layer.py 9.1 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""
Y
Yu Yang 已提交
15 16 17
`paddle.v2.layer` is a part of model config packages in paddle.v2. In API v2,
we want to make Paddle a plain Python package. The model config package defined
the way how to configure a neural network topology in Paddle Python code.
18

Y
Yu Yang 已提交
19
The primary usage shows below.
20

Y
Yu Yang 已提交
21
..  code-block:: python
22

Y
Yu Yang 已提交
23
    import paddle.v2 as paddle
24

Y
Yu Yang 已提交
25 26 27 28
    img = paddle.layer.data(name='img', type=paddle.data_type.dense_vector(784))
    hidden = paddle.layer.fc(input=img, size=200)
    prediction = paddle.layer.fc(input=hidden, size=10,
                                 act=paddle.activation.Softmax())
29

Y
Yu Yang 已提交
30
    # use prediction instance where needed.
Y
Yu Yang 已提交
31
    parameters = paddle.parameters.create(cost)
32
"""
Q
qiaolongfei 已提交
33

Q
qiaolongfei 已提交
34
import collections
X
xuwei06 已提交
35 36 37 38
import copy
import paddle.trainer_config_helpers.layers as v1_layers
import paddle.trainer.config_parser as cp
from paddle.proto.ModelConfig_pb2 import ModelConfig, SubModelConfig
Q
qiaolongfei 已提交
39

X
xuwei06 已提交
40 41
__all__ = ['data', 'parse_network']
__layer_map__ = {}
Q
qiaolongfei 已提交
42

X
xuwei06 已提交
43 44 45 46 47 48 49 50 51 52
def __wrap__(f):
    def wrapped(*args, **xargs):
        out = f(*args, **xargs)
        outs = out
        if not isinstance(out, collections.Sequence):
            outs = [out]
        for l in outs:
            if isinstance(l, v1_layers.LayerOutput):
                __layer_map__[l.full_name] = l
        return out
Q
qiaolongfei 已提交
53

X
xuwei06 已提交
54
    return wrapped
Q
qiaolongfei 已提交
55

X
xuwei06 已提交
56 57 58 59
def __need_to_keep__(name):
    if name in ['StaticInput', 'LayerType', 'layer_support']:
        return False
    return True
Q
qiaolongfei 已提交
60 61


X
xuwei06 已提交
62 63
def __need_to_wrap__(name):
    return name not in ['AggregateLevel', 'ExpandLevel']
Q
qiaolongfei 已提交
64 65


X
xuwei06 已提交
66 67
def __convert_name__(inname):
    if inname == 'maxid_layer':
Y
Yu Yang 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80
        return 'max_id'
    elif inname.endswith('memory') or inname.endswith(
            '_seq') or inname.endswith('_sim') or inname == 'hsigmoid':
        return inname
    elif inname in [
            'cross_entropy', 'multi_binary_label_cross_entropy',
            'cross_entropy_with_selfnorm'
    ]:
        return inname + "_cost"
    elif inname.endswith('_cost'):
        return inname
    elif inname.endswith("_layer"):
        return inname[:-len("_layer")]
X
xuwei06 已提交
81 82
    else:
        return inname
Y
Yu Yang 已提交
83 84


X
xuwei06 已提交
85 86 87 88 89 90 91
for name in v1_layers.__all__:
    obj = getattr(v1_layers, name)
    if not __need_to_keep__(name):
        continue
    new_name = __convert_name__(name)
    if callable(obj) and __need_to_wrap__(name):
        globals()[new_name] = __wrap__(obj)
Q
qiaolongfei 已提交
92
    else:
X
xuwei06 已提交
93 94 95 96 97 98 99 100
        globals()[new_name] = obj
    __all__.append(new_name)


def __data_layer__(name, type, **kwargs):
    l = v1_layers.data_layer(name, type.dim, **kwargs)
    l.data_type = type
    return l
Q
qiaolongfei 已提交
101

X
xuwei06 已提交
102
data = __wrap__(__data_layer__)
Q
qiaolongfei 已提交
103

X
xuwei06 已提交
104
LayerV2 = v1_layers.LayerOutput
Q
qiaolongfei 已提交
105 106


X
xuwei06 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
def __get_used_layers__(output_layers, extra_layers=None):
    layer_names = set()
    parents = {}
    def add_parent(child, parent):
        if child in parents:
            parents[child].append(parent)
        else:
            parents[child] = [parent]

    def add_additional_parents():
        for sub_model in cp.g_config.model_config.sub_models:
            if sub_model.name == 'root':
                continue
            for link in sub_model.in_links:
                add_parent(link.link_name, link.layer_name)
                add_parent(sub_model.name, link.layer_name)
            for link in sub_model.out_links:
                add_parent(link.link_name, link.layer_name)
                add_parent(link.link_name, sub_model.name)
            for mem in sub_model.memories:
                if mem.boot_layer_name:
                    add_parent(mem.layer_name, mem.boot_layer_name)
                add_parent(mem.link_name, mem.layer_name)

    def dfs_travel(layer_name):
        if layer_name in layer_names:
            return
        layer_names.add(layer_name)
        layer = cp.g_layer_map[layer_name]

        for inp in layer.inputs:
            dfs_travel(inp.input_layer_name)
        if layer.name in parents:
            for p in parents[layer.name]:
                dfs_travel(p)

    add_additional_parents()

    for layer in output_layers:
        dfs_travel(layer.full_name)

    return layer_names


def __get_used_parameters__(layer_names):
    parameter_names = set()
    for name in layer_names:
        l = cp.g_layer_map[name]
        for inp in l.inputs:
            if inp.input_parameter_name:
                parameter_names.add(inp.input_parameter_name)
        if l.bias_parameter_name:
            parameter_names.add(l.bias_parameter_name)
    return parameter_names


def __get_used_submodels__(layer_names):
    submodel_names = set()
    for submodel in cp.g_config.model_config.sub_models:
        if submodel.name in layer_names:
            submodel_names.add(submodel.name)
    return submodel_names


def __get_used_evaluators__(layer_names):
    evaluator_names = set()
    for e in cp.g_config.model_config.evaluators:
        used = True
        for name in e.input_layers:
            if name not in layer_names:
                used = False
                break
        if used:
            evaluator_names.add(e.name)
    return evaluator_names


def __trim_submodel__(old_submodel,
                      layer_names,
                      input_layer_names,
                      output_layer_names,
                      evaluator_names):

    submodel = SubModelConfig()
    submodel.name = old_submodel.name
    submodel.layer_names.extend(filter(lambda x: x in layer_names,
                                       old_submodel.layer_names))
    submodel.input_layer_names.extend(filter(lambda x: x in input_layer_names,
                                             submodel.layer_names))
    submodel.output_layer_names.extend(filter(lambda x: x in output_layer_names,
                                              submodel.layer_names))
    submodel.evaluator_names.extend(filter(lambda x: x in evaluator_names,
                                           old_submodel.evaluator_names))

    submodel.is_recurrent_layer_group = old_submodel.is_recurrent_layer_group
    submodel.reversed = old_submodel.reversed

    submodel.memories.extend(filter(lambda x: x.link_name in layer_names,
                                    old_submodel.memories))
    target_inlinkid = (old_submodel.target_inlinkid
                       if old_submodel.HasField('target_inlinkid') else -1)
    in_links = []
    for i, link in enumerate(old_submodel.in_links):
        if link.link_name in layer_names or i == target_inlinkid:
            in_links.append(link)
            if i == target_inlinkid:
                target_inlinkid = len(in_links) - 1
    submodel.in_links.extend(in_links)

    submodel.out_links.extend(filter(lambda x: x.link_name in layer_names,
                                     old_submodel.out_links))
    if old_submodel.HasField('generator'):
        submodel.generator.CopyFrom(old_submodel.generator)

    if old_submodel.HasField('target_inlinkid'):
        submodel.target_inlinkid = target_inlinkid
    return submodel
Q
qiaolongfei 已提交
224 225


X
xuwei06 已提交
226 227 228 229 230 231 232 233
def parse_network(output_layers, extra_layers=None):
    if not isinstance(output_layers, collections.Sequence):
        output_layers = [output_layers]
    if extra_layers is not None and not isinstance(extra_layers,
                                                   collections.Sequence):
        extra_layers = [extra_layers]
    else:
        extra_layers = []
Q
qiaolongfei 已提交
234

X
xuwei06 已提交
235 236 237 238 239 240 241
    layer_names = __get_used_layers__(output_layers + extra_layers)
    submodel_names = __get_used_submodels__(layer_names)
    submodel_names.add('root')
    parameter_names = __get_used_parameters__(layer_names)
    evaluator_names = __get_used_evaluators__(layer_names)
    input_layer_names = set()
    output_layer_names = set()
Q
qiaolongfei 已提交
242

X
xuwei06 已提交
243 244 245 246 247 248 249 250 251
    model_config = ModelConfig()
    model_config.type = cp.g_config.model_config.type
    for l in cp.g_config.model_config.layers:
        if l.name not in layer_names:
            continue
        model_config.layers.extend([l])
        if l.type == 'data':
            model_config.input_layer_names.append(l.name)
            input_layer_names.add(l.name)
Q
qiaolongfei 已提交
252

X
xuwei06 已提交
253 254 255
    for p in cp.g_config.model_config.parameters:
        if p.name in parameter_names:
            model_config.parameters.extend([p])
Q
qiaolongfei 已提交
256

X
xuwei06 已提交
257 258 259
    for layer in output_layers:
        model_config.output_layer_names.append(layer.full_name)
        output_layer_names.add(layer.full_name)
Q
qiaolongfei 已提交
260

X
xuwei06 已提交
261 262 263
    for e in cp.g_config.model_config.evaluators:
        if e.name in evaluator_names:
            model_config.evaluators.extend([e])
Q
qiaolongfei 已提交
264

X
xuwei06 已提交
265 266 267 268 269 270
    for s in cp.g_config.model_config.sub_models:
        if s.name in submodel_names:
            s = __trim_submodel__(
                s, layer_names, input_layer_names, output_layer_names,
                evaluator_names)
            model_config.sub_models.extend([s])
L
Luo Tao 已提交
271

X
xuwei06 已提交
272
    return model_config
Y
Yu Yang 已提交
273 274


X
xuwei06 已提交
275 276
def get_layer(name):
    return __layer_map__.get(name)
Y
Yu Yang 已提交
277 278


X
xuwei06 已提交
279
cp.begin_parse()