math_function.cu 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <vector>
16

17
#include "paddle/fluid/memory/memcpy.h"
18
#include "paddle/phi/backends/gpu/gpu_context.h"
19
#include "paddle/phi/common/bfloat16.h"
20
#include "paddle/phi/common/data_type.h"
21
#include "paddle/phi/common/float16.h"
22
#include "paddle/phi/common/memory_utils.h"
23 24 25
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/math_function_impl.h"
26

27
namespace phi {
28 29
namespace funcs {

30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
// The following part of the code refers to NVIDIA-cutlass
// https://github.com/NVIDIA/cutlass/blob/master/tools/util/include/cutlass/util/device_nchw_to_nhwc.h
// Copyright (c) 2017 - 2022 NVIDIA CORPORATION & AFFILIATES. All rights
// reserved. SPDX-License-Identifier: BSD-3-Clause
template <typename T>
__global__ void batch_transpose_kernel(
    T* output, const T* input, const int batch, const int M, const int N) {
  const int num = M * N;
  // "+1" to avoid smem bank conflict
  __shared__ T shbuf[32 * (32 + 1)];
  const int32_t tid = threadIdx.y * blockDim.x + threadIdx.x;
  const int32_t wid = tid / 32;
  const int32_t lid = tid % 32;
  const int32_t batch_i = blockIdx.z;
  const int32_t mi0 = blockIdx.y * 32;
  const int32_t ni0 = blockIdx.x * 32;

  const size_t input_idx = batch_i * num + (mi0 + wid) * N + ni0;
  const T* A = input + input_idx;
  if (ni0 + lid < N) {
    const int lid_x_33 = lid * 33;
    if ((mi0 + 32) <= M) {
      int mi = wid;  // between 0 and 7
#pragma unroll
      for (int mLoopIdx = 0; mLoopIdx < 4; mLoopIdx++) {
        shbuf[lid_x_33 + mi] = A[lid];
        A = &A[8 * N];
        mi += 8;
      }
    } else {
      for (int mi = wid; mi < 32; mi += 8) {
        if ((mi + mi0) < M) {
          shbuf[lid_x_33 + mi] = A[lid];
        }
        A = &A[8 * N];
      }
    }
  }
  __syncthreads();

  const int32_t miOut = mi0 + lid;
  output = &output[batch_i * num + miOut];
  if (miOut < M) {
    if (ni0 + 32 < N) {
      int nI = wid;
#pragma unroll
      for (int nLoopIdx = 0; nLoopIdx < 4; ++nLoopIdx) {
        output[(ni0 + nI) * M] = shbuf[(nI)*33 + lid];
        nI += 8;
      }
    } else {
      for (int nI = wid; nI < 32; nI += 8) {
        if (ni0 + nI < N) {
          output[(ni0 + nI) * M] = shbuf[(nI)*33 + lid];
        }
      }
    }
  }
}

template <typename T>
void BatchTranspose(T* output, const T* input, int batch, int m, int n) {
  dim3 grid((n + 31) / 32, (m + 31) / 32, batch);
  dim3 block(32, 8);
  batch_transpose_kernel<<<grid, block>>>(output, input, batch, m, n);
}

97 98
using float16 = phi::dtype::float16;
using bfloat16 = phi::dtype::bfloat16;
99

100 101 102 103 104 105 106
template void BatchTranspose(
    float16* output, const float16* input, int batch, int m, int n);
template void BatchTranspose(
    float* output, const float* input, int batch, int m, int n);

template struct SetConstant<phi::GPUContext, float16>;
template struct SetConstant<phi::GPUContext, bfloat16>;
107 108 109 110 111 112 113 114 115
template struct SetConstant<phi::GPUContext, float>;
template struct SetConstant<phi::GPUContext, double>;
template struct SetConstant<phi::GPUContext, uint8_t>;
template struct SetConstant<phi::GPUContext, int>;
template struct SetConstant<phi::GPUContext, int16_t>;
template struct SetConstant<phi::GPUContext, int64_t>;
template struct SetConstant<phi::GPUContext, bool>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<float>>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<double>>;
116

117
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, float16>;
118
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
119
                            bfloat16>;
120 121 122 123 124 125 126 127
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, float>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, double>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, uint8_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int16_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int64_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, bool>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
128
                            phi::dtype::complex<float>>;
129
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
130
                            phi::dtype::complex<double>>;
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145
#define DEFINE_GPU_TRANS(RANK)                                     \
  template struct Transpose<phi::GPUContext, bool, RANK>;          \
  template struct Transpose<phi::GPUContext, unsigned char, RANK>; \
  template struct Transpose<phi::GPUContext, float, RANK>;         \
  template struct Transpose<phi::GPUContext, double, RANK>;        \
  template struct Transpose<phi::GPUContext, float16, RANK>;       \
  template struct Transpose<phi::GPUContext, bfloat16, RANK>;      \
  template struct Transpose<phi::GPUContext, int8_t, RANK>;        \
  template struct Transpose<phi::GPUContext, int16_t, RANK>;       \
  template struct Transpose<phi::GPUContext, int32_t, RANK>;       \
  template struct Transpose<phi::GPUContext, int64_t, RANK>;       \
  template struct Transpose<phi::GPUContext,                       \
                            phi::dtype::complex<float>,            \
                            RANK>;                                 \
146
  template struct Transpose<phi::GPUContext, phi::dtype::complex<double>, RANK>;
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177

DEFINE_GPU_TRANS(1);
DEFINE_GPU_TRANS(2);
DEFINE_GPU_TRANS(3);
DEFINE_GPU_TRANS(4);
DEFINE_GPU_TRANS(5);
DEFINE_GPU_TRANS(6);

#define REINTERPRET(T, DST_PTR, SRC_PTR) \
  T* DST_PTR = reinterpret_cast<T*>(SRC_PTR)

template <typename T>
__global__ void TransposeNormalKernel(const T* in_ptr,
                                      T* out_ptr,
                                      int64_t element,
                                      const int64_t* in_stride_ptr,
                                      const int64_t* out_stride_ptr,
                                      const int64_t* axis_ptr,
                                      int rank) {
  CUDA_KERNEL_LOOP(out_idx, element) {
    int64_t in_idx = 0;
    int64_t tmp_idx = out_idx;
    for (int i = 0; i < rank; ++i) {
      const int64_t coordinate = tmp_idx / out_stride_ptr[i];
      tmp_idx -= coordinate * out_stride_ptr[i];
      in_idx += coordinate * in_stride_ptr[axis_ptr[i]];
    }
    out_ptr[out_idx] = in_ptr[in_idx];
  }
}

178 179 180
template <typename DeviceContext, typename T>
void TransposeNormal<DeviceContext, T>::operator()(
    const DeviceContext& context,
181 182
    const phi::DenseTensor& in,
    phi::DenseTensor* out,
183 184
    const std::vector<int>& axis) {
  const int rank = axis.size();
185 186
  auto in_stride = phi::stride(in.dims());
  auto out_stride = phi::stride(out->dims());
187 188
  auto* in_ptr = in.data<T>();
  auto* out_ptr = out->data<T>();
189

190 191 192 193
  // copy in_stride, out_stride, axis to gpu device
  const paddle::platform::CUDAPlace& cuda_place = context.GetPlace();
  paddle::platform::CPUPlace cpu_place = paddle::platform::CPUPlace();
  size_t size = 3 * rank * sizeof(int64_t);
194 195
  auto cpu_buf_holder = phi::memory_utils::Alloc(cpu_place, size);
  auto cuda_buf_holder = phi::memory_utils::Alloc(cuda_place, size);
196 197 198 199 200 201
  REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
  REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
  for (int i = 0; i < rank; ++i) {
    cpu_buf[i] = in_stride[i];
    cpu_buf[rank + i] = out_stride[i];
    cpu_buf[2 * rank + i] = axis[i];
202
  }
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
  paddle::memory::Copy(
      cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
  REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
  REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
  REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

  const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
  const int MAX_GRID_DIM = context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
  int64_t elements = in.numel();
  int block_size = (elements >= MAX_BLOCK_DIM)
                       ? MAX_BLOCK_DIM
                       : (1 << static_cast<int>(std::log2(elements)));
  int grid_size = elements / block_size;
  grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
  TransposeNormalKernel<T><<<grid_size, block_size, 0, context.stream()>>>(
      in_ptr, out_ptr, elements, in_stride_ptr, out_stride_ptr, axis_ptr, rank);
}
220

H
hong 已提交
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
template <typename T>
struct TransposeNormal<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& in,
                  DenseTensor* out,
                  const std::vector<int>& axis) {
    const int rank = axis.size();
    auto in_stride = stride(in.dims());
    auto out_stride = stride(out->dims());
    auto* in_ptr = in.data<T>();
    auto* out_ptr = out->data<T>();

    // copy in_stride, out_stride, axis to gpu device
    const phi::GPUPlace& cuda_place = context.GetPlace();
    phi::CPUPlace cpu_place = paddle::platform::CPUPlace();
    size_t size = 3 * rank * sizeof(int64_t);
237 238
    auto cpu_buf_holder = phi::memory_utils::Alloc(cpu_place, size);
    auto cuda_buf_holder = phi::memory_utils::Alloc(cuda_place, size);
H
hong 已提交
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
    REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
    REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
    for (int i = 0; i < rank; ++i) {
      cpu_buf[i] = in_stride[i];
      cpu_buf[rank + i] = out_stride[i];
      cpu_buf[2 * rank + i] = axis[i];
    }
    paddle::memory::Copy(
        cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
    REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
    REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
    REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

    const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
    const int MAX_GRID_DIM =
        context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int64_t elements = in.numel();
    int block_size = (elements >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(elements)));
    int grid_size = elements / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
261 262 263 264 265 266 267 268
    TransposeNormalKernel<T>
        <<<grid_size, block_size, 0, context.stream()>>>(in_ptr,
                                                         out_ptr,
                                                         elements,
                                                         in_stride_ptr,
                                                         out_stride_ptr,
                                                         axis_ptr,
                                                         rank);
H
hong 已提交
269 270 271
  }
};

272
// define transpose normal
273
#define DEFINE_GPU_TRANS_NORMAL(TYPE) \
274
  template struct TransposeNormal<phi::GPUContext, TYPE>
275 276 277 278 279 280 281 282 283 284 285

DEFINE_GPU_TRANS_NORMAL(float16);
DEFINE_GPU_TRANS_NORMAL(bfloat16);
DEFINE_GPU_TRANS_NORMAL(float);
DEFINE_GPU_TRANS_NORMAL(double);
DEFINE_GPU_TRANS_NORMAL(int);
DEFINE_GPU_TRANS_NORMAL(int64_t);
DEFINE_GPU_TRANS_NORMAL(bool);
DEFINE_GPU_TRANS_NORMAL(int16_t);
DEFINE_GPU_TRANS_NORMAL(uint8_t);
DEFINE_GPU_TRANS_NORMAL(int8_t);
286 287
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<float>);
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<double>);
288 289 290

struct TensorSetConstantGPU {
  TensorSetConstantGPU(const paddle::platform::DeviceContext& context,
291
                       phi::DenseTensor* tensor,
292 293 294 295 296
                       float value)
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename T>
  void apply() const {
L
Leo Chen 已提交
297 298 299 300
    SetConstant<phi::GPUContext, T> functor;
    functor(reinterpret_cast<const phi::GPUContext&>(context_),
            tensor_,
            static_cast<T>(value_));
301 302 303
  }

  const paddle::platform::DeviceContext& context_;
304
  phi::DenseTensor* tensor_;
305 306 307 308 309 310
  float value_;
};

template <>
void set_constant_with_place<paddle::platform::CUDAPlace>(
    const paddle::platform::DeviceContext& context,
311
    phi::DenseTensor* tensor,
312
    float value) {
313 314
  phi::VisitDataType(tensor->dtype(),
                     TensorSetConstantGPU(context, tensor, value));
315 316 317 318 319 320 321 322 323 324 325 326 327 328
}

template <typename T>
__global__ void RowwiseAddKernel(
    const T* a, const T* b, T* c, int width, int num) {
  T tmp = 1.0 / width;
  CUDA_KERNEL_LOOP(i, num) {
    int h = i * tmp;
    int w = i - h * width;
    c[i] = a[i] + b[w];
  }
}

template <typename T>
L
Leo Chen 已提交
329 330
struct RowwiseAdd<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& context,
331 332 333
                  const phi::DenseTensor& input,
                  const phi::DenseTensor& vector,
                  phi::DenseTensor* output) {
334 335 336 337 338 339
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto size = input.numel() / in_dims[0];
    PADDLE_ENFORCE_EQ(
        vector.numel(),
        size,
340
        phi::errors::InvalidArgument(
341 342 343 344 345 346 347 348 349 350
            "The input vector size"
            " should be equal to the size of each row of input tensor."
            " Expected vector size=%d, but received %d",
            size,
            vector.numel()));
    const char* in_dims_cstr = in_dims.to_str().c_str();
    const char* out_dims_cstr = out_dims.to_str().c_str();
    PADDLE_ENFORCE_EQ(
        out_dims,
        in_dims,
351
        phi::errors::InvalidArgument(
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
            "The output tensor shape should be same as the input tensor"
            " shape. Expected output tensor shape: %s,"
            " but received %s",
            in_dims_cstr,
            out_dims_cstr));
    int blocks = 512;
    int grids = (input.numel() + blocks - 1) / blocks;
    RowwiseAddKernel<T><<<grids, blocks, 0, context.stream()>>>(
        input.data<T>(),
        vector.data<T>(),
        output->data<T>(),
        static_cast<int>(in_dims[1]),
        static_cast<int>(input.numel()));
  }
};

L
Leo Chen 已提交
368 369 370 371 372 373 374
template struct RowwiseAdd<phi::GPUContext, float>;
template struct RowwiseAdd<phi::GPUContext, double>;
template struct ColwiseSum<phi::GPUContext, float>;
template struct ColwiseSum<phi::GPUContext, int>;
template struct ColwiseSum<phi::GPUContext, int64_t>;
// template struct ColwiseSum<phi::GPUContext, double>;
// The ColwiseSum<phi::GPUContext, double> failed in debug
375 376 377
// mode,
// and only failed for this case. So reimplemented it.
template <>
L
Leo Chen 已提交
378 379
void ColwiseSum<phi::GPUContext, double>::operator()(
    const phi::GPUContext& context,
380 381
    const phi::DenseTensor& input,
    phi::DenseTensor* vector) {
382 383 384 385
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    size,
386
                    phi::errors::InvalidArgument(
387 388 389 390 391
                        "The size of input vector"
                        " should be equal to the size of input tensor column"
                        " dimension. Expected vector size=%d, but received %d",
                        size,
                        vector->numel()));
392
  phi::DenseTensor one;
393 394 395
  one.Resize({in_dims[0]});
  context.template Alloc<double>(&one);

L
Leo Chen 已提交
396
  SetConstant<phi::GPUContext, double> set;
397
  set(context, &one, static_cast<double>(1.0));
L
Leo Chen 已提交
398 399 400 401 402 403 404 405 406
  phi::funcs::GetBlas<phi::GPUContext, double>(context).GEMV(
      true,
      static_cast<int>(in_dims[0]),
      static_cast<int>(in_dims[1]),
      1.0,
      input.data<double>(),
      one.data<double>(),
      0.0,
      vector->data<double>());
407 408
}

L
Leo Chen 已提交
409 410
template struct RowwiseSum<phi::GPUContext, float>;
// template struct RowwiseSum<phi::GPUContext, double>;
411
// TODO(zcd): Following ColwiseSum format, need to confirm.
L
Leo Chen 已提交
412
// The RowwiseSum<phi::GPUContext, double> failed in debug
413 414 415
// mode,
// and only failed for this case. So reimplemented it.
template <>
L
Leo Chen 已提交
416 417
void RowwiseSum<phi::GPUContext, double>::operator()(
    const phi::GPUContext& context,
418 419
    const phi::DenseTensor& input,
    phi::DenseTensor* vector) {
420 421 422 423
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    in_dims[0],
424
                    phi::errors::InvalidArgument(
425 426 427 428 429
                        "The size of input vector"
                        " should be equal to the size of input tensor row"
                        " dimension. Expected vector size=%d, but received %d",
                        in_dims[0],
                        vector->numel()));
430
  phi::DenseTensor one;
431 432 433
  one.Resize({size});
  context.template Alloc<double>(&one);

L
Leo Chen 已提交
434
  SetConstant<phi::GPUContext, double> set;
435
  set(context, &one, static_cast<double>(1.0));
L
Leo Chen 已提交
436 437 438 439 440 441 442 443 444
  phi::funcs::GetBlas<phi::GPUContext, double>(context).GEMV(
      true,
      static_cast<int>(in_dims[1]),
      static_cast<int>(in_dims[0]),
      1.0,
      one.data<double>(),
      input.data<double>(),
      0.0,
      vector->data<double>());
445 446
}

L
Leo Chen 已提交
447 448
template struct RowwiseMean<phi::GPUContext, float>;
template struct RowwiseMean<phi::GPUContext, double>;
449 450

}  // namespace funcs
451
}  // namespace phi