math_function.cu 16.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <vector>
16

17
#include "paddle/phi/backends/gpu/gpu_context.h"
18
#include "paddle/phi/common/bfloat16.h"
19
#include "paddle/phi/common/data_type.h"
20
#include "paddle/phi/common/float16.h"
21
#include "paddle/phi/common/memory_utils.h"
22 23 24
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/math_function_impl.h"
25

26
namespace phi {
27 28
namespace funcs {

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
// The following part of the code refers to NVIDIA-cutlass
// https://github.com/NVIDIA/cutlass/blob/master/tools/util/include/cutlass/util/device_nchw_to_nhwc.h
// Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights
// reserved. SPDX-License-Identifier: BSD-3-Clause
template <typename T>
__global__ void batch_transpose_kernel(
    T* output, const T* input, const int batch, const int M, const int N) {
  const int num = M * N;
  // "+1" to avoid smem bank conflict
  __shared__ T shbuf[32 * (32 + 1)];
  const int32_t tid = threadIdx.y * blockDim.x + threadIdx.x;
  const int32_t wid = tid / 32;
  const int32_t lid = tid % 32;
  const int32_t batch_i = blockIdx.z;
  const int32_t mi0 = blockIdx.y * 32;
  const int32_t ni0 = blockIdx.x * 32;

  const size_t input_idx = batch_i * num + (mi0 + wid) * N + ni0;
  const T* A = input + input_idx;
  if (ni0 + lid < N) {
    const int lid_x_33 = lid * 33;
    if ((mi0 + 32) <= M) {
      int mi = wid;  // between 0 and 7
#pragma unroll
      for (int mLoopIdx = 0; mLoopIdx < 4; mLoopIdx++) {
        shbuf[lid_x_33 + mi] = A[lid];
        A = &A[8 * N];
        mi += 8;
      }
    } else {
      for (int mi = wid; mi < 32; mi += 8) {
        if ((mi + mi0) < M) {
          shbuf[lid_x_33 + mi] = A[lid];
        }
        A = &A[8 * N];
      }
    }
  }
  __syncthreads();

  const int32_t miOut = mi0 + lid;
  output = &output[batch_i * num + miOut];
  if (miOut < M) {
    if (ni0 + 32 < N) {
      int nI = wid;
#pragma unroll
      for (int nLoopIdx = 0; nLoopIdx < 4; ++nLoopIdx) {
        output[(ni0 + nI) * M] = shbuf[(nI)*33 + lid];
        nI += 8;
      }
    } else {
      for (int nI = wid; nI < 32; nI += 8) {
        if (ni0 + nI < N) {
          output[(ni0 + nI) * M] = shbuf[(nI)*33 + lid];
        }
      }
    }
  }
}

template <typename T>
void BatchTranspose(T* output, const T* input, int batch, int m, int n) {
  dim3 grid((n + 31) / 32, (m + 31) / 32, batch);
  dim3 block(32, 8);
  batch_transpose_kernel<<<grid, block>>>(output, input, batch, m, n);
}

96 97
using float16 = phi::dtype::float16;
using bfloat16 = phi::dtype::bfloat16;
98

99 100 101 102 103 104 105
template void BatchTranspose(
    float16* output, const float16* input, int batch, int m, int n);
template void BatchTranspose(
    float* output, const float* input, int batch, int m, int n);

template struct SetConstant<phi::GPUContext, float16>;
template struct SetConstant<phi::GPUContext, bfloat16>;
106 107 108 109 110 111 112 113 114
template struct SetConstant<phi::GPUContext, float>;
template struct SetConstant<phi::GPUContext, double>;
template struct SetConstant<phi::GPUContext, uint8_t>;
template struct SetConstant<phi::GPUContext, int>;
template struct SetConstant<phi::GPUContext, int16_t>;
template struct SetConstant<phi::GPUContext, int64_t>;
template struct SetConstant<phi::GPUContext, bool>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<float>>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<double>>;
115

116 117 118 119 120 121 122 123 124 125 126
template struct SetConstant<phi::GPUPinnedContext, float16>;
template struct SetConstant<phi::GPUPinnedContext, bfloat16>;
template struct SetConstant<phi::GPUPinnedContext, float>;
template struct SetConstant<phi::GPUPinnedContext, double>;
template struct SetConstant<phi::GPUPinnedContext, uint8_t>;
template struct SetConstant<phi::GPUPinnedContext, int>;
template struct SetConstant<phi::GPUPinnedContext, int16_t>;
template struct SetConstant<phi::GPUPinnedContext, int64_t>;
template struct SetConstant<phi::GPUPinnedContext, bool>;
template struct SetConstant<phi::GPUPinnedContext, phi::dtype::complex<float>>;
template struct SetConstant<phi::GPUPinnedContext, phi::dtype::complex<double>>;
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141
#define DEFINE_GPU_TRANS(RANK)                                     \
  template struct Transpose<phi::GPUContext, bool, RANK>;          \
  template struct Transpose<phi::GPUContext, unsigned char, RANK>; \
  template struct Transpose<phi::GPUContext, float, RANK>;         \
  template struct Transpose<phi::GPUContext, double, RANK>;        \
  template struct Transpose<phi::GPUContext, float16, RANK>;       \
  template struct Transpose<phi::GPUContext, bfloat16, RANK>;      \
  template struct Transpose<phi::GPUContext, int8_t, RANK>;        \
  template struct Transpose<phi::GPUContext, int16_t, RANK>;       \
  template struct Transpose<phi::GPUContext, int32_t, RANK>;       \
  template struct Transpose<phi::GPUContext, int64_t, RANK>;       \
  template struct Transpose<phi::GPUContext,                       \
                            phi::dtype::complex<float>,            \
                            RANK>;                                 \
142
  template struct Transpose<phi::GPUContext, phi::dtype::complex<double>, RANK>;
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173

DEFINE_GPU_TRANS(1);
DEFINE_GPU_TRANS(2);
DEFINE_GPU_TRANS(3);
DEFINE_GPU_TRANS(4);
DEFINE_GPU_TRANS(5);
DEFINE_GPU_TRANS(6);

#define REINTERPRET(T, DST_PTR, SRC_PTR) \
  T* DST_PTR = reinterpret_cast<T*>(SRC_PTR)

template <typename T>
__global__ void TransposeNormalKernel(const T* in_ptr,
                                      T* out_ptr,
                                      int64_t element,
                                      const int64_t* in_stride_ptr,
                                      const int64_t* out_stride_ptr,
                                      const int64_t* axis_ptr,
                                      int rank) {
  CUDA_KERNEL_LOOP(out_idx, element) {
    int64_t in_idx = 0;
    int64_t tmp_idx = out_idx;
    for (int i = 0; i < rank; ++i) {
      const int64_t coordinate = tmp_idx / out_stride_ptr[i];
      tmp_idx -= coordinate * out_stride_ptr[i];
      in_idx += coordinate * in_stride_ptr[axis_ptr[i]];
    }
    out_ptr[out_idx] = in_ptr[in_idx];
  }
}

174 175 176
template <typename DeviceContext, typename T>
void TransposeNormal<DeviceContext, T>::operator()(
    const DeviceContext& context,
177 178
    const phi::DenseTensor& in,
    phi::DenseTensor* out,
179 180
    const std::vector<int>& axis) {
  const int rank = axis.size();
181 182
  auto in_stride = phi::stride(in.dims());
  auto out_stride = phi::stride(out->dims());
183 184
  auto* in_ptr = in.data<T>();
  auto* out_ptr = out->data<T>();
185

186
  // copy in_stride, out_stride, axis to gpu device
187 188
  const phi::GPUPlace& cuda_place = context.GetPlace();
  phi::CPUPlace cpu_place = phi::CPUPlace();
189
  size_t size = 3 * rank * sizeof(int64_t);
190 191
  auto cpu_buf_holder = phi::memory_utils::Alloc(cpu_place, size);
  auto cuda_buf_holder = phi::memory_utils::Alloc(cuda_place, size);
192 193 194 195 196 197
  REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
  REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
  for (int i = 0; i < rank; ++i) {
    cpu_buf[i] = in_stride[i];
    cpu_buf[rank + i] = out_stride[i];
    cpu_buf[2 * rank + i] = axis[i];
198
  }
199
  memory_utils::Copy(
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
      cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
  REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
  REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
  REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

  const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
  const int MAX_GRID_DIM = context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
  int64_t elements = in.numel();
  int block_size = (elements >= MAX_BLOCK_DIM)
                       ? MAX_BLOCK_DIM
                       : (1 << static_cast<int>(std::log2(elements)));
  int grid_size = elements / block_size;
  grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
  TransposeNormalKernel<T><<<grid_size, block_size, 0, context.stream()>>>(
      in_ptr, out_ptr, elements, in_stride_ptr, out_stride_ptr, axis_ptr, rank);
}
216

H
hong 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230
template <typename T>
struct TransposeNormal<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& in,
                  DenseTensor* out,
                  const std::vector<int>& axis) {
    const int rank = axis.size();
    auto in_stride = stride(in.dims());
    auto out_stride = stride(out->dims());
    auto* in_ptr = in.data<T>();
    auto* out_ptr = out->data<T>();

    // copy in_stride, out_stride, axis to gpu device
    const phi::GPUPlace& cuda_place = context.GetPlace();
231
    phi::CPUPlace cpu_place = phi::CPUPlace();
H
hong 已提交
232
    size_t size = 3 * rank * sizeof(int64_t);
233 234
    auto cpu_buf_holder = phi::memory_utils::Alloc(cpu_place, size);
    auto cuda_buf_holder = phi::memory_utils::Alloc(cuda_place, size);
H
hong 已提交
235 236 237 238 239 240 241
    REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
    REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
    for (int i = 0; i < rank; ++i) {
      cpu_buf[i] = in_stride[i];
      cpu_buf[rank + i] = out_stride[i];
      cpu_buf[2 * rank + i] = axis[i];
    }
242
    memory_utils::Copy(
H
hong 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256
        cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
    REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
    REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
    REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

    const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
    const int MAX_GRID_DIM =
        context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int64_t elements = in.numel();
    int block_size = (elements >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(elements)));
    int grid_size = elements / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
257 258 259 260 261 262 263 264
    TransposeNormalKernel<T>
        <<<grid_size, block_size, 0, context.stream()>>>(in_ptr,
                                                         out_ptr,
                                                         elements,
                                                         in_stride_ptr,
                                                         out_stride_ptr,
                                                         axis_ptr,
                                                         rank);
H
hong 已提交
265 266 267
  }
};

268
// define transpose normal
269
#define DEFINE_GPU_TRANS_NORMAL(TYPE) \
270
  template struct TransposeNormal<phi::GPUContext, TYPE>
271 272 273 274 275 276 277 278 279 280 281

DEFINE_GPU_TRANS_NORMAL(float16);
DEFINE_GPU_TRANS_NORMAL(bfloat16);
DEFINE_GPU_TRANS_NORMAL(float);
DEFINE_GPU_TRANS_NORMAL(double);
DEFINE_GPU_TRANS_NORMAL(int);
DEFINE_GPU_TRANS_NORMAL(int64_t);
DEFINE_GPU_TRANS_NORMAL(bool);
DEFINE_GPU_TRANS_NORMAL(int16_t);
DEFINE_GPU_TRANS_NORMAL(uint8_t);
DEFINE_GPU_TRANS_NORMAL(int8_t);
282 283
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<float>);
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<double>);
284 285

struct TensorSetConstantGPU {
286
  TensorSetConstantGPU(const phi::DeviceContext& context,
287
                       phi::DenseTensor* tensor,
288 289 290 291 292
                       float value)
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename T>
  void apply() const {
L
Leo Chen 已提交
293 294 295 296
    SetConstant<phi::GPUContext, T> functor;
    functor(reinterpret_cast<const phi::GPUContext&>(context_),
            tensor_,
            static_cast<T>(value_));
297 298
  }

299
  const phi::DeviceContext& context_;
300
  phi::DenseTensor* tensor_;
301 302 303 304
  float value_;
};

template <>
305 306 307
void set_constant_with_place<phi::GPUPlace>(const phi::DeviceContext& context,
                                            phi::DenseTensor* tensor,
                                            float value) {
308 309
  phi::VisitDataType(tensor->dtype(),
                     TensorSetConstantGPU(context, tensor, value));
310 311 312 313 314 315 316 317 318 319 320 321 322 323
}

template <typename T>
__global__ void RowwiseAddKernel(
    const T* a, const T* b, T* c, int width, int num) {
  T tmp = 1.0 / width;
  CUDA_KERNEL_LOOP(i, num) {
    int h = i * tmp;
    int w = i - h * width;
    c[i] = a[i] + b[w];
  }
}

template <typename T>
L
Leo Chen 已提交
324 325
struct RowwiseAdd<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& context,
326 327 328
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& vector,
                  phi::DenseTensor* output) {
329 330 331 332 333 334
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto size = input.numel() / in_dims[0];
    PADDLE_ENFORCE_EQ(
        vector.numel(),
        size,
335
        phi::errors::InvalidArgument(
336 337 338 339 340 341 342 343 344 345
            "The input vector size"
            " should be equal to the size of each row of input tensor."
            " Expected vector size=%d, but received %d",
            size,
            vector.numel()));
    const char* in_dims_cstr = in_dims.to_str().c_str();
    const char* out_dims_cstr = out_dims.to_str().c_str();
    PADDLE_ENFORCE_EQ(
        out_dims,
        in_dims,
346
        phi::errors::InvalidArgument(
347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
            "The output tensor shape should be same as the input tensor"
            " shape. Expected output tensor shape: %s,"
            " but received %s",
            in_dims_cstr,
            out_dims_cstr));
    int blocks = 512;
    int grids = (input.numel() + blocks - 1) / blocks;
    RowwiseAddKernel<T><<<grids, blocks, 0, context.stream()>>>(
        input.data<T>(),
        vector.data<T>(),
        output->data<T>(),
        static_cast<int>(in_dims[1]),
        static_cast<int>(input.numel()));
  }
};

L
Leo Chen 已提交
363 364 365 366 367 368 369
template struct RowwiseAdd<phi::GPUContext, float>;
template struct RowwiseAdd<phi::GPUContext, double>;
template struct ColwiseSum<phi::GPUContext, float>;
template struct ColwiseSum<phi::GPUContext, int>;
template struct ColwiseSum<phi::GPUContext, int64_t>;
// template struct ColwiseSum<phi::GPUContext, double>;
// The ColwiseSum<phi::GPUContext, double> failed in debug
370 371 372
// mode,
// and only failed for this case. So reimplemented it.
template <>
L
Leo Chen 已提交
373 374
void ColwiseSum<phi::GPUContext, double>::operator()(
    const phi::GPUContext& context,
375 376
    const phi::DenseTensor& input,
    phi::DenseTensor* vector) {
377 378 379 380
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    size,
381
                    phi::errors::InvalidArgument(
382 383 384 385 386
                        "The size of input vector"
                        " should be equal to the size of input tensor column"
                        " dimension. Expected vector size=%d, but received %d",
                        size,
                        vector->numel()));
387
  phi::DenseTensor one;
388 389 390
  one.Resize({in_dims[0]});
  context.template Alloc<double>(&one);

L
Leo Chen 已提交
391
  SetConstant<phi::GPUContext, double> set;
392
  set(context, &one, static_cast<double>(1.0));
L
Leo Chen 已提交
393 394 395 396 397 398 399 400 401
  phi::funcs::GetBlas<phi::GPUContext, double>(context).GEMV(
      true,
      static_cast<int>(in_dims[0]),
      static_cast<int>(in_dims[1]),
      1.0,
      input.data<double>(),
      one.data<double>(),
      0.0,
      vector->data<double>());
402 403
}

L
Leo Chen 已提交
404 405
template struct RowwiseSum<phi::GPUContext, float>;
// template struct RowwiseSum<phi::GPUContext, double>;
406
// TODO(zcd): Following ColwiseSum format, need to confirm.
L
Leo Chen 已提交
407
// The RowwiseSum<phi::GPUContext, double> failed in debug
408 409 410
// mode,
// and only failed for this case. So reimplemented it.
template <>
L
Leo Chen 已提交
411 412
void RowwiseSum<phi::GPUContext, double>::operator()(
    const phi::GPUContext& context,
413 414
    const phi::DenseTensor& input,
    phi::DenseTensor* vector) {
415 416 417 418
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    in_dims[0],
419
                    phi::errors::InvalidArgument(
420 421 422 423 424
                        "The size of input vector"
                        " should be equal to the size of input tensor row"
                        " dimension. Expected vector size=%d, but received %d",
                        in_dims[0],
                        vector->numel()));
425
  phi::DenseTensor one;
426 427 428
  one.Resize({size});
  context.template Alloc<double>(&one);

L
Leo Chen 已提交
429
  SetConstant<phi::GPUContext, double> set;
430
  set(context, &one, static_cast<double>(1.0));
L
Leo Chen 已提交
431 432 433 434 435 436 437 438 439
  phi::funcs::GetBlas<phi::GPUContext, double>(context).GEMV(
      true,
      static_cast<int>(in_dims[1]),
      static_cast<int>(in_dims[0]),
      1.0,
      one.data<double>(),
      input.data<double>(),
      0.0,
      vector->data<double>());
440 441
}

L
Leo Chen 已提交
442 443
template struct RowwiseMean<phi::GPUContext, float>;
template struct RowwiseMean<phi::GPUContext, double>;
444 445

}  // namespace funcs
446
}  // namespace phi