mul_op.cc 12.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

7
    http://www.apache.org/licenses/LICENSE-2.0
8

9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/mul_op.h"
16
#include <memory>
17
#include <string>
18
#include <unordered_map>
19
#include <vector>
P
Physher 已提交
20 21 22
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
23 24 25 26

namespace paddle {
namespace operators {

27
using framework::OpKernelType;
D
dongzhihong 已提交
28 29
using framework::Tensor;

30
class MulOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
31
 public:
32 33 34
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
35 36 37
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Mul");
    OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "Mul");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Mul");
Q
Qiao Longfei 已提交
38 39 40

    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
Y
Yu Yang 已提交
41

Q
Qiao Longfei 已提交
42 43
    int x_num_col_dims = ctx->Attrs().Get<int>("x_num_col_dims");
    int y_num_col_dims = ctx->Attrs().Get<int>("y_num_col_dims");
F
WIP  
fengjiayi 已提交
44

M
minqiyang 已提交
45 46 47
    VLOG(3) << "mul operator x.shape=" << x_dims << " y.shape=" << y_dims
            << " x_num_col_dims=" << x_num_col_dims
            << " y_num_col_dims=" << y_num_col_dims;
Y
Yu Yang 已提交
48

49
    PADDLE_ENFORCE_NE(framework::product(y_dims), 0,
50
                      platform::errors::PreconditionNotMet(
51
                          "The Input variable Y(%s) has not "
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
                          "been initialized. You may need to confirm "
                          "if you put exe.run(startup_program) "
                          "after optimizer.minimize function.",
                          ctx->Inputs("Y").front()));
    PADDLE_ENFORCE_GT(
        x_dims.size(), x_num_col_dims,
        platform::errors::InvalidArgument(
            "The input tensor X's dimensions of MulOp "
            "should be larger than x_num_col_dims. But received X's "
            "dimensions = %d, X's shape = [%s], x_num_col_dims = %d.",
            x_dims.size(), x_dims, x_num_col_dims));
    PADDLE_ENFORCE_GT(
        y_dims.size(), y_num_col_dims,
        platform::errors::InvalidArgument(
            "The input tensor Y's dimensions of MulOp "
            "should be larger than y_num_col_dims. But received Y's "
            "dimensions = %d, Y's shape = [%s], y_num_col_dims = %d.",
            y_dims.size(), y_dims, y_num_col_dims));
70

F
fengjiayi 已提交
71 72
    auto x_mat_dims = framework::flatten_to_2d(x_dims, x_num_col_dims);
    auto y_mat_dims = framework::flatten_to_2d(y_dims, y_num_col_dims);
73

74 75
    PADDLE_ENFORCE_EQ(
        x_mat_dims[1], y_mat_dims[0],
76 77 78 79 80 81 82 83 84
        platform::errors::InvalidArgument(
            "After flatten the input tensor X and Y to 2-D dimensions "
            "matrix X1 and Y1, the matrix X1's width must be equal with matrix "
            "Y1's height. But received X's shape = [%s], X1's shape = [%s], "
            "X1's "
            "width = %s; Y's shape = [%s], Y1's shape = [%s], Y1's height = "
            "%s.",
            x_dims, x_mat_dims, x_mat_dims[1], y_dims, y_mat_dims,
            y_mat_dims[0]));
Y
Yu Yang 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97
    std::vector<int64_t> output_dims;
    output_dims.reserve(
        static_cast<size_t>(x_num_col_dims + y_dims.size() - y_num_col_dims));

    for (int i = 0; i < x_num_col_dims; ++i) {
      output_dims.push_back(x_dims[i]);
    }

    for (int i = y_num_col_dims; i < y_dims.size(); ++i) {
      output_dims.push_back(y_dims[i]);
    }

    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
Q
Qiao Longfei 已提交
98
    ctx->ShareLoD("X", /*->*/ "Out");
99
  }
P
Physher 已提交
100 101 102 103 104 105 106

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const {
    framework::LibraryType library = framework::LibraryType::kPlain;
    framework::DataLayout layout = framework::DataLayout::kAnyLayout;
    int customized_type_value =
        framework::OpKernelType::kDefaultCustomizedTypeValue;
107
    auto input_data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
P
Physher 已提交
108 109 110 111 112 113
#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;

114 115
      if (input_data_type == framework::DataTypeTrait<int8_t>::DataType() ||
          input_data_type == framework::DataTypeTrait<uint8_t>::DataType()) {
P
Physher 已提交
116 117 118 119 120 121 122 123
        customized_type_value = kMULMKLDNNINT8;
      }
    }
#endif

    return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout,
                                   library, customized_type_value);
  }
124 125
};

D
dongzhihong 已提交
126
class MulOpMaker : public framework::OpProtoAndCheckerMaker {
127
 public:
Y
Yu Yang 已提交
128
  void Make() override {
C
caoying03 已提交
129 130 131
    AddInput("X", "(Tensor), The first input tensor of mul op.");
    AddInput("Y", "(Tensor), The second input tensor of mul op.");
    AddOutput("Out", "(Tensor), The output tensor of mul op.");
P
Physher 已提交
132 133 134
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
F
WIP  
fengjiayi 已提交
135
    AddAttr<int>(
F
fengjiayi 已提交
136
        "x_num_col_dims",
C
caoying03 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
        R"DOC((int, default 1), The mul_op can take tensors with more than two
              dimensions as its inputs. If the input $X$ is a tensor with more
              than two dimensions, $X$ will be flattened into a two-dimensional
              matrix first. The flattening rule is: the first `num_col_dims`
              will be flattened to form the first dimension of the final matrix
              (the height of the matrix), and the rest `rank(X) - num_col_dims`
              dimensions are flattened to form the second dimension of the final
              matrix (the width of the matrix). As a result, height of the
              flattened matrix is equal to the product of $X$'s first
              `x_num_col_dims` dimensions' sizes, and width of the flattened
              matrix is equal to the product of $X$'s last `rank(x) - num_col_dims`
              dimensions' size. For example, suppose $X$ is a 6-dimensional
              tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3.
              Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] =
              [24, 30].
F
fengjiayi 已提交
152
        )DOC")
F
WIP  
fengjiayi 已提交
153
        .SetDefault(1)
F
fengjiayi 已提交
154
        .EqualGreaterThan(1);
F
WIP  
fengjiayi 已提交
155
    AddAttr<int>(
F
fengjiayi 已提交
156
        "y_num_col_dims",
C
caoying03 已提交
157 158 159 160
        R"DOC((int, default 1), The mul_op can take tensors with more than two,
              dimensions as its inputs. If the input $Y$ is a tensor with more
              than two dimensions, $Y$ will be flattened into a two-dimensional
              matrix first. The attribute `y_num_col_dims` determines how $Y$ is
C
caoying03 已提交
161
              flattened. See comments of `x_num_col_dims` for more details.
F
fengjiayi 已提交
162
        )DOC")
F
WIP  
fengjiayi 已提交
163
        .SetDefault(1)
F
fengjiayi 已提交
164
        .EqualGreaterThan(1);
165 166 167 168 169
    AddAttr<float>(
        "scale_x",
        "scale_x to be used for int8 mul input data x. scale_x has the"
        "same purpose as scale_in in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
170
        .SetDefault(1.0f);
171 172 173 174 175
    AddAttr<std::vector<float>>(
        "scale_y",
        "scale_y to be used for int8 mul input data y. scale_y has the"
        "same purpose as scale_weights in OPs that support quantization."
        "Only to be used with MKL-DNN INT8")
P
Physher 已提交
176 177 178 179 180 181 182 183 184 185
        .SetDefault({1.0f});
    AddAttr<float>("scale_out",
                   "scale_out to be used for int8 output data."
                   "Only used with MKL-DNN INT8")
        .SetDefault(1.0f);
    AddAttr<bool>(
        "force_fp32_output",
        "(bool, default false) Force quantize kernel output FP32, only "
        "used in quantized MKL-DNN.")
        .SetDefault(false);
186
    AddComment(R"DOC(
C
caoying03 已提交
187
Mul Operator.
K
kexinzhao 已提交
188

C
caoying03 已提交
189
This operator is used to perform matrix multiplication for input $X$ and $Y$.
190

191 192
The equation is:

C
caoying03 已提交
193
$$Out = X * Y$$
194

C
caoying03 已提交
195 196
Both the input $X$ and $Y$ can carry the LoD (Level of Details) information,
or not. But the output only shares the LoD information with input $X$.
K
kexinzhao 已提交
197

198 199 200 201
)DOC");
  }
};

C
chengduo 已提交
202 203 204 205 206 207 208 209
class MulOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

210
class MulGradOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
211 212 213
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

214
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
215 216 217 218 219 220
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should not be null");
    auto x_dims = ctx->GetInputDim("X");
    auto y_dims = ctx->GetInputDim("Y");
221

Q
Qiao Longfei 已提交
222 223 224 225 226 227 228 229 230
    auto x_grad_name = framework::GradVarName("X");
    auto y_grad_name = framework::GradVarName("Y");

    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
    if (ctx->HasOutput(y_grad_name)) {
      ctx->SetOutputDim(y_grad_name, y_dims);
    }
D
dongzhihong 已提交
231 232 233
  }
};

H
hong 已提交
234 235
template <typename T>
class MulOpGradMaker : public framework::SingleGradOpMaker<T> {
S
sneaxiy 已提交
236
 public:
H
hong 已提交
237
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
S
sneaxiy 已提交
238 239

 protected:
240
  void Apply(GradOpPtr<T> retv) const override {
S
sneaxiy 已提交
241
    retv->SetType("mul_grad");
H
hong 已提交
242 243 244 245 246 247
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    retv->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    retv->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
    retv->SetAttrMap(this->Attrs());
S
sneaxiy 已提交
248 249 250
  }
};

251 252 253 254 255 256 257 258 259
class MulDoubleGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("Y"), "Input(Y) should not be null");
    PADDLE_ENFORCE(ctx->HasInput("DOut"), "Input(DOut) should not be null");

L
lvmengsi 已提交
260 261
    if (ctx->HasOutput("DDOut") &&
        (ctx->HasInput("DDX") || (ctx->HasInput("DDY")))) {
262 263 264
      ctx->ShareDim("DOut", "DDOut");
    }
    if (ctx->HasOutput("DX") && ctx->HasInput("DDY")) {
265 266
      ctx->ShareDim("X", "DX");
    }
267
    if (ctx->HasOutput("DY") && ctx->HasInput("DDX")) {
268 269 270 271 272
      ctx->ShareDim("Y", "DY");
    }
  }
};

H
hong 已提交
273 274
template <typename T>
class MulDoubleGradMaker : public framework::SingleGradOpMaker<T> {
275
 public:
H
hong 已提交
276
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
277 278

 protected:
279
  void Apply(GradOpPtr<T> retv) const override {
280 281
    retv->SetType("mul_grad_grad");

H
hong 已提交
282 283 284 285 286
    retv->SetInput("X", this->Input("X"));
    retv->SetInput("Y", this->Input("Y"));
    retv->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    retv->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    retv->SetInput("DDY", this->OutputGrad(framework::GradVarName("Y")));
287

H
hong 已提交
288 289
    auto ddx = this->OutputGrad(framework::GradVarName("X"));
    auto ddw = this->OutputGrad(framework::GradVarName("Y"));
290

L
lvmengsi 已提交
291
    if (!ddx.empty() || !ddw.empty()) {
H
hong 已提交
292
      retv->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
293
    }
294 295 296 297
    retv->SetOutput(
        "DX", ddw.empty() ? this->EmptyInputGrad() : this->InputGrad("X"));
    retv->SetOutput(
        "DY", ddx.empty() ? this->EmptyInputGrad() : this->InputGrad("Y"));
298

H
hong 已提交
299
    retv->SetAttrMap(this->Attrs());
300 301 302
  }
};

303 304 305
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
306
namespace ops = paddle::operators;
C
chengduo 已提交
307
REGISTER_OPERATOR(mul, ops::MulOp, ops::MulOpMaker, ops::MulOpInferVarType,
H
hong 已提交
308 309
                  ops::MulOpGradMaker<paddle::framework::OpDesc>,
                  ops::MulOpGradMaker<paddle::imperative::OpBase>);
P
Physher 已提交
310

H
hong 已提交
311 312 313
REGISTER_OPERATOR(mul_grad, ops::MulGradOp,
                  ops::MulDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::MulDoubleGradMaker<paddle::imperative::OpBase>);
P
Physher 已提交
314

315
REGISTER_OPERATOR(mul_grad_grad, ops::MulDoubleGradOp);
P
Physher 已提交
316

Q
QI JUN 已提交
317
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
318 319
    mul, ops::MulKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
320

Q
QI JUN 已提交
321
REGISTER_OP_CPU_KERNEL(
D
dzhwinter 已提交
322 323
    mul_grad, ops::MulGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulGradKernel<paddle::platform::CPUDeviceContext, double>);
P
Physher 已提交
324

325 326 327 328
REGISTER_OP_CPU_KERNEL(
    mul_grad_grad,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::MulDoubleGradKernel<paddle::platform::CPUDeviceContext, double>);