outputs=outputs,
        attrs=attrs,
    )
559 560 561 562 563 564 565 566 567

    new_op_dist_attr = OperatorDistributedAttribute()
    new_op_dist_attr.process_mesh = world_process_group.ranks
    new_op_dist_attr.impl_idx = 0
    if len(world_process_group.ranks) > 1:
        new_op_dist_attr.impl_type = "check_finite_and_unscale"
    for g in grads:
        g_dist_attr = dist_context.get_tensor_dist_attr_for_program(g)
        assert g_dist_attr is not None
568 569 570 571 572 573
        new_op_dist_attr.set_input_dims_mapping(
            g.name, g_dist_attr.dims_mapping
        )
        new_op_dist_attr.set_output_dims_mapping(
            g.name, g_dist_attr.dims_mapping
        )
574 575 576 577 578 579 580 581
    dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)
    return grads, found_inf


def _split_grads(params_grads):
    grads = [g for _, g in params_grads]
    fp32_grads = [g for g in grads if g.dtype == core.VarDesc.VarType.FP32]
    fp16_grads = [g for g in grads if g.dtype == core.VarDesc.VarType.FP16]
582 583 584
    assert len(fp32_grads) + len(fp16_grads) == len(
        grads
    ), "Data types of all grads must be either fp16 or fp32."
585 586 587 588 589 590 591 592 593 594 595
    return grads, fp32_grads, fp16_grads


def _set_op_dist_attr_with_ranks(new_op, ranks, block, dist_context):
    new_op_dist_attr = OperatorDistributedAttribute()
    new_op_dist_attr.process_mesh = ranks
    new_op_dist_attr.impl_idx = 0
    for var_name in new_op.input_arg_names:
        var = block.var(var_name)
        var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        assert var_dist_attr is not None
596 597 598
        new_op_dist_attr.set_input_dims_mapping(
            var_name, var_dist_attr.dims_mapping
        )
599 600 601 602
    for var_name in new_op.output_arg_names:
        var = block.var(var_name)
        var_dist_attr = dist_context.get_tensor_dist_attr_for_program(var)
        assert var_dist_attr is not None
603 604 605
        new_op_dist_attr.set_output_dims_mapping(
            var_name, var_dist_attr.dims_mapping
        )
606 607 608
    dist_context.set_op_dist_attr_for_program(new_op, new_op_dist_attr)


609 610 611
def _get_memcopy_idx(block, found_inf_var):
    # use reduce_any op for check_nan_inf as the anchor for now
    for idx, op in enumerate(block.ops):
612 613 614 615
        if (
            op.type == 'reduce_any'
            and op.output_arg_names[0] == found_inf_var.name
        ):
616 617 618
            return idx + 1

    raise RuntimeError(
619 620
        "not found the correct location for memcopy for found_inf_var."
    )
621 622 623 624


def _insert_memcopy(block, idx, src_var, dist_context, direction="D2H"):
    src_name = src_var.name
625 626 627 628 629 630 631 632 633 634
    output_var = block.create_var(
        name=unique_name.generate_with_ignorable_key(
            src_name.join(['memcopy_'])
        ),
        dtype=src_var.dtype,
        shape=src_var.shape,
        type=core.VarDesc.VarType.LOD_TENSOR,
        persistable=False,
        stop_gradient=src_var.stop_gradient,
    )
635 636 637 638 639 640 641 642 643 644

    set_var_dist_attr(dist_context, output_var, [-1], world_process_group.ranks)

    # TODO to support CUDAPinned/NPU/XPU Places
    if direction == "D2H":
        dst_place_type = 0
    elif direction == "D2H":
        dst_place_type = 1
    else:
        raise NotImplementedError(
645 646
            "direction [{}] is not supported yet.".format(direction)
        )
647 648

    attrs = {'dst_place_type': dst_place_type}
649 650 651 652 653 654 655 656 657 658
    new_op = block._insert_op_without_sync(
        index=idx,
        type='memcpy',
        inputs={'X': [src_var]},
        outputs={'Out': [output_var]},
        attrs=attrs,
    )
    _set_op_dist_attr_with_ranks(
        new_op, world_process_group.ranks, block, dist_context
    )
659 660 661 662
    block._sync_with_cpp()
    return output_var


663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
def cast_startup_program():
    main_program = default_main_program()
    startup_program = default_startup_program()

    param_to_dtype = {}
    for block in main_program.blocks:
        for p in block.all_parameters():
            param_to_dtype[p.name] = p.dtype

    def is_initialization_op(op):
        comm_op_prefix = "c_"
        op_type = op.type
        if op_type.startswith(comm_op_prefix):
            return False

        if len(op.output_arg_names) != 1 and len(op.input_arg_names) != 0:
            return False

        return True

    for op in startup_program.global_block().ops:
        if is_initialization_op(op):
            output_name = op.output_arg_names[0]
686 687 688 689
            if (
                param_to_dtype.get(output_name, None)
                == core.VarDesc.VarType.FP16
            ):
690 691 692
                assert op.has_attr(
                    'dtype'
                ), "initialization op is supported to has dtype attribute but got {}.".format(
693 694
                    str(op)
                )
695 696 697 698
                if op.attr('dtype') == core.VarDesc.VarType.FP32:
                    op._set_attr('dtype', core.VarDesc.VarType.FP16)


699 700 701
@register_pass("auto_parallel_fp16")
class FP16Pass(AMPPass):
    def __init__(self):
702
        super().__init__()
703

704 705
    # NOTE: why FP16Pass can override apply_single_impl instead of
    # apply_impl? AMP is an optimization pass for serial program,
706 707 708 709 710 711 712
    # in distributed scenario, all ranks should have the same modification.
    def _apply_single_impl(self, main_program, startup_program, context):
        self.dist_context = self.get_attr("dist_context")
        params_grads = self.get_attr("params_grads")

        amp_list = AutoMixedPrecisionLists(
            set(self.get_attr("custom_white_list")),
713 714 715
            set(self.get_attr("custom_black_list")),
            None,
        )
716

717
        # NOTE don't not change input data dtype, since it is controled by dataloader
718 719 720
        # and which is out of control of FP16 Pass
        input_data_var_names = [var.name for var in self.get_attr("input_data")]

721
        with paddle.static.program_guard(main_program, startup_program):
722 723 724 725 726 727 728
            fp16_state = FP16State(
                main_program,
                amp_list,
                self.dist_context,
                self.get_attr("use_fp16_guard"),
                input_data_var_names,
            )
729 730
            is_train = fp16_state._build_state()

731 732
            cast_startup_program()

733 734
        if is_train:
            with paddle.static.program_guard(main_program, startup_program):
735
                # TODO (JZ-LIANG)support cast forward program only when inference
736 737 738 739 740
                self._init_amp_var()
                self._scale_loss()

                grads, fp32_grads, fp16_grads = _split_grads(params_grads)

741 742 743 744
                if (
                    self.get_attr("use_dynamic_loss_scaling")
                    or self.get_attr("init_loss_scaling") != 1.0
                ):
745 746
                    found_infs = []
                    if fp32_grads:
747
                        with main_program._optimized_guard([]):
748
                            _, found_inf_fp32 = _check_and_update_gradient(
749 750 751 752 753
                                fp32_grads,
                                self._loss_scaling,
                                "@fp32",
                                self.dist_context,
                            )
754 755
                        found_infs.append(found_inf_fp32)
                    if fp16_grads:
756
                        with main_program._optimized_guard([]):
757
                            _, found_inf_fp16 = _check_and_update_gradient(
758 759 760 761 762
                                fp16_grads,
                                self._loss_scaling,
                                "@fp16",
                                self.dist_context,
                            )
763
                        found_infs.append(found_inf_fp16)
764
                    with main_program._optimized_guard([]):
765 766 767
                        block = main_program.global_block()

                        all_infs = paddle.fluid.layers.concat(found_infs)
768 769 770 771 772 773
                        set_var_dist_attr(
                            self.dist_context,
                            all_infs,
                            [-1],
                            world_process_group.ranks,
                        )
774 775
                        new_op = block.ops[-1]
                        assert new_op.type == "concat"
776 777 778 779 780 781
                        _set_op_dist_attr_with_ranks(
                            new_op,
                            world_process_group.ranks,
                            block,
                            self.dist_context,
                        )
782 783

                        found_inf = paddle.fluid.layers.reduce_any(all_infs)
784 785 786 787 788 789
                        set_var_dist_attr(
                            self.dist_context,
                            found_inf,
                            [-1],
                            world_process_group.ranks,
                        )
790 791
                        new_op = block.ops[-1]
                        assert new_op.type == "reduce_any"
792 793 794 795 796 797
                        _set_op_dist_attr_with_ranks(
                            new_op,
                            world_process_group.ranks,
                            block,
                            self.dist_context,
                        )
798 799

                if self.get_attr("use_dynamic_loss_scaling"):
800
                    with main_program._optimized_guard([]):
801 802 803 804 805 806 807 808 809 810
                        if fp32_grads:
                            self._update_loss_scaling(fp32_grads, found_inf)
                        if fp16_grads:
                            self._update_loss_scaling(fp16_grads, found_inf)

            # modify optimizer
            base_opt = self.get_attr("base_opt")
            base_opt._multi_precision = True
            if self.get_attr("use_optimizer_fp16"):
                base_opt._multi_precision = False
811
            if isinstance(
812 813
                base_opt, (paddle.fluid.optimizer.Adam, paddle.optimizer.AdamW)
            ):
814 815 816 817
                with main_program._optimized_guard([]):
                    # found_inf = paddle.tensor.creation._memcpy(
                    #     found_inf, paddle.CPUPlace())
                    insert_idx = _get_memcopy_idx(block, found_inf)
818 819 820
                    found_inf = _insert_memcopy(
                        block, insert_idx, found_inf, self.dist_context
                    )
821 822 823
                base_opt._set_auxiliary_var('found_inf', found_inf.name)
            elif hasattr(base_opt, "_set_auxiliary_var"):
                base_opt._set_auxiliary_var('found_inf', found_inf.name)