layer.cc 21.9 KB
Newer Older
J
Jiabin Yang 已提交
1
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
16

J
Jiabin Yang 已提交
17
#include "paddle/fluid/eager/eager_tensor.h"
18 19
#include "paddle/fluid/framework/convert_utils.h"

20
#include "paddle/fluid/framework/op_registry.h"
21 22
#include "paddle/fluid/imperative/infer_var_type_context.h"
#include "paddle/fluid/imperative/op_base.h"
J
Jiabin Yang 已提交
23
#include "paddle/fluid/imperative/prepared_operator.h"
J
Jiabin Yang 已提交
24
#include "paddle/fluid/imperative/var_helper.h"
M
minqiyang 已提交
25
#include "paddle/fluid/platform/device_context.h"
J
Jiabin Yang 已提交
26
#include "paddle/fluid/platform/enforce.h"
C
chengduo 已提交
27
#include "paddle/fluid/platform/profiler.h"
28
#include "paddle/pten/kernels/funcs/math_function.h"
29 30 31 32 33
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

DECLARE_bool(use_mkldnn);
34 35 36
namespace paddle {
namespace imperative {

J
Jiabin Yang 已提交
37
using framework::Variable;
Z
Zeng Jinle 已提交
38 39 40 41 42 43 44 45
void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
46 47 48
  PADDLE_ENFORCE_EQ(
      iter != set_.end(), true,
      platform::errors::NotFound("Variable name %s does not exist", name));
Z
Zeng Jinle 已提交
49 50 51 52 53 54 55 56 57 58 59 60
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

J
Jiabin Yang 已提交
61 62 63 64 65 66 67 68 69
static framework::RuntimeContext PrepareRuntimeContext(
    const NameVarBaseMap& ins, const NameVarBaseMap& outs) {
  framework::VariableValueMap inputs, outputs;
  for (auto& in_pair : ins) {
    auto& in_ctx = inputs[in_pair.first];
    in_ctx.reserve(in_pair.second.size());
    for (auto& in_var : in_pair.second) {
      in_ctx.emplace_back(in_var->MutableVar());
    }
M
minqiyang 已提交
70 71
  }

J
Jiabin Yang 已提交
72 73 74 75 76
  for (auto& out_pair : outs) {
    auto& out_ctx = outputs[out_pair.first];
    out_ctx.reserve(out_pair.second.size());
    for (auto& out_var : out_pair.second) {
      out_ctx.emplace_back(out_var->MutableVar());
77
    }
J
Jiabin Yang 已提交
78 79 80 81
  }
  return framework::RuntimeContext(std::move(inputs), std::move(outputs));
}

82
template <typename VarType>
J
Jiabin Yang 已提交
83 84
static std::string DebugString(
    const std::string& name,
85
    const std::vector<std::shared_ptr<VarType>>& vars) {
J
Jiabin Yang 已提交
86 87
  std::stringstream ss;
  ss << name << "{";
M
minqiyang 已提交
88

J
Jiabin Yang 已提交
89 90
  for (size_t i = 0; i < vars.size(); ++i) {
    if (i > 0) ss << ", ";
M
minqiyang 已提交
91

J
Jiabin Yang 已提交
92 93 94 95
    if (vars[i] == nullptr) {
      ss << "NULL";
      continue;
    }
J
Jiabin Yang 已提交
96
    ss << GetNameFromVar(vars[i]) << "[";
97
    const framework::Variable& var = vars[i]->Var();
J
Jiabin Yang 已提交
98 99 100 101 102 103
    if (!var.IsInitialized()) {
      ss << "NOT_INITED_VAR";
    } else if (var.IsType<framework::LoDTensor>()) {
      auto& tensor = var.Get<framework::LoDTensor>();
      ss << "LoDTensor<";
      if (tensor.IsInitialized()) {
104 105 106
        ss << framework::DataTypeToString(
                  framework::TransToProtoVarType(tensor.dtype()))
           << ", ";
J
Jiabin Yang 已提交
107 108 109 110 111 112
        ss << tensor.place() << ", ";
        ss << "(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
113
    } else if (var.IsType<pten::SelectedRows>()) {
114
      ss << "SelectedRows<";
115
      auto& selected_rows = var.Get<pten::SelectedRows>();
116 117 118
      auto& tensor = selected_rows.value();
      auto& rows = selected_rows.rows();
      if (tensor.IsInitialized()) {
119 120 121
        ss << framework::DataTypeToString(
                  framework::TransToProtoVarType(tensor.dtype()))
           << ", ";
122 123 124 125 126 127 128 129 130
        ss << tensor.place() << ", ";
        ss << "height(" << selected_rows.height() << "), rows(";
        std::for_each(rows.cbegin(), rows.cend(),
                      [&ss](const int64_t r) { ss << r << " "; });
        ss << "), dims(" << tensor.dims() << ")";
      } else {
        ss << "NOT_INITED";
      }
      ss << ">";
J
Jiabin Yang 已提交
131 132 133 134
    } else {
      ss << "UNRESOLVED_TYPE";
    }
    ss << "]";
135
  }
136

J
Jiabin Yang 已提交
137 138
  ss << "}";
  return ss.str();
139 140
}

141 142 143 144
template <typename VarType>
static std::string LayerDebugStringImpl(const std::string& op_type,
                                        const NameVarMap<VarType>& ins,
                                        const NameVarMap<VarType>& outs) {
J
Jiabin Yang 已提交
145 146 147 148 149 150 151 152
  std::stringstream ss;
  ss << "Op(" << op_type << "): ";

  ss << "Inputs: ";

  size_t i = 0;
  for (auto& pair : ins) {
    if (i > 0) ss << ", ";
153
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
154
    ++i;
155 156
  }

J
Jiabin Yang 已提交
157 158 159 160
  ss << ",   Outputs: ";
  i = 0;
  for (auto& pair : outs) {
    if (i > 0) ss << ", ";
161
    ss << DebugString<VarType>(pair.first, pair.second);
J
Jiabin Yang 已提交
162 163 164 165
    ++i;
  }
  return ss.str();
}
166

167 168 169 170 171 172 173 174 175 176
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VarBase>& ins,
                             const NameVarMap<VarBase>& outs) {
  return LayerDebugStringImpl<VarBase>(op_type, ins, outs);
}

std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<VariableWrapper>& ins,
                             const NameVarMap<VariableWrapper>& outs) {
  return LayerDebugStringImpl<VariableWrapper>(op_type, ins, outs);
J
Jiabin Yang 已提交
177
}
178

J
Jiabin Yang 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
std::string LayerDebugString(const std::string& op_type,
                             const NameVarMap<egr::EagerTensor>& ins,
                             const NameVarMap<egr::EagerTensor>& outs) {
  return LayerDebugStringImpl<egr::EagerTensor>(op_type, ins, outs);
}

template <typename VarType>
static void SetForwardDataTypeOfGradVars(const NameVarMap<VarType>& outs) {
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
      // NOTE(zhiqu): The ouput may be NULL because of pruning.
      if (var) {
        SetForwardDataTypeOfGradVar(var);
      }
    }
  }
}
template <>
void SetForwardDataTypeOfGradVars<egr::EagerTensor>(
    const NameVarMap<egr::EagerTensor>& outs) {
  // In eager mode we don't need this.
}

202
VarBase::VarBase(const std::shared_ptr<VariableWrapper>& var)
203
    : var_(var), grad_node_(var->GetGradNode()) {
204 205
  if (auto grad_var = var_->GetGradVar()) {
    grad_var_ = std::make_shared<VarBase>(grad_var);
206 207 208 209 210 211 212 213 214 215 216 217
  }

  if (IsDebugEnabled()) {
    VLOG(10) << "Construct VarBase: " << Name();
    name_set_.Insert(Name());
  }
}

size_t VarBase::GradOpNum() const {
  return grad_node_ ? grad_node_->size() : 0;
}

218
void VarBase::ClearGradient(bool set_to_zero) {
219
  VLOG(4) << "ClearGradient " << Name();
J
Jiabin Yang 已提交
220
  if (grad_var_) {
221 222
    if (grad_var_->Var().IsType<pten::SelectedRows>()) {
      auto* grad_t = grad_var_->MutableVar()->GetMutable<pten::SelectedRows>();
223
      if (grad_t->mutable_value()->IsInitialized()) {
224
#ifdef PADDLE_WITH_MKLDNN
225
        if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place());
226
#endif
227 228 229 230
        grad_t->mutable_rows()->clear();
        grad_t->mutable_value()->clear();
      }
    } else {
231
      platform::RecordEvent record_event("ClearGradient");
232 233
      auto* grad_t =
          grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
234
      if (grad_t->IsInitialized()) {
235 236 237
        if (set_to_zero) {
          auto* dev_ctx =
              platform::DeviceContextPool::Instance().Get(grad_t->place());
238
          pten::funcs::set_constant(*dev_ctx, grad_t, 0.0);
239 240 241
        } else {
          grad_t->clear();
        }
242
#ifdef PADDLE_WITH_MKLDNN
243
        if (FLAGS_use_mkldnn) platform::ClearMKLDNNCache(grad_t->place());
244
#endif
245
      }
246
    }
247 248 249 250
    // TODO(zhouwei): It's better to free memory of grad by grad_t->claer.
    // But will have some bug on mac CPU of yolov3 model, why?
    // After fix this bug, function SetIsEmpty() isn't need
    grad_var_->SharedVar()->SetIsEmpty(true);
251
  }
J
Jiabin Yang 已提交
252
}
253

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
void VarBase::_GradientSetEmpty(bool is_empty) {
  VLOG(4) << "Set gradient " << Name() << " is_empty:" << is_empty;
  if (grad_var_) {
    auto share_var = grad_var_->SharedVar();
    if (share_var) {
      share_var->SetIsEmpty(is_empty);
    }
  }
}

bool VarBase::_IsGradientSetEmpty() {
  bool res = true;
  if (grad_var_) {
    auto share_var = grad_var_->SharedVar();
    if (share_var) {
      res = share_var->is_empty_;
      VLOG(4) << "Check gradient " << Name() << " is empty:" << res;
    }
  }
  return res;
}

J
Jiabin Yang 已提交
276
std::shared_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
M
minqiyang 已提交
277
                                             const bool blocking) const {
278
  PADDLE_ENFORCE_EQ(
279
      Var().IsInitialized() && (Var().IsType<framework::LoDTensor>() ||
280
                                Var().IsType<pten::SelectedRows>()),
281 282 283
      true, platform::errors::InvalidArgument(
                "Variable is not initialized or Variable's type is not "
                "LoDTensor or SelectedRows when getting numpy tensor"));
284

285 286
  if (Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = Var().Get<framework::LoDTensor>();
287 288
    // TODO(Jiabin): change this after move unique_name generator to CXX
    auto new_var = std::make_shared<VarBase>(
289
        true, Name() + std::to_string(copied_counter_++));
290

291 292
    auto* dst_tensor =
        new_var->MutableVar()->GetMutable<framework::LoDTensor>();
293
    dst_tensor->set_lod(src_tensor.lod());
294 295 296
    new_var->SetPersistable(Persistable());
    new_var->SetDataType(DataType());
    new_var->SetType(Type());
297 298 299 300 301 302 303
    framework::TensorCopy(src_tensor, dst_place, dst_tensor);
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_tensor.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
304
    }
305 306
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
307 308
    return new_var;
  } else {
309
    auto& src_selected_rows = Var().Get<pten::SelectedRows>();
310 311 312 313
    auto new_var = std::make_shared<VarBase>(
        false, "Itmp" + std::to_string(copied_counter_++));
    new_var->SetType(framework::proto::VarType::SELECTED_ROWS);
    auto* dst_selected_rows =
314
        new_var->MutableVar()->GetMutable<pten::SelectedRows>();
315 316 317 318 319 320 321 322 323 324 325 326

    framework::TensorCopy(src_selected_rows.value(), dst_place,
                          dst_selected_rows->mutable_value());
    if (blocking) {
      platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
      auto src_place = src_selected_rows.place();
      if (!(src_place == dst_place)) {
        platform::DeviceContextPool::Instance().Get(src_place)->Wait();
      }
    }
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());
327 328
    VLOG(4) << "copy tensor " << Name() << " from " << Place() << " to "
            << dst_place;
329 330
    return new_var;
  }
M
minqiyang 已提交
331 332
}

333
void VarBase::CopyFrom(const VarBase& src, const bool blocking) {
334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
  if (src.SharedVar()->IsEmpty()) {
    return;
  }

  VLOG(3) << "Deep copy Tensor from " << src.Name() << " to " << Name();
  if (Var().IsInitialized()) {
    PADDLE_ENFORCE_EQ(DataType(), src.DataType(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s, "
                          "Tensor Copy cannot be performed!",
                          Name(), src.Name()));
    PADDLE_ENFORCE_EQ(Type(), src.Type(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "Copy cannot be performed!",
                          Name(), src.Name()));
  } else {
351 352
    SetDataType(src.DataType());
    SetType(src.Type());
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
    SetPersistable(src.Persistable());
    InnerSetOverridedStopGradient(src.OverridedStopGradient());
  }

  platform::Place place = src.Place();
  if (src.Var().IsType<framework::LoDTensor>()) {
    auto& src_tensor = src.Var().Get<framework::LoDTensor>();
    auto* dst_tensor = MutableVar()->GetMutable<framework::LoDTensor>();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      PADDLE_ENFORCE_EQ(dst_tensor->lod(), src_tensor.lod(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->set_lod(src_tensor.lod());
      dst_tensor->Resize(src_tensor.dims());
    }
    framework::TensorCopy(src_tensor, place, dst_tensor);
378 379 380
  } else if (src.Var().IsType<pten::SelectedRows>()) {
    auto& src_selected_rows = src.Var().Get<pten::SelectedRows>();
    auto* dst_selected_rows = MutableVar()->GetMutable<pten::SelectedRows>();
381 382 383 384 385 386 387 388 389 390 391 392 393 394
    dst_selected_rows->set_height(src_selected_rows.height());
    dst_selected_rows->set_rows(src_selected_rows.rows());

    auto& src_tensor = src_selected_rows.value();
    auto* dst_tensor = dst_selected_rows->mutable_value();
    if (dst_tensor && dst_tensor->IsInitialized()) {
      PADDLE_ENFORCE_EQ(dst_tensor->dims(), src_tensor.dims(),
                        platform::errors::PreconditionNotMet(
                            "Tensor %s has different dims with Tensor %s, "
                            "Tensor Copy cannot be performed!",
                            Name(), src.Name()));
      place = Place();
    } else {
      dst_tensor->Resize(src_tensor.dims());
395
    }
396 397 398 399
    framework::TensorCopy(src_tensor, place, dst_tensor);
  }
  if (blocking) {
    platform::DeviceContextPool::Instance().Get(place)->Wait();
400 401 402
  }
}

403 404 405 406 407 408 409 410 411
void VarBase::BumpInplaceVersion() {
  PADDLE_ENFORCE_EQ(
      Var().IsInitialized(), true,
      platform::errors::InvalidArgument(
          "Tensor %s has not been initialized, please check if it has no data.",
          Name()));
  MutableVar()->BumpInplaceVersion();
}

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431
// NOTE(weilong wu):
// This function try to copy the data from target varbase,
// and fill into the grad_var_ of the current varbase.
void VarBase::_CopyGradientFrom(const VarBase& src) {
  if (Var().IsInitialized()) {
    PADDLE_ENFORCE_EQ(DataType(), src.DataType(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different data type with Tensor %s",
                          Name(), src.Name()));
    PADDLE_ENFORCE_EQ(Type(), src.Type(),
                      platform::errors::PreconditionNotMet(
                          "Tensor %s has different type with Tensor %s, Tensor "
                          "ShareGradientDataWith cannot be performed!",
                          Name(), src.Name()));
  }
  VLOG(4) << " VarBase copy gradient with " << src.Name();
  if (grad_var_) {
    auto& src_tensor = src.Var().Get<framework::LoDTensor>();
    PADDLE_ENFORCE_EQ(src_tensor.IsInitialized(), true,
                      platform::errors::InvalidArgument(
432
                          "Tensor %s has not been initialized", src.Name()));
433 434 435 436 437 438 439
    auto* grad_t = grad_var_->MutableVar()->GetMutable<framework::LoDTensor>();
    auto* var_ = MutableVar()->GetMutable<framework::LoDTensor>();
    grad_t->ShareDataWith(src_tensor);
    grad_t->Resize(var_->dims());
  }
}

440
void OpBase::SetType(const std::string& type) {
H
hong 已提交
441
  op_ = framework::OpRegistry::CreateOp(type, {}, {}, {}, false);
J
Jiabin Yang 已提交
442
}
443

444 445 446
void OpBase::ClearBackwardTrace() {
  ins_.clear();
  outs_.clear();
H
hong 已提交
447 448
}

449 450 451 452 453
template <typename VarType>
static void OpBaseRunImpl(const framework::OperatorBase& op,
                          const NameVarMap<VarType>& ins,
                          const NameVarMap<VarType>& outs,
                          const framework::AttributeMap& attrs,
454
                          const framework::AttributeMap& default_attrs,
455
                          const platform::Place& place) {
456
  auto* op_kernel = dynamic_cast<const framework::OperatorWithKernel*>(&op);
457 458 459
  PADDLE_ENFORCE_NOT_NULL(
      op_kernel, platform::errors::PermissionDenied(
                     "Only support operator with kernel in Dygraph mode."));
460
  auto& info = op.Info();
J
Jiabin Yang 已提交
461
  if (info.infer_var_type_) {
462 463
    RuntimeInferVarTypeContext<VarType> infer_var_type_ctx(ins, outs, attrs,
                                                           default_attrs);
J
Jiabin Yang 已提交
464
    info.infer_var_type_(&infer_var_type_ctx);
X
Xin Pan 已提交
465
  }
466

J
Jiabin Yang 已提交
467 468 469
  // Initialize output var type
  for (auto& var_pair : outs) {
    for (auto& var : var_pair.second) {
470
      if (var) {
J
Jiabin Yang 已提交
471
        InitializeVariable(var->MutableVar(), GetType(var));
472
      }
473 474
    }
  }
X
Xin Pan 已提交
475

476
  VLOG(5) << LayerDebugString(op.Type(), ins, outs);
477

478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  /**
   * [ Why need temporary inputs here? ]
   *
   * PrepareData should not change original input tensor inplace.
   * Suppose the user defines a tensor(int), enters an op to execute,
   * and then this op rewrites GetExpectedKernelForVar, and converts
   * this tensor to float type during execution. After the dynamic
   * graph is executed, the user-defined variable will be lost, and
   * the user cannot get the originally defined int tensor, because
   * it has been converted to float, this should be regarded as a bug
   * in certain usage scenarios
   *
   * In static graph mode, when op is executed, a temporary scope
   * `transfer_scope` is created before PrepareData, the data after
   * transform is stored in the temporary scope, and then discarded
   * after the execution of op, but the original input is directly
   * overwritten in the previous dynamic graph implemention.
   */
496 497
  auto prepared_op =
      PreparedOp::Prepare(ins, outs, *op_kernel, place, attrs, default_attrs);
498 499 500
  auto tmp_ins_ptr =
      PrepareData<VarType>(*op_kernel, ins, prepared_op.kernel_type());
  if (tmp_ins_ptr == nullptr) {
501
    prepared_op.Run(ins, outs, attrs, default_attrs);
502
  } else {
503
    prepared_op.Run(*tmp_ins_ptr, outs, attrs, default_attrs);
504
  }
505

506
  VLOG(4) << LayerDebugString(op.Type(), ins, outs);
507 508

  // set the output var
J
Jiabin Yang 已提交
509
  SetForwardDataTypeOfGradVars<VarType>(outs);
510 511
}

512 513 514 515
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VarBase>& ins,
                 const NameVarMap<VarBase>& outs,
                 const framework::AttributeMap& attrs,
516
                 const framework::AttributeMap& default_attrs,
517
                 const platform::Place& place) {
518
  OpBaseRunImpl<VarBase>(op, ins, outs, attrs, default_attrs, place);
519 520 521 522 523 524
}

void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<VariableWrapper>& ins,
                 const NameVarMap<VariableWrapper>& outs,
                 const framework::AttributeMap& attrs,
525
                 const framework::AttributeMap& default_attrs,
526
                 const platform::Place& place) {
527
  OpBaseRunImpl<VariableWrapper>(op, ins, outs, attrs, default_attrs, place);
528 529
}

J
Jiabin Yang 已提交
530 531 532 533 534 535 536 537 538
void OpBase::Run(const framework::OperatorBase& op,
                 const NameVarMap<egr::EagerTensor>& ins,
                 const NameVarMap<egr::EagerTensor>& outs,
                 const framework::AttributeMap& attrs,
                 const framework::AttributeMap& default_attrs,
                 const platform::Place& place) {
  OpBaseRunImpl<egr::EagerTensor>(op, ins, outs, attrs, default_attrs, place);
}

539
void ClearNoNeedBufferInputs(OpBase* op) {
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
  auto& inferer = op->Info().NoNeedBufferVarsInferer();
  if (!inferer) return;
  auto* ins = op->GetMutableInsMap();
  const auto& no_need_buffer_slots =
      inferer(*ins, op->GetOutsMap(), op->Attrs());
  if (no_need_buffer_slots.empty()) return;

  for (auto& slot : no_need_buffer_slots) {
    auto iter = ins->find(slot);
    if (iter == ins->end()) continue;
    VLOG(2) << "Clear data buffer of " << slot << " in " << op->Type();

    PADDLE_ENFORCE_EQ(
        iter->second.IsGrad(), false,
        platform::errors::InvalidArgument(
            "Only forward variable buffers can be clear, this may be a bug"));

    for (auto& each_var : *(iter->second.MutableVarList())) {
      if (!each_var) continue;

      auto& var = each_var->Var();
      PADDLE_ENFORCE_EQ(var.IsType<framework::LoDTensor>(), true,
                        platform::errors::PermissionDenied(
                            "NoNeedBufferVars only support LoDTensor"));
      auto new_var = new VariableWrapper(each_var->Name());
      auto* new_tensor =
          new_var->MutableVar()->GetMutable<framework::LoDTensor>();
      auto& old_tensor = var.Get<framework::LoDTensor>();
      new_tensor->Resize(old_tensor.dims());
      new_tensor->set_lod(old_tensor.lod());
      each_var.reset(new_var);
    }
  }
}

std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameVarBaseMap& ins,
    const NameVarBaseMap& outs, const framework::AttributeMap& attrs,
578
    const framework::AttributeMap& default_attrs, const platform::Place& place,
579
    const std::map<std::string, std::string>& inplace_map) {
580 581 582 583 584
  const auto& info = op.Info();
  if (!info.dygraph_grad_op_maker_) {
    return nullptr;
  }

585 586
  auto grad_node = info.dygraph_grad_op_maker_(op.Type(), ins, outs, attrs,
                                               default_attrs, inplace_map);
587
  if (grad_node && !grad_node->empty()) {
588 589 590 591
    for (auto& grad_op : *grad_node) {
      grad_op.SetId(OpBase::GenerateUniqueId());
      grad_op.SetPlace(place);
      ClearNoNeedBufferInputs(&grad_op);
592 593 594 595 596 597 598
    }
    return grad_node;
  } else {
    return nullptr;
  }
}

J
Jiabin Yang 已提交
599 600 601 602 603 604 605 606 607
std::shared_ptr<GradOpNode> CreateGradOpNode(
    const framework::OperatorBase& op, const NameTensorMap& ins,
    const NameTensorMap& outs, const framework::AttributeMap& attrs,
    const framework::AttributeMap& default_attrs, const platform::Place& place,
    const std::map<std::string, std::string>& inplace_map) {
  // Do Nothing in Eager Mode.
  return nullptr;
}

608 609
}  // namespace imperative
}  // namespace paddle