test_set_value_op.py 48.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# Test set_value op in static graph mode
16 17

import unittest
18 19
from functools import reduce

20
import numpy as np
W
wanghuancoder 已提交
21
from eager_op_test import OpTest, convert_float_to_uint16
22 23

import paddle
24
from paddle.fluid import core
25
from paddle.fluid.layer_helper import LayerHelper
26

27

28
class TestSetValueBase(unittest.TestCase):
29 30 31 32
    def setUp(self):
        paddle.enable_static()
        self.set_dtype()
        self.set_value()
33
        self.set_shape()
34 35 36
        self.data = np.ones(self.shape).astype(self.dtype)
        self.program = paddle.static.Program()

37 38 39
    def set_shape(self):
        self.shape = [2, 3, 4]

40 41 42 43 44 45 46 47 48 49 50 51 52 53
    def set_value(self):
        self.value = 6

    def set_dtype(self):
        self.dtype = "float32"

    def _call_setitem(self, x):
        x[0, 0] = self.value

    def _get_answer(self):
        self.data[0, 0] = self.value


class TestSetValueApi(TestSetValueBase):
54 55
    def _run_static(self):
        paddle.enable_static()
56 57 58 59 60 61
        with paddle.static.program_guard(self.program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            self._call_setitem(x)

        exe = paddle.static.Executor(paddle.CPUPlace())
        out = exe.run(self.program, fetch_list=[x])
62 63 64 65 66 67 68 69 70 71 72
        paddle.disable_static()
        return out

    def _run_dynamic(self):
        paddle.disable_static()
        x = paddle.ones(shape=self.shape, dtype=self.dtype)
        self._call_setitem(x)
        out = x.numpy()
        paddle.enable_static()
        return out

73
    def test_api(self):
74 75
        static_out = self._run_static()
        dynamic_out = self._run_dynamic()
76
        self._get_answer()
77

78 79 80 81 82 83 84 85 86 87 88
        error_msg = (
            "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
        )
        self.assertTrue(
            (self.data == static_out).all(),
            msg=error_msg.format("static", self.data, static_out),
        )
        self.assertTrue(
            (self.data == dynamic_out).all(),
            msg=error_msg.format("dynamic", self.data, dynamic_out),
        )
89 90


91 92
# 1. Test different type of item: int, Python slice, Paddle Tensor
# 1.1 item is int
93 94 95 96 97 98 99 100
class TestSetValueItemInt(TestSetValueApi):
    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


101 102
# 1.2 item is slice
# 1.2.1 step is 1
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
class TestSetValueItemSlice(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:2] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemSlice2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1] = self.value

    def _get_answer(self):
        self.data[0:-1] = self.value


class TestSetValueItemSlice3(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1, 0:2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemSlice4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2, :] = self.value


135 136 137 138 139 140 141 142
class TestSetValueItemSlice5(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:1, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:1, :] = self.value


143 144 145 146 147 148 149 150 151 152
class TestSetValueItemSliceInWhile(TestSetValueApi):
    def _call_setitem(self, x):
        def cond(i, x):
            return i < 1

        def body(i, x):
            x[i] = self.value
            i = i + 1
            return i, x

153
        i = paddle.zeros(shape=(1,), dtype='int32')
154
        i, x = paddle.static.nn.while_loop(cond, body, [i, x])
155 156 157 158 159

    def _get_answer(self):
        self.data[0] = self.value


160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
# 1.2.2 step > 1
class TestSetValueItemSliceStep(TestSetValueApi):
    def set_shape(self):
        self.shape = [5, 5, 5]

    def _call_setitem(self, x):
        x[0:2:2] = self.value

    def _get_answer(self):
        self.data[0:2:2] = self.value


class TestSetValueItemSliceStep2(TestSetValueApi):
    def set_shape(self):
        self.shape = [7, 5, 5]

    def _call_setitem(self, x):
        x[0:-1:3] = self.value

    def _get_answer(self):
        self.data[0:-1:3] = self.value


class TestSetValueItemSliceStep3(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1, 0:2, ::2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemSliceStep4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:2:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


# 1.2.3 step < 0
class TestSetValueItemSliceNegetiveStep(TestSetValueApi):
    def set_shape(self):
        self.shape = [5, 2]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[5:2:-1] = self.value

    def _get_answer(self):
        self.data[5:2:-1] = self.value


class TestSetValueItemSliceNegetiveStep2(TestSetValueApi):
    def set_shape(self):
        self.shape = [5]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[1::-1] = self.value

    def _get_answer(self):
        self.data[1::-1] = self.value


class TestSetValueItemSliceNegetiveStep3(TestSetValueApi):
    def set_shape(self):
        self.shape = [3]

    def set_value(self):
        self.value = np.array([3, 4, 5])

    def _call_setitem(self, x):
        x[::-1] = self.value

    def _get_answer(self):
        self.data[::-1] = self.value


class TestSetValueItemSliceNegetiveStep4(TestSetValueApi):
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        x[2:0:-1, 0:2, ::-1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


# 1.3 item is Ellipsis


256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
class TestSetValueItemEllipsis1(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, ..., 1:] = self.value

    def _get_answer(self):
        self.data[0:, ..., 1:] = self.value


class TestSetValueItemEllipsis2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, ...] = self.value

    def _get_answer(self):
        self.data[0:, ...] = self.value


class TestSetValueItemEllipsis3(TestSetValueApi):
    def _call_setitem(self, x):
        x[..., 1:] = self.value

    def _get_answer(self):
        self.data[..., 1:] = self.value


class TestSetValueItemEllipsis4(TestSetValueApi):
    def _call_setitem(self, x):
        x[...] = self.value

    def _get_answer(self):
        self.data[...] = self.value


288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
# 1.4 item is Paddle Tensor
class TestSetValueItemTensor(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        x[zero] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueItemTensor2(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:two] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemTensor3(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:-1, 0:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemTensor4(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[0:-1, zero:2, 0:6:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemTensor5(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:, 1:2:two, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


class TestSetValueItemTensor6(TestSetValueApi):
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        minus1 = paddle.full([1], -1, dtype="int32")
        zero = paddle.full([1], 0, dtype="int32")
        x[2:zero:minus1, 0:2, 10:-6:minus1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


Z
zyfncg 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
# 1.5 item is None
class TestSetValueItemNone1(TestSetValueApi):
    def _call_setitem(self, x):
        x[None] = self.value

    def _get_answer(self):
        self.data[None] = self.value


class TestSetValueItemNone2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 1] = self.value


class TestSetValueItemNone3(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, None, None, 1] = self.value

    def _get_answer(self):
        self.data[:, None, None, 1] = self.value


class TestSetValueItemNone4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, 0, None, 1] = self.value


class TestSetValueItemNone5(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, None, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 0, None, 1] = self.value


class TestSetValueItemNone6(TestSetValueApi):
    def _call_setitem(self, x):
        x[None, 0, 0, None, 0] = self.value

    def _get_answer(self):
        self.data[None, 0, 0, None, 0] = self.value


class TestSetValueItemNone7(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, None, 1] = np.zeros(self.shape)[:, None, 0]

    def _get_answer(self):
        self.data[:, None, 1] = np.zeros(self.shape)[:, None, 0]


class TestSetValueItemNone8(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, 1, None] = np.zeros(self.shape)[:, 0, None]

    def _get_answer(self):
        self.data[:, 1, None] = np.zeros(self.shape)[:, 0, None]


class TestSetValueItemNone9(TestSetValueApi):
    def _call_setitem(self, x):
        x[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]

    def _get_answer(self):
        self.data[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]


424 425 426 427 428 429 430 431
class TestSetValueItemNone10(TestSetValueApi):
    def _call_setitem(self, x):
        x[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]

    def _get_answer(self):
        self.data[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]


Z
zyfncg 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
# 1.5 item is list or Tensor of bol
class TestSetValueItemBool1(TestSetValueApi):
    def _call_setitem(self, x):
        x[[True, False]] = self.value

    def _get_answer(self):
        self.data[[True, False]] = self.value


class TestSetValueItemBool2(TestSetValueApi):
    def _call_setitem(self, x):
        x[[False, False]] = self.value

    def _get_answer(self):
        self.data[[False, False]] = self.value


class TestSetValueItemBool3(TestSetValueApi):
    def _call_setitem(self, x):
        x[[False, True]] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[[False, True]] = np.zeros(self.shape[2])


class TestSetValueItemBool4(TestSetValueApi):
    def _call_setitem(self, x):
        idx = paddle.assign(np.array([False, True]))
        x[idx] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[np.array([False, True])] = np.zeros(self.shape[2])


class TestSetValueItemBool5(TestSetValueApi):
    def _call_setitem(self, x):
        idx = paddle.assign(
469 470
            np.array([[False, True, False], [True, True, False]])
        )
Z
zyfncg 已提交
471 472 473
        x[idx] = self.value

    def _get_answer(self):
474 475 476
        self.data[
            np.array([[False, True, False], [True, True, False]])
        ] = self.value
Z
zyfncg 已提交
477 478 479 480 481 482 483 484 485 486 487 488


class TestSetValueItemBool6(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, ...] = 0
        x[x > 0] = self.value

    def _get_answer(self):
        self.data[0, ...] = 0
        self.data[self.data > 0] = self.value


489
# 2. Test different type of value: int, float, numpy.ndarray, Tensor
490
# 2.1 value is int32, int64, float32, float64, bool
491 492 493 494 495 496 497 498 499 500


def create_test_value_int32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int32"

501
    cls_name = "{}_{}".format(parent.__name__, "ValueInt32")
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int32(TestSetValueItemInt)
create_test_value_int32(TestSetValueItemSlice)
create_test_value_int32(TestSetValueItemSlice2)
create_test_value_int32(TestSetValueItemSlice3)
create_test_value_int32(TestSetValueItemSlice4)


def create_test_value_int64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int64"

521
    cls_name = "{}_{}".format(parent.__name__, "ValueInt64")
522 523 524 525 526 527 528 529 530 531 532
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int64(TestSetValueItemInt)
create_test_value_int64(TestSetValueItemSlice)
create_test_value_int64(TestSetValueItemSlice2)
create_test_value_int64(TestSetValueItemSlice3)
create_test_value_int64(TestSetValueItemSlice4)


533 534 535 536 537 538 539 540
def create_test_value_fp16(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 3.7

        def set_dtype(self):
            self.dtype = "float16"

541
    cls_name = "{}_{}".format(parent.__name__, "Valuefp16")
542 543 544 545 546 547 548 549 550 551 552
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp16(TestSetValueItemInt)
create_test_value_fp16(TestSetValueItemSlice)
create_test_value_fp16(TestSetValueItemSlice2)
create_test_value_fp16(TestSetValueItemSlice3)
create_test_value_fp16(TestSetValueItemSlice4)


553 554 555 556 557 558 559 560
def create_test_value_fp32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 3.3

        def set_dtype(self):
            self.dtype = "float32"

561
    cls_name = "{}_{}".format(parent.__name__, "ValueFp32")
562 563 564 565 566 567 568 569 570 571 572
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp32(TestSetValueItemInt)
create_test_value_fp32(TestSetValueItemSlice)
create_test_value_fp32(TestSetValueItemSlice2)
create_test_value_fp32(TestSetValueItemSlice3)
create_test_value_fp32(TestSetValueItemSlice4)


573 574 575 576 577 578 579 580
def create_test_value_fp64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 2.0**127  # float32:[-2^128, 2^128)

        def set_dtype(self):
            self.dtype = "float64"

581
    cls_name = "{}_{}".format(parent.__name__, "ValueFp64")
582 583 584 585 586 587 588 589 590 591 592
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp64(TestSetValueItemInt)
create_test_value_fp64(TestSetValueItemSlice)
create_test_value_fp64(TestSetValueItemSlice2)
create_test_value_fp64(TestSetValueItemSlice3)
create_test_value_fp64(TestSetValueItemSlice4)


593 594 595 596 597 598 599 600
def create_test_value_bool(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 0

        def set_dtype(self):
            self.dtype = "bool"

601
    cls_name = "{}_{}".format(parent.__name__, "ValueBool")
602 603 604 605 606 607 608 609 610 611 612
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_bool(TestSetValueItemInt)
create_test_value_bool(TestSetValueItemSlice)
create_test_value_bool(TestSetValueItemSlice2)
create_test_value_bool(TestSetValueItemSlice3)
create_test_value_bool(TestSetValueItemSlice4)


613
# 2.2 value is numpy.array (int32, int64, float32, float64, bool)
614 615 616 617 618 619 620 621
def create_test_value_numpy_int32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([5])

        def set_dtype(self):
            self.dtype = "int32"

622
    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyInt32")
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int32(TestSetValueItemInt)
create_test_value_numpy_int32(TestSetValueItemSlice)
create_test_value_numpy_int32(TestSetValueItemSlice2)
create_test_value_numpy_int32(TestSetValueItemSlice3)
create_test_value_numpy_int32(TestSetValueItemSlice4)


def create_test_value_numpy_int64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "int64"

642
    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyInt64")
643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int64(TestSetValueItemInt)
create_test_value_numpy_int64(TestSetValueItemSlice)
create_test_value_numpy_int64(TestSetValueItemSlice2)
create_test_value_numpy_int64(TestSetValueItemSlice3)
create_test_value_numpy_int64(TestSetValueItemSlice4)


def create_test_value_numpy_fp32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "float32"

662
    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyFp32")
663 664 665 666 667 668 669 670 671 672 673
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp32(TestSetValueItemInt)
create_test_value_numpy_fp32(TestSetValueItemSlice)
create_test_value_numpy_fp32(TestSetValueItemSlice2)
create_test_value_numpy_fp32(TestSetValueItemSlice3)
create_test_value_numpy_fp32(TestSetValueItemSlice4)


674 675 676 677 678 679 680 681
def create_test_value_numpy_fp64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([2**127]).astype("float64")

        def set_dtype(self):
            self.dtype = "float64"

682
    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyFp64")
683 684 685 686 687 688 689 690 691 692 693
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp64(TestSetValueItemInt)
create_test_value_numpy_fp64(TestSetValueItemSlice)
create_test_value_numpy_fp64(TestSetValueItemSlice2)
create_test_value_numpy_fp64(TestSetValueItemSlice3)
create_test_value_numpy_fp64(TestSetValueItemSlice4)


694 695 696 697 698 699 700 701
def create_test_value_numpy_bool(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([0])

        def set_dtype(self):
            self.dtype = "bool"

702
    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyBool")
703 704 705 706 707 708 709 710 711 712 713
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_bool(TestSetValueItemInt)
create_test_value_numpy_bool(TestSetValueItemSlice)
create_test_value_numpy_bool(TestSetValueItemSlice2)
create_test_value_numpy_bool(TestSetValueItemSlice3)
create_test_value_numpy_bool(TestSetValueItemSlice4)


714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798
def create_test_value_complex64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 42.1 + 42.1j

        def set_dtype(self):
            self.dtype = "complex64"

    cls_name = "{}_{}".format(parent.__name__, "ValueComplex64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_complex64(TestSetValueItemInt)
create_test_value_complex64(TestSetValueItemSlice)
create_test_value_complex64(TestSetValueItemSlice2)
create_test_value_complex64(TestSetValueItemSlice3)
create_test_value_complex64(TestSetValueItemSlice4)


def create_test_value_complex128(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = complex(
                np.finfo(np.float64).max + 1j * np.finfo(np.float64).min
            )

        def set_dtype(self):
            self.dtype = "complex128"

    cls_name = "{}_{}".format(parent.__name__, "ValueComplex128")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_complex128(TestSetValueItemInt)
create_test_value_complex128(TestSetValueItemSlice)
create_test_value_complex128(TestSetValueItemSlice2)
create_test_value_complex128(TestSetValueItemSlice3)
create_test_value_complex128(TestSetValueItemSlice4)


def create_test_value_numpy_complex64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array(42.1 + 42.1j)

        def set_dtype(self):
            self.dtype = "complex64"

    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyComplex64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_complex64(TestSetValueItemInt)
create_test_value_numpy_complex64(TestSetValueItemSlice)
create_test_value_numpy_complex64(TestSetValueItemSlice2)
create_test_value_numpy_complex64(TestSetValueItemSlice3)
create_test_value_numpy_complex64(TestSetValueItemSlice4)


def create_test_value_numpy_complex128(parent):
    class TestValueInt(parent):
        def set_value(self):
            v = complex(
                np.finfo(np.float64).max + 1j * np.finfo(np.float64).min
            )
            self.value = np.array([v])

        def set_dtype(self):
            self.dtype = "complex128"

    cls_name = "{}_{}".format(parent.__name__, "ValueNumpyComplex128")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_complex128(TestSetValueItemInt)
create_test_value_numpy_complex128(TestSetValueItemSlice)
create_test_value_numpy_complex128(TestSetValueItemSlice2)
create_test_value_numpy_complex128(TestSetValueItemSlice3)
create_test_value_numpy_complex128(TestSetValueItemSlice4)


799 800 801 802 803 804 805 806 807 808 809 810 811
# 2.3 value is a Paddle Tensor (int32, int64, float32, float64, bool)
def create_test_value_tensor_int32(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "int32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

812
    cls_name = "{}_{}".format(parent.__name__, "ValueTensorInt32")
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int32(TestSetValueItemInt)
create_test_value_tensor_int32(TestSetValueItemSlice)
create_test_value_tensor_int32(TestSetValueItemSlice2)
create_test_value_tensor_int32(TestSetValueItemSlice3)
create_test_value_tensor_int32(TestSetValueItemSlice4)


def create_test_value_tensor_int64(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "int64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

836
    cls_name = "{}_{}".format(parent.__name__, "ValueTensorInt64")
837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int64(TestSetValueItemInt)
create_test_value_tensor_int64(TestSetValueItemSlice)
create_test_value_tensor_int64(TestSetValueItemSlice2)
create_test_value_tensor_int64(TestSetValueItemSlice3)
create_test_value_tensor_int64(TestSetValueItemSlice4)


def create_test_value_tensor_fp32(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "float32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

860
    cls_name = "{}_{}".format(parent.__name__, "ValueTensorFp32")
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp32(TestSetValueItemInt)
create_test_value_tensor_fp32(TestSetValueItemSlice)
create_test_value_tensor_fp32(TestSetValueItemSlice2)
create_test_value_tensor_fp32(TestSetValueItemSlice3)
create_test_value_tensor_fp32(TestSetValueItemSlice4)


def create_test_value_tensor_fp64(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "float64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

884
    cls_name = "{}_{}".format(parent.__name__, "ValueTensorFp64")
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp64(TestSetValueItemInt)
create_test_value_tensor_fp64(TestSetValueItemSlice)
create_test_value_tensor_fp64(TestSetValueItemSlice2)
create_test_value_tensor_fp64(TestSetValueItemSlice3)
create_test_value_tensor_fp64(TestSetValueItemSlice4)


def create_test_value_tensor_bool(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "bool"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=False, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = False

908
    cls_name = "{}_{}".format(parent.__name__, "ValueTensorBool")
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_bool(TestSetValueItemInt)
create_test_value_tensor_bool(TestSetValueItemSlice)
create_test_value_tensor_bool(TestSetValueItemSlice2)
create_test_value_tensor_bool(TestSetValueItemSlice3)
create_test_value_tensor_bool(TestSetValueItemSlice4)


# 3. Test different shape of value
class TestSetValueValueShape1(TestSetValueApi):
    def set_value(self):
        self.value = np.array([3, 4, 5, 6])  # shape is (4,)

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape2(TestSetValueApi):
    def set_value(self):
        self.value = np.array([[3, 4, 5, 6]])  # shape is (1,4)

    def _call_setitem(self, x):
        x[0:1] = self.value

    def _get_answer(self):
        self.data[0:1] = self.value


class TestSetValueValueShape3(TestSetValueApi):
    def set_value(self):
945 946 947
        self.value = np.array(
            [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]
        )  # shape is (3,4)
948 949 950 951 952 953 954 955 956 957

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape4(TestSetValueApi):
    def set_value(self):
958 959 960 961 962
        self.value = np.array(
            [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]
        ).astype(
            self.dtype
        )  # shape is (3,4)
963 964 965 966 967 968 969 970

    def _call_setitem(self, x):
        x[0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[0] = self.value


971 972 973 974 975 976 977 978 979 980 981 982 983 984
class TestSetValueValueShape5(TestSetValueApi):
    def set_value(self):
        self.value = np.array([3, 3, 3]).astype(self.dtype)

    def set_shape(self):
        self.shape = [3, 4]

    def _call_setitem(self, x):
        x[:, 0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[:, 0] = self.value


J
JYChen 已提交
985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023
# This is to test case which dims of indexed Tensor is
# less than value Tensor on CPU / GPU.
class TestSetValueValueShape6(TestSetValueApi):
    def set_value(self):
        self.value = np.ones((1, 4)) * 5

    def set_shape(self):
        self.shape = [4, 4]

    def _call_setitem(self, x):
        x[:, 0] = self.value  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[:, 0] = self.value

    def test_api(self):
        places = ['cpu']
        if paddle.is_compiled_with_cuda():
            places.append('gpu')
        for place in places:
            paddle.set_device(place)

            static_out = self._run_static()
            dynamic_out = self._run_dynamic()
            self._get_answer()

            error_msg = (
                "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
            )
            self.assertTrue(
                (self.data == static_out).all(),
                msg=error_msg.format("static", self.data, static_out),
            )
            self.assertTrue(
                (self.data == dynamic_out).all(),
                msg=error_msg.format("dynamic", self.data, dynamic_out),
            )


1024 1025 1026
# 4. Test error
class TestError(TestSetValueBase):
    def _value_type_error(self):
1027
        with self.assertRaisesRegex(
1028 1029
            TypeError,
            "Only support to assign an integer, float, numpy.ndarray or paddle.Tensor",
1030 1031 1032 1033 1034 1035
        ):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = [1]
            x[0] = value

    def _dtype_error(self):
1036
        with self.assertRaisesRegex(
1037 1038
            TypeError,
            "When assign a numpy.ndarray, integer or float to a paddle.Tensor, ",
1039
        ):
1040
            y = paddle.ones(shape=self.shape, dtype="float16")
1041 1042 1043
            y[0] = 1

    def _step_error(self):
1044
        with self.assertRaisesRegex(ValueError, "step can not be 0"):
1045
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
1046
            x[0:1:0] = self.value
1047

1048
    def _ellipsis_error(self):
1049
        with self.assertRaisesRegex(
1050 1051
            IndexError, "An index can only have a single ellipsis"
        ):
1052 1053
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[..., ...] = self.value
1054
        with self.assertRaisesRegex(ValueError, "the start or end is None"):
1055 1056 1057
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            one = paddle.ones([1])
            x[::one] = self.value
1058

Z
zyfncg 已提交
1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073
    def _bool_list_error(self):
        with self.assertRaises(TypeError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False, 0]] = 0

        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False], [True, False]] = 0

    def _bool_tensor_error(self):
        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            idx = paddle.assign([True, False, True])
            x[idx] = 0

1074 1075 1076 1077 1078 1079 1080
    def _broadcast_mismatch(self):
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = np.array([3, 4, 5, 6, 7])
            x[0] = value
        exe = paddle.static.Executor(paddle.CPUPlace())
Z
zyfncg 已提交
1081
        with self.assertRaises(ValueError):
1082 1083 1084
            exe.run(program)

    def test_error(self):
1085
        paddle.enable_static()
1086 1087 1088
        with paddle.static.program_guard(self.program):
            self._value_type_error()
            self._step_error()
Z
zyfncg 已提交
1089 1090
            self._bool_list_error()
            self._bool_tensor_error()
1091 1092 1093
        self._broadcast_mismatch()


1094 1095 1096 1097 1098
# 5. Test backward


class Model(paddle.nn.Layer):
    def __init__(self):
1099
        super().__init__()
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124
        self.conv = paddle.nn.Conv2D(12, 12, 3)

    def forward(self, x, y):
        x = self.conv(x)
        y = self.conv(y)
        var = y.flatten()

        x[0, :, 0, 0] = var
        loss = paddle.mean(x)
        return loss, var, x


class TestBackward(unittest.TestCase):
    def test_static(self):
        paddle.enable_static()
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        x_np = np.random.random(size=(4, 4)).astype('float32')
        y_np = np.random.random(size=(4, 4)).astype('float32')
        label_np = np.random.randint(2, size=(4, 1)).astype('int64')

        with paddle.static.program_guard(main_program, startup_program):
            x = paddle.static.data(name="x", shape=[4, 4], dtype='float32')
            y = paddle.static.data(name="y", shape=[4, 4], dtype='float32')
1125 1126
            x.stop_gradient = False
            y.stop_gradient = False
1127

1128 1129 1130
            label = paddle.static.data(
                name="label", shape=[4, 1], dtype='int64'
            )
1131 1132 1133 1134 1135 1136 1137

            z = paddle.add(x, y)
            var = y[0, :]
            z[0, :] = var

            prediction = paddle.static.nn.fc(x=z, size=2, activation='softmax')

1138 1139 1140
            cost = paddle.nn.functional.cross_entropy(
                input=prediction, label=label
            )
1141 1142 1143 1144 1145 1146 1147 1148 1149
            loss = paddle.mean(cost)
            sgd = paddle.optimizer.SGD(learning_rate=0.01)
            sgd.minimize(loss)

        exe = paddle.static.Executor(paddle.CPUPlace())
        exe.run(startup_program)

        var_grad, z_grad = exe.run(
            main_program,
1150 1151 1152
            feed={"x": x_np, "y": y_np, "label": label_np},
            fetch_list=[var.name + "@GRAD", z.name + "@GRAD"],
        )
1153 1154 1155

        self.assertTrue((var_grad == z_grad[0, :]).all())
        paddle.disable_static()
W
wanghuancoder 已提交
1156 1157

    def func_test_dynamic(self):
1158 1159 1160 1161 1162 1163 1164
        model = Model()
        x = paddle.ones([1, 12, 3, 3]).astype("float32")
        y = paddle.ones([1, 12, 3, 3]).astype("float32")
        loss, var, x = model(x, y)
        loss.backward()

        self.assertTrue(var.grad.shape == x.grad[0, :, 0, 0].shape)
1165
        self.assertTrue((0 == x.grad[0, :, 0, 0]).all())
1166 1167 1168


class TestGradientTruncated(unittest.TestCase):
1169
    def test_consistent_with_competitor(self):
1170 1171 1172 1173 1174 1175 1176 1177 1178
        paddle.disable_static()

        def set_value(t, value):
            a = t * t
            a[0, 1] = value
            y = a * a
            return y.sum()

        # case 1
1179 1180 1181
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [1, 2, 1, 3, 1, 4]
        )
1182 1183 1184 1185 1186 1187 1188 1189
        value = np.arange(100, 104, dtype="float32").reshape(1, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps, value)
        loss.backward()

1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210
        value_grad = np.array([[600.0, 606.0, 612.0, 618.0]])
        input_grad = np.array(
            [
                [
                    [
                        [
                            [[4.0, 32.0, 108.0, 256.0]],
                            [[500.0, 864.0, 1372.0, 2048.0]],
                            [[2916.0, 4000.0, 5324.0, 6912.0]],
                        ]
                    ],
                    [
                        [
                            [[0.0, 0.0, 0.0, 0.0]],
                            [[0.0, 0.0, 0.0, 0.0]],
                            [[0.0, 0.0, 0.0, 0.0]],
                        ]
                    ],
                ]
            ]
        )
1211 1212 1213
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1214 1215 1216 1217
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1218 1219 1220
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1221 1222 1223 1224
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

        # case 2
        array = np.arange(1, 2 * 3 * 4 + 1, dtype="float32").reshape([4, 2, 3])
        value = np.arange(100, 100 + 1, dtype="float32")

        inps2 = paddle.to_tensor(array, stop_gradient=False)
        value2 = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps2, value2)
        loss.backward()

1236 1237 1238 1239 1240 1241 1242 1243 1244
        value_grad2 = np.array([600.0])
        input_grad2 = np.array(
            [
                [[4.0, 32.0, 108.0], [0.0, 0.0, 0.0]],
                [[1372.0, 2048.0, 2916.0], [4000.0, 5324.0, 6912.0]],
                [[8788.0, 10976.0, 13500.0], [16384.0, 19652.0, 23328.0]],
                [[27436.0, 32000.0, 37044.0], [42592.0, 48668.0, 55296.0]],
            ]
        )
1245 1246 1247
        np.testing.assert_array_equal(
            inps2.grad.numpy(),
            input_grad2,
1248 1249 1250 1251
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps2.grad.numpy()
            ),
        )
1252 1253 1254
        np.testing.assert_array_equal(
            value2.grad.numpy(),
            value_grad2,
1255 1256 1257 1258
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value2.grad.numpy()
            ),
        )
1259 1260 1261 1262 1263 1264 1265 1266

        # case 3
        def set_value3(t, value):
            a = t * t
            a[0, :, 0, :] = value
            y = a * a
            return y.sum()

1267 1268 1269
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [4, 3, 1, 1, 2, 1]
        )
1270 1271 1272 1273 1274 1275 1276 1277
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value3(inps, value)
        loss.backward()

1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
        value_grad = np.array([[[600.0], [606.0]]])
        input_grad = np.array(
            [
                [[[[[0.0], [0.0]]]], [[[[0.0], [0.0]]]], [[[[0.0], [0.0]]]]],
                [
                    [[[[1372.0], [2048.0]]]],
                    [[[[2916.0], [4000.0]]]],
                    [[[[5324.0], [6912.0]]]],
                ],
                [
                    [[[[8788.0], [10976.0]]]],
                    [[[[13500.0], [16384.0]]]],
                    [[[[19652.0], [23328.0]]]],
                ],
                [
                    [[[[27436.0], [32000.0]]]],
                    [[[[37044.0], [42592.0]]]],
                    [[[[48668.0], [55296.0]]]],
                ],
            ]
        )
1299 1300 1301
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1302 1303 1304 1305
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1306 1307 1308
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1309 1310 1311 1312
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1313

1314
        # case 4: step >0
1315 1316 1317 1318 1319 1320
        def set_value4(t, value):
            a = t * t
            a[0, :, 0, ::3] = value
            y = a * a
            return y.sum()

1321 1322 1323
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [2, 3, 1, 4, 1]
        )
1324 1325 1326 1327 1328 1329 1330 1331
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value4(inps, value)
        loss.backward()

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346
        value_grad = np.array([[[600.0], [606.0]]])
        input_grad = np.array(
            [
                [
                    [[[0.0], [32.0], [108.0], [0.0]]],
                    [[[0.0], [864.0], [1372.0], [0.0]]],
                    [[[0.0], [4000.0], [5324.0], [0.0]]],
                ],
                [
                    [[[8788.0], [10976.0], [13500.0], [16384.0]]],
                    [[[19652.0], [23328.0], [27436.0], [32000.0]]],
                    [[[37044.0], [42592.0], [48668.0], [55296.0]]],
                ],
            ]
        )
1347 1348 1349
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1350 1351 1352 1353
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1354 1355 1356
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1357 1358 1359 1360
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377

        # case 5:a[0].shape==value.shape
        def set_value5(t, value):
            a = t * t
            a[0] = value
            y = a * a
            return y.sum()

        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape([2, 3, 4])
        value = np.arange(100, 100 + 12, dtype="float32").reshape(3, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value5(inps, value)
        loss.backward()

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
        value_grad = np.array(
            [
                [200.0, 202.0, 204.0, 206.0],
                [208.0, 210.0, 212.0, 214.0],
                [216.0, 218.0, 220.0, 222.0],
            ]
        )
        input_grad = np.array(
            [
                [
                    [0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0],
                ],
                [
                    [8788.0, 10976.0, 13500.0, 16384.0],
                    [19652.0, 23328.0, 27436.0, 32000.0],
                    [37044.0, 42592.0, 48668.0, 55296.0],
                ],
            ]
        )
1399 1400 1401
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1402 1403 1404 1405
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1406 1407 1408
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1409 1410 1411 1412
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1413

1414 1415 1416 1417 1418 1419 1420 1421 1422
        # case 6: pass stop_gradient from value to x
        x = paddle.zeros([8, 8], dtype='float32')
        value = paddle.to_tensor([10], dtype='float32', stop_gradient=False)

        self.assertTrue(x.stop_gradient)
        self.assertTrue(x.is_leaf)

        x[0, :] = value

1423 1424
        self.assertTrue(not x.stop_gradient)
        self.assertTrue(not x.is_leaf)
1425

1426 1427 1428
    def test_static_graph(self):
        paddle.enable_static()

1429
        to_string = lambda x, i: x + '_' + str(i)
1430 1431 1432
        numel = lambda input_shape: reduce(lambda x, y: x * y, input_shape)

        def op1(x):
1433
            value = paddle.tensor.fill_constant([1], "float32", 1)
1434
            # test stop_gradient
1435 1436
            value.stop_gradient = True
            x.stop_gradient = False
1437 1438 1439
            start = paddle.tensor.fill_constant([1], "int32", 5, force_cpu=True)
            end = paddle.tensor.fill_constant([1], "int32", 0, force_cpu=True)
            step = paddle.tensor.fill_constant([1], "int32", -2, force_cpu=True)
1440 1441 1442 1443

            inputs = {
                'Input': x,
                'ValueTensor': value,
1444 1445 1446 1447 1448 1449 1450 1451
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
1452
                ],
1453 1454 1455 1456 1457
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1458 1459 1460 1461 1462 1463
            helper.append_op(
                type="set_value",
                inputs=inputs,
                outputs={'Out': y},
                attrs={'axes': [0]},
            )
1464 1465 1466 1467

            return y, value

        def op2(x):
1468
            value = paddle.tensor.fill_constant([1, 3, 2], "float32", 1)
1469
            # test stop_gradient
1470 1471 1472 1473 1474 1475 1476 1477 1478
            value.stop_gradient = False
            x.stop_gradient = False
            attrs = {
                'axes': [0],
                'starts': [6],
                'ends': [0],
                'steps': [-4],
                'decrease_axes': [],
                'none_axes': [],
1479
                'dtype': paddle.float32,
1480 1481 1482 1483 1484 1485
            }
            inputs = {'Input': x, 'ValueTensor': value}

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1486 1487 1488
            helper.append_op(
                type="set_value", inputs=inputs, outputs={'Out': y}, attrs=attrs
            )
1489 1490 1491 1492

            return y, value

        def op3(x):
1493
            value = paddle.tensor.fill_constant([1], "float32", 1)
1494 1495
            x.stop_gradient = True
            value.stop_gradient = False
1496 1497 1498
            start = paddle.tensor.fill_constant([1], "int32", 0, force_cpu=True)
            end = paddle.tensor.fill_constant([1], "int32", 5, force_cpu=True)
            step = paddle.tensor.fill_constant([1], "int32", 3, force_cpu=True)
1499 1500 1501 1502

            inputs = {
                'Input': x,
                'ValueTensor': value,
1503 1504 1505 1506 1507 1508 1509 1510
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
1511
                ],
1512 1513 1514 1515 1516
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1517 1518 1519 1520 1521 1522
            helper.append_op(
                type="set_value",
                inputs=inputs,
                outputs={'Out': y},
                attrs={'axes': [0]},
            )
1523 1524 1525 1526 1527

            return y, value

        def set_value(array, i, op):
            name_x = to_string('x', i)
1528 1529 1530
            x = paddle.static.data(
                name=name_x, shape=array.shape, dtype='float32'
            )
1531

1532 1533
            # set_value_op in __get/setitem__ is an inplace operation.
            # When `input.stop_gradient = True` and `value.stop_gradient = False`,
1534 1535 1536
            # set_value_grad_op will not be run during backward.
            y, value = op(x)
            y2 = y + 1
1537
            loss = paddle.sum(y2)
1538 1539
            sgd = paddle.optimizer.Adam()
            sgd.minimize(loss)
1540 1541 1542 1543 1544
            place = (
                paddle.fluid.CPUPlace()
                if not paddle.fluid.core.is_compiled_with_cuda()
                else paddle.fluid.CUDAPlace(0)
            )
1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            fetch_list = []
            if not x.stop_gradient:
                fetch_list.append(x.grad_name)
            if not value.stop_gradient:
                fetch_list.append(value.grad_name)
            out = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)
            return out

        input_shape = [7, 6, 5, 4, 3, 2]

1559 1560 1561
        array = np.arange(0, numel(input_shape), dtype="float32").reshape(
            input_shape
        )
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580

        for i in range(len(input_shape)):
            program = paddle.static.Program()
            with paddle.static.program_guard(program):
                out1 = set_value(array, i, op1)
                self.assertTrue((out1[0][5:0:-2] == 0).all())

            if len(array.shape) > 2:
                program2 = paddle.static.Program()
                with paddle.static.program_guard(program2):
                    out2 = set_value(array, i, op2)
                    self.assertTrue((out2[0][6:0:-4] == 0).all())

            program3 = paddle.static.Program()
            with paddle.static.program_guard(program3):
                out3 = set_value(array, i, op3)
                self.assertTrue((numel(out1[0][0:5:3].shape) == out3[0]).all())

            array = array[0]
W
wanghuancoder 已提交
1581
        paddle.disable_static()
1582 1583


Z
zyfncg 已提交
1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595
class TestSetValueInplace(unittest.TestCase):
    def test_inplace(self):
        paddle.disable_static()
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b = a[:]
            c = b
            b[paddle.to_tensor(0)] = 1.0

            self.assertTrue(id(b) == id(c))
1596
            np.testing.assert_array_equal(b.numpy(), c.numpy())
1597
            self.assertEqual(b.inplace_version, 0)
Z
zyfncg 已提交
1598 1599 1600 1601

        paddle.enable_static()


1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632
class TestSetValueInplaceLeafVar(unittest.TestCase):
    def test_inplace_var_become_leaf_var(self):
        paddle.disable_static()

        a_grad_1, b_grad_1, a_grad_2, b_grad_2 = 0, 1, 2, 3
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            c.sum().backward()
            a_grad_1 = a.grad.numpy()
            b_grad_1 = b.grad.numpy()

        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            d = paddle.zeros((4, 4))
            self.assertTrue(d.stop_gradient)
            d[0, :] = c
            self.assertFalse(d.stop_gradient)
            d[0, :].sum().backward()
            a_grad_2 = a.grad.numpy()
            b_grad_2 = b.grad.numpy()

1633 1634
        np.testing.assert_array_equal(a_grad_1, a_grad_2)
        np.testing.assert_array_equal(b_grad_1, b_grad_2)
1635 1636 1637
        paddle.enable_static()


1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not complied with CUDA and not support the bfloat16",
)
class TestSetValueBFloat16(OpTest):
    def setUp(self):
        self.dtype = np.uint16
        self.shape = [2, 3, 4]
        self.__class__.op_type = self.op_type
        self.data = np.ones(self.shape).astype(self.dtype)
        x = np.random.rand([6]).astype('float32')
        self.data[0, 0] = np.random.rand([6]).astype('float32')
        out = self.data[0, 0]
        self.inputs = {'X': convert_float_to_uint16(x)}
        self.outputs = {'Out': convert_float_to_uint16(out)}

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(place)

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(place, ['X'], 'Out')


1664 1665
if __name__ == '__main__':
    unittest.main()