math_function.cu 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <vector>
16

17
#include "paddle/fluid/platform/device_context.h"
18
#include "paddle/phi/backends/gpu/gpu_context.h"
19
#include "paddle/phi/common/bfloat16.h"
20
#include "paddle/phi/common/data_type.h"
21
#include "paddle/phi/common/float16.h"
22
#include "paddle/phi/common/memory_utils.h"
23 24 25
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/math_function_impl.h"
26

27
namespace phi {
28 29
namespace funcs {

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
// The following part of the code refers to NVIDIA-cutlass
// https://github.com/NVIDIA/cutlass/blob/master/tools/util/include/cutlass/util/device_nchw_to_nhwc.h
// Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights
// reserved. SPDX-License-Identifier: BSD-3-Clause
template <typename T>
__global__ void batch_transpose_kernel(
    T* output, const T* input, const int batch, const int M, const int N) {
  const int num = M * N;
  // "+1" to avoid smem bank conflict
  __shared__ T shbuf[32 * (32 + 1)];
  const int32_t tid = threadIdx.y * blockDim.x + threadIdx.x;
  const int32_t wid = tid / 32;
  const int32_t lid = tid % 32;
  const int32_t batch_i = blockIdx.z;
  const int32_t mi0 = blockIdx.y * 32;
  const int32_t ni0 = blockIdx.x * 32;

  const size_t input_idx = batch_i * num + (mi0 + wid) * N + ni0;
  const T* A = input + input_idx;
  if (ni0 + lid < N) {
    const int lid_x_33 = lid * 33;
    if ((mi0 + 32) <= M) {
      int mi = wid;  // between 0 and 7
#pragma unroll
      for (int mLoopIdx = 0; mLoopIdx < 4; mLoopIdx++) {
        shbuf[lid_x_33 + mi] = A[lid];
        A = &A[8 * N];
        mi += 8;
      }
    } else {
      for (int mi = wid; mi < 32; mi += 8) {
        if ((mi + mi0) < M) {
          shbuf[lid_x_33 + mi] = A[lid];
        }
        A = &A[8 * N];
      }
    }
  }
  __syncthreads();

  const int32_t miOut = mi0 + lid;
  output = &output[batch_i * num + miOut];
  if (miOut < M) {
    if (ni0 + 32 < N) {
      int nI = wid;
#pragma unroll
      for (int nLoopIdx = 0; nLoopIdx < 4; ++nLoopIdx) {
        output[(ni0 + nI) * M] = shbuf[(nI)*33 + lid];
        nI += 8;
      }
    } else {
      for (int nI = wid; nI < 32; nI += 8) {
        if (ni0 + nI < N) {
          output[(ni0 + nI) * M] = shbuf[(nI)*33 + lid];
        }
      }
    }
  }
}

template <typename T>
void BatchTranspose(T* output, const T* input, int batch, int m, int n) {
  dim3 grid((n + 31) / 32, (m + 31) / 32, batch);
  dim3 block(32, 8);
  batch_transpose_kernel<<<grid, block>>>(output, input, batch, m, n);
}

97 98
using float16 = phi::dtype::float16;
using bfloat16 = phi::dtype::bfloat16;
99

100 101 102 103 104 105 106
template void BatchTranspose(
    float16* output, const float16* input, int batch, int m, int n);
template void BatchTranspose(
    float* output, const float* input, int batch, int m, int n);

template struct SetConstant<phi::GPUContext, float16>;
template struct SetConstant<phi::GPUContext, bfloat16>;
107 108 109 110 111 112 113 114 115
template struct SetConstant<phi::GPUContext, float>;
template struct SetConstant<phi::GPUContext, double>;
template struct SetConstant<phi::GPUContext, uint8_t>;
template struct SetConstant<phi::GPUContext, int>;
template struct SetConstant<phi::GPUContext, int16_t>;
template struct SetConstant<phi::GPUContext, int64_t>;
template struct SetConstant<phi::GPUContext, bool>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<float>>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<double>>;
116

117 118 119 120 121 122 123 124 125 126 127 128 129 130
#define DEFINE_GPU_TRANS(RANK)                                     \
  template struct Transpose<phi::GPUContext, bool, RANK>;          \
  template struct Transpose<phi::GPUContext, unsigned char, RANK>; \
  template struct Transpose<phi::GPUContext, float, RANK>;         \
  template struct Transpose<phi::GPUContext, double, RANK>;        \
  template struct Transpose<phi::GPUContext, float16, RANK>;       \
  template struct Transpose<phi::GPUContext, bfloat16, RANK>;      \
  template struct Transpose<phi::GPUContext, int8_t, RANK>;        \
  template struct Transpose<phi::GPUContext, int16_t, RANK>;       \
  template struct Transpose<phi::GPUContext, int32_t, RANK>;       \
  template struct Transpose<phi::GPUContext, int64_t, RANK>;       \
  template struct Transpose<phi::GPUContext,                       \
                            phi::dtype::complex<float>,            \
                            RANK>;                                 \
131
  template struct Transpose<phi::GPUContext, phi::dtype::complex<double>, RANK>;
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

DEFINE_GPU_TRANS(1);
DEFINE_GPU_TRANS(2);
DEFINE_GPU_TRANS(3);
DEFINE_GPU_TRANS(4);
DEFINE_GPU_TRANS(5);
DEFINE_GPU_TRANS(6);

#define REINTERPRET(T, DST_PTR, SRC_PTR) \
  T* DST_PTR = reinterpret_cast<T*>(SRC_PTR)

template <typename T>
__global__ void TransposeNormalKernel(const T* in_ptr,
                                      T* out_ptr,
                                      int64_t element,
                                      const int64_t* in_stride_ptr,
                                      const int64_t* out_stride_ptr,
                                      const int64_t* axis_ptr,
                                      int rank) {
  CUDA_KERNEL_LOOP(out_idx, element) {
    int64_t in_idx = 0;
    int64_t tmp_idx = out_idx;
    for (int i = 0; i < rank; ++i) {
      const int64_t coordinate = tmp_idx / out_stride_ptr[i];
      tmp_idx -= coordinate * out_stride_ptr[i];
      in_idx += coordinate * in_stride_ptr[axis_ptr[i]];
    }
    out_ptr[out_idx] = in_ptr[in_idx];
  }
}

163 164 165
template <typename DeviceContext, typename T>
void TransposeNormal<DeviceContext, T>::operator()(
    const DeviceContext& context,
166 167
    const phi::DenseTensor& in,
    phi::DenseTensor* out,
168 169
    const std::vector<int>& axis) {
  const int rank = axis.size();
170 171
  auto in_stride = phi::stride(in.dims());
  auto out_stride = phi::stride(out->dims());
172 173
  auto* in_ptr = in.data<T>();
  auto* out_ptr = out->data<T>();
174

175
  // copy in_stride, out_stride, axis to gpu device
176 177
  const phi::GPUPlace& cuda_place = context.GetPlace();
  phi::CPUPlace cpu_place = phi::CPUPlace();
178
  size_t size = 3 * rank * sizeof(int64_t);
179 180
  auto cpu_buf_holder = phi::memory_utils::Alloc(cpu_place, size);
  auto cuda_buf_holder = phi::memory_utils::Alloc(cuda_place, size);
181 182 183 184 185 186
  REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
  REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
  for (int i = 0; i < rank; ++i) {
    cpu_buf[i] = in_stride[i];
    cpu_buf[rank + i] = out_stride[i];
    cpu_buf[2 * rank + i] = axis[i];
187
  }
188
  memory_utils::Copy(
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
      cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
  REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
  REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
  REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

  const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
  const int MAX_GRID_DIM = context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
  int64_t elements = in.numel();
  int block_size = (elements >= MAX_BLOCK_DIM)
                       ? MAX_BLOCK_DIM
                       : (1 << static_cast<int>(std::log2(elements)));
  int grid_size = elements / block_size;
  grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
  TransposeNormalKernel<T><<<grid_size, block_size, 0, context.stream()>>>(
      in_ptr, out_ptr, elements, in_stride_ptr, out_stride_ptr, axis_ptr, rank);
}
205

H
hong 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219
template <typename T>
struct TransposeNormal<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& in,
                  DenseTensor* out,
                  const std::vector<int>& axis) {
    const int rank = axis.size();
    auto in_stride = stride(in.dims());
    auto out_stride = stride(out->dims());
    auto* in_ptr = in.data<T>();
    auto* out_ptr = out->data<T>();

    // copy in_stride, out_stride, axis to gpu device
    const phi::GPUPlace& cuda_place = context.GetPlace();
220
    phi::CPUPlace cpu_place = phi::CPUPlace();
H
hong 已提交
221
    size_t size = 3 * rank * sizeof(int64_t);
222 223
    auto cpu_buf_holder = phi::memory_utils::Alloc(cpu_place, size);
    auto cuda_buf_holder = phi::memory_utils::Alloc(cuda_place, size);
H
hong 已提交
224 225 226 227 228 229 230
    REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
    REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
    for (int i = 0; i < rank; ++i) {
      cpu_buf[i] = in_stride[i];
      cpu_buf[rank + i] = out_stride[i];
      cpu_buf[2 * rank + i] = axis[i];
    }
231
    memory_utils::Copy(
H
hong 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245
        cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
    REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
    REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
    REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

    const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
    const int MAX_GRID_DIM =
        context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int64_t elements = in.numel();
    int block_size = (elements >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(elements)));
    int grid_size = elements / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
246 247 248 249 250 251 252 253
    TransposeNormalKernel<T>
        <<<grid_size, block_size, 0, context.stream()>>>(in_ptr,
                                                         out_ptr,
                                                         elements,
                                                         in_stride_ptr,
                                                         out_stride_ptr,
                                                         axis_ptr,
                                                         rank);
H
hong 已提交
254 255 256
  }
};

257
// define transpose normal
258
#define DEFINE_GPU_TRANS_NORMAL(TYPE) \
259
  template struct TransposeNormal<phi::GPUContext, TYPE>
260 261 262 263 264 265 266 267 268 269 270

DEFINE_GPU_TRANS_NORMAL(float16);
DEFINE_GPU_TRANS_NORMAL(bfloat16);
DEFINE_GPU_TRANS_NORMAL(float);
DEFINE_GPU_TRANS_NORMAL(double);
DEFINE_GPU_TRANS_NORMAL(int);
DEFINE_GPU_TRANS_NORMAL(int64_t);
DEFINE_GPU_TRANS_NORMAL(bool);
DEFINE_GPU_TRANS_NORMAL(int16_t);
DEFINE_GPU_TRANS_NORMAL(uint8_t);
DEFINE_GPU_TRANS_NORMAL(int8_t);
271 272
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<float>);
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<double>);
273 274

struct TensorSetConstantGPU {
275
  TensorSetConstantGPU(const phi::DeviceContext& context,
276
                       phi::DenseTensor* tensor,
277 278 279 280 281
                       float value)
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename T>
  void apply() const {
L
Leo Chen 已提交
282 283 284 285
    SetConstant<phi::GPUContext, T> functor;
    functor(reinterpret_cast<const phi::GPUContext&>(context_),
            tensor_,
            static_cast<T>(value_));
286 287
  }

288
  const phi::DeviceContext& context_;
289
  phi::DenseTensor* tensor_;
290 291 292 293
  float value_;
};

template <>
294 295 296
void set_constant_with_place<phi::GPUPlace>(const phi::DeviceContext& context,
                                            phi::DenseTensor* tensor,
                                            float value) {
297 298
  phi::VisitDataType(tensor->dtype(),
                     TensorSetConstantGPU(context, tensor, value));
299 300 301 302 303 304 305 306 307 308 309 310 311 312
}

template <typename T>
__global__ void RowwiseAddKernel(
    const T* a, const T* b, T* c, int width, int num) {
  T tmp = 1.0 / width;
  CUDA_KERNEL_LOOP(i, num) {
    int h = i * tmp;
    int w = i - h * width;
    c[i] = a[i] + b[w];
  }
}

template <typename T>
L
Leo Chen 已提交
313 314
struct RowwiseAdd<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& context,
315 316 317
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& vector,
                  phi::DenseTensor* output) {
318 319 320 321 322 323
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto size = input.numel() / in_dims[0];
    PADDLE_ENFORCE_EQ(
        vector.numel(),
        size,
324
        phi::errors::InvalidArgument(
325 326 327 328 329 330 331 332 333 334
            "The input vector size"
            " should be equal to the size of each row of input tensor."
            " Expected vector size=%d, but received %d",
            size,
            vector.numel()));
    const char* in_dims_cstr = in_dims.to_str().c_str();
    const char* out_dims_cstr = out_dims.to_str().c_str();
    PADDLE_ENFORCE_EQ(
        out_dims,
        in_dims,
335
        phi::errors::InvalidArgument(
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
            "The output tensor shape should be same as the input tensor"
            " shape. Expected output tensor shape: %s,"
            " but received %s",
            in_dims_cstr,
            out_dims_cstr));
    int blocks = 512;
    int grids = (input.numel() + blocks - 1) / blocks;
    RowwiseAddKernel<T><<<grids, blocks, 0, context.stream()>>>(
        input.data<T>(),
        vector.data<T>(),
        output->data<T>(),
        static_cast<int>(in_dims[1]),
        static_cast<int>(input.numel()));
  }
};

L
Leo Chen 已提交
352 353 354 355 356 357 358
template struct RowwiseAdd<phi::GPUContext, float>;
template struct RowwiseAdd<phi::GPUContext, double>;
template struct ColwiseSum<phi::GPUContext, float>;
template struct ColwiseSum<phi::GPUContext, int>;
template struct ColwiseSum<phi::GPUContext, int64_t>;
// template struct ColwiseSum<phi::GPUContext, double>;
// The ColwiseSum<phi::GPUContext, double> failed in debug
359 360 361
// mode,
// and only failed for this case. So reimplemented it.
template <>
L
Leo Chen 已提交
362 363
void ColwiseSum<phi::GPUContext, double>::operator()(
    const phi::GPUContext& context,
364 365
    const phi::DenseTensor& input,
    phi::DenseTensor* vector) {
366 367 368 369
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    size,
370
                    phi::errors::InvalidArgument(
371 372 373 374 375
                        "The size of input vector"
                        " should be equal to the size of input tensor column"
                        " dimension. Expected vector size=%d, but received %d",
                        size,
                        vector->numel()));
376
  phi::DenseTensor one;
377 378 379
  one.Resize({in_dims[0]});
  context.template Alloc<double>(&one);

L
Leo Chen 已提交
380
  SetConstant<phi::GPUContext, double> set;
381
  set(context, &one, static_cast<double>(1.0));
L
Leo Chen 已提交
382 383 384 385 386 387 388 389 390
  phi::funcs::GetBlas<phi::GPUContext, double>(context).GEMV(
      true,
      static_cast<int>(in_dims[0]),
      static_cast<int>(in_dims[1]),
      1.0,
      input.data<double>(),
      one.data<double>(),
      0.0,
      vector->data<double>());
391 392
}

L
Leo Chen 已提交
393 394
template struct RowwiseSum<phi::GPUContext, float>;
// template struct RowwiseSum<phi::GPUContext, double>;
395
// TODO(zcd): Following ColwiseSum format, need to confirm.
L
Leo Chen 已提交
396
// The RowwiseSum<phi::GPUContext, double> failed in debug
397 398 399
// mode,
// and only failed for this case. So reimplemented it.
template <>
L
Leo Chen 已提交
400 401
void RowwiseSum<phi::GPUContext, double>::operator()(
    const phi::GPUContext& context,
402 403
    const phi::DenseTensor& input,
    phi::DenseTensor* vector) {
404 405 406 407
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    in_dims[0],
408
                    phi::errors::InvalidArgument(
409 410 411 412 413
                        "The size of input vector"
                        " should be equal to the size of input tensor row"
                        " dimension. Expected vector size=%d, but received %d",
                        in_dims[0],
                        vector->numel()));
414
  phi::DenseTensor one;
415 416 417
  one.Resize({size});
  context.template Alloc<double>(&one);

L
Leo Chen 已提交
418
  SetConstant<phi::GPUContext, double> set;
419
  set(context, &one, static_cast<double>(1.0));
L
Leo Chen 已提交
420 421 422 423 424 425 426 427 428
  phi::funcs::GetBlas<phi::GPUContext, double>(context).GEMV(
      true,
      static_cast<int>(in_dims[1]),
      static_cast<int>(in_dims[0]),
      1.0,
      one.data<double>(),
      input.data<double>(),
      0.0,
      vector->data<double>());
429 430
}

L
Leo Chen 已提交
431 432
template struct RowwiseMean<phi::GPUContext, float>;
template struct RowwiseMean<phi::GPUContext, double>;
433 434

}  // namespace funcs
435
}  // namespace phi