test_set_value_op.py 45.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Test set_value op in static mode

import unittest
import numpy as np

import paddle
21
import paddle.fluid as fluid
22 23
from paddle.fluid.layer_helper import LayerHelper
from functools import reduce
24
from paddle.fluid.framework import _test_eager_guard
25 26

class TestSetValueBase(unittest.TestCase):
27

28 29 30 31
    def setUp(self):
        paddle.enable_static()
        self.set_dtype()
        self.set_value()
32
        self.set_shape()
33 34 35
        self.data = np.ones(self.shape).astype(self.dtype)
        self.program = paddle.static.Program()

36 37 38
    def set_shape(self):
        self.shape = [2, 3, 4]

39 40 41 42 43 44 45 46 47 48 49 50 51 52
    def set_value(self):
        self.value = 6

    def set_dtype(self):
        self.dtype = "float32"

    def _call_setitem(self, x):
        x[0, 0] = self.value

    def _get_answer(self):
        self.data[0, 0] = self.value


class TestSetValueApi(TestSetValueBase):
53

54 55
    def _run_static(self):
        paddle.enable_static()
56 57 58 59 60 61
        with paddle.static.program_guard(self.program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            self._call_setitem(x)

        exe = paddle.static.Executor(paddle.CPUPlace())
        out = exe.run(self.program, fetch_list=[x])
62 63 64 65 66 67 68 69 70 71 72
        paddle.disable_static()
        return out

    def _run_dynamic(self):
        paddle.disable_static()
        x = paddle.ones(shape=self.shape, dtype=self.dtype)
        self._call_setitem(x)
        out = x.numpy()
        paddle.enable_static()
        return out

W
wanghuancoder 已提交
73
    def func_test_api(self):
74 75
        static_out = self._run_static()
        dynamic_out = self._run_dynamic()
76
        self._get_answer()
77 78

        error_msg = "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
79 80 81 82
        self.assertTrue((self.data == static_out).all(),
                        msg=error_msg.format("static", self.data, static_out))
        self.assertTrue((self.data == dynamic_out).all(),
                        msg=error_msg.format("dynamic", self.data, dynamic_out))
83

W
wanghuancoder 已提交
84 85 86 87 88
    def test_api(self):
        with _test_eager_guard():
            self.func_test_api()
        self.func_test_api()

89

90 91
# 1. Test different type of item: int, Python slice, Paddle Tensor
# 1.1 item is int
92
class TestSetValueItemInt(TestSetValueApi):
93

94 95 96 97 98 99 100
    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


101 102
# 1.2 item is slice
# 1.2.1 step is 1
103
class TestSetValueItemSlice(TestSetValueApi):
104

105 106 107 108 109 110 111 112
    def _call_setitem(self, x):
        x[0:2] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemSlice2(TestSetValueApi):
113

114 115 116 117 118 119 120 121
    def _call_setitem(self, x):
        x[0:-1] = self.value

    def _get_answer(self):
        self.data[0:-1] = self.value


class TestSetValueItemSlice3(TestSetValueApi):
122

123 124 125 126 127 128 129 130
    def _call_setitem(self, x):
        x[0:-1, 0:2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemSlice4(TestSetValueApi):
131

132 133 134 135 136 137 138
    def _call_setitem(self, x):
        x[0:, 1:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2, :] = self.value


139
class TestSetValueItemSlice5(TestSetValueApi):
140

141 142 143 144 145 146 147
    def _call_setitem(self, x):
        x[0:, 1:1, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:1, :] = self.value


148
class TestSetValueItemSliceInWhile(TestSetValueApi):
149

150
    def _call_setitem(self, x):
151

152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
        def cond(i, x):
            return i < 1

        def body(i, x):
            x[i] = self.value
            i = i + 1
            return i, x

        i = paddle.zeros(shape=(1, ), dtype='int32')
        i, x = paddle.fluid.layers.while_loop(cond, body, [i, x])

    def _get_answer(self):
        self.data[0] = self.value


167 168
# 1.2.2 step > 1
class TestSetValueItemSliceStep(TestSetValueApi):
169

170 171 172 173 174 175 176 177 178 179 180
    def set_shape(self):
        self.shape = [5, 5, 5]

    def _call_setitem(self, x):
        x[0:2:2] = self.value

    def _get_answer(self):
        self.data[0:2:2] = self.value


class TestSetValueItemSliceStep2(TestSetValueApi):
181

182 183 184 185 186 187 188 189 190 191 192
    def set_shape(self):
        self.shape = [7, 5, 5]

    def _call_setitem(self, x):
        x[0:-1:3] = self.value

    def _get_answer(self):
        self.data[0:-1:3] = self.value


class TestSetValueItemSliceStep3(TestSetValueApi):
193

194 195 196 197 198 199 200 201
    def _call_setitem(self, x):
        x[0:-1, 0:2, ::2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemSliceStep4(TestSetValueApi):
202

203 204 205 206 207 208 209 210 211
    def _call_setitem(self, x):
        x[0:, 1:2:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


# 1.2.3 step < 0
class TestSetValueItemSliceNegetiveStep(TestSetValueApi):
212

213 214 215 216 217 218 219 220 221 222 223 224 225 226
    def set_shape(self):
        self.shape = [5, 2]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[5:2:-1] = self.value

    def _get_answer(self):
        self.data[5:2:-1] = self.value


class TestSetValueItemSliceNegetiveStep2(TestSetValueApi):
227

228 229 230 231 232 233 234 235 236 237 238 239 240 241
    def set_shape(self):
        self.shape = [5]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[1::-1] = self.value

    def _get_answer(self):
        self.data[1::-1] = self.value


class TestSetValueItemSliceNegetiveStep3(TestSetValueApi):
242

243 244 245 246 247 248 249 250 251 252 253 254 255 256
    def set_shape(self):
        self.shape = [3]

    def set_value(self):
        self.value = np.array([3, 4, 5])

    def _call_setitem(self, x):
        x[::-1] = self.value

    def _get_answer(self):
        self.data[::-1] = self.value


class TestSetValueItemSliceNegetiveStep4(TestSetValueApi):
257

258 259 260 261 262 263 264 265 266 267 268 269 270
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        x[2:0:-1, 0:2, ::-1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


# 1.3 item is Ellipsis


271
class TestSetValueItemEllipsis1(TestSetValueApi):
272

273 274 275 276 277 278 279 280
    def _call_setitem(self, x):
        x[0:, ..., 1:] = self.value

    def _get_answer(self):
        self.data[0:, ..., 1:] = self.value


class TestSetValueItemEllipsis2(TestSetValueApi):
281

282 283 284 285 286 287 288 289
    def _call_setitem(self, x):
        x[0:, ...] = self.value

    def _get_answer(self):
        self.data[0:, ...] = self.value


class TestSetValueItemEllipsis3(TestSetValueApi):
290

291 292 293 294 295 296 297 298
    def _call_setitem(self, x):
        x[..., 1:] = self.value

    def _get_answer(self):
        self.data[..., 1:] = self.value


class TestSetValueItemEllipsis4(TestSetValueApi):
299

300 301 302 303 304 305 306
    def _call_setitem(self, x):
        x[...] = self.value

    def _get_answer(self):
        self.data[...] = self.value


307 308
# 1.4 item is Paddle Tensor
class TestSetValueItemTensor(TestSetValueApi):
309

310 311 312 313 314 315 316 317 318
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        x[zero] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueItemTensor2(TestSetValueApi):
319

320 321 322 323 324 325 326 327 328 329
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:two] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemTensor3(TestSetValueApi):
330

331 332 333 334 335 336 337 338 339 340
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:-1, 0:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemTensor4(TestSetValueApi):
341

342 343 344 345 346 347 348 349 350 351
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[0:-1, zero:2, 0:6:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemTensor5(TestSetValueApi):
352

353 354 355 356 357 358 359 360 361 362
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:, 1:2:two, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


class TestSetValueItemTensor6(TestSetValueApi):
363

364 365 366 367 368 369 370 371 372 373 374 375
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        minus1 = paddle.full([1], -1, dtype="int32")
        zero = paddle.full([1], 0, dtype="int32")
        x[2:zero:minus1, 0:2, 10:-6:minus1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


Z
zyfncg 已提交
376 377
# 1.5 item is None
class TestSetValueItemNone1(TestSetValueApi):
378

Z
zyfncg 已提交
379 380 381 382 383 384 385 386
    def _call_setitem(self, x):
        x[None] = self.value

    def _get_answer(self):
        self.data[None] = self.value


class TestSetValueItemNone2(TestSetValueApi):
387

Z
zyfncg 已提交
388 389 390 391 392 393 394 395
    def _call_setitem(self, x):
        x[0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 1] = self.value


class TestSetValueItemNone3(TestSetValueApi):
396

Z
zyfncg 已提交
397 398 399 400 401 402 403 404
    def _call_setitem(self, x):
        x[:, None, None, 1] = self.value

    def _get_answer(self):
        self.data[:, None, None, 1] = self.value


class TestSetValueItemNone4(TestSetValueApi):
405

Z
zyfncg 已提交
406 407 408 409 410 411 412 413
    def _call_setitem(self, x):
        x[0, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, 0, None, 1] = self.value


class TestSetValueItemNone5(TestSetValueApi):
414

Z
zyfncg 已提交
415 416 417 418 419 420 421 422
    def _call_setitem(self, x):
        x[0, None, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 0, None, 1] = self.value


class TestSetValueItemNone6(TestSetValueApi):
423

Z
zyfncg 已提交
424 425 426 427 428 429 430 431
    def _call_setitem(self, x):
        x[None, 0, 0, None, 0] = self.value

    def _get_answer(self):
        self.data[None, 0, 0, None, 0] = self.value


class TestSetValueItemNone7(TestSetValueApi):
432

Z
zyfncg 已提交
433 434 435 436 437 438 439 440
    def _call_setitem(self, x):
        x[:, None, 1] = np.zeros(self.shape)[:, None, 0]

    def _get_answer(self):
        self.data[:, None, 1] = np.zeros(self.shape)[:, None, 0]


class TestSetValueItemNone8(TestSetValueApi):
441

Z
zyfncg 已提交
442 443 444 445 446 447 448 449
    def _call_setitem(self, x):
        x[:, 1, None] = np.zeros(self.shape)[:, 0, None]

    def _get_answer(self):
        self.data[:, 1, None] = np.zeros(self.shape)[:, 0, None]


class TestSetValueItemNone9(TestSetValueApi):
450

Z
zyfncg 已提交
451 452 453 454 455 456 457
    def _call_setitem(self, x):
        x[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]

    def _get_answer(self):
        self.data[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]


458
class TestSetValueItemNone10(TestSetValueApi):
459

460 461 462 463 464 465 466
    def _call_setitem(self, x):
        x[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]

    def _get_answer(self):
        self.data[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]


Z
zyfncg 已提交
467 468
# 1.5 item is list or Tensor of bol
class TestSetValueItemBool1(TestSetValueApi):
469

Z
zyfncg 已提交
470 471 472 473 474 475 476 477
    def _call_setitem(self, x):
        x[[True, False]] = self.value

    def _get_answer(self):
        self.data[[True, False]] = self.value


class TestSetValueItemBool2(TestSetValueApi):
478

Z
zyfncg 已提交
479 480 481 482 483 484 485 486
    def _call_setitem(self, x):
        x[[False, False]] = self.value

    def _get_answer(self):
        self.data[[False, False]] = self.value


class TestSetValueItemBool3(TestSetValueApi):
487

Z
zyfncg 已提交
488 489 490 491 492 493 494 495
    def _call_setitem(self, x):
        x[[False, True]] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[[False, True]] = np.zeros(self.shape[2])


class TestSetValueItemBool4(TestSetValueApi):
496

Z
zyfncg 已提交
497 498 499 500 501 502 503 504 505
    def _call_setitem(self, x):
        idx = paddle.assign(np.array([False, True]))
        x[idx] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[np.array([False, True])] = np.zeros(self.shape[2])


class TestSetValueItemBool5(TestSetValueApi):
506

Z
zyfncg 已提交
507 508 509 510 511 512
    def _call_setitem(self, x):
        idx = paddle.assign(
            np.array([[False, True, False], [True, True, False]]))
        x[idx] = self.value

    def _get_answer(self):
513 514
        self.data[np.array([[False, True, False], [True, True,
                                                   False]])] = self.value
Z
zyfncg 已提交
515 516 517


class TestSetValueItemBool6(TestSetValueApi):
518

Z
zyfncg 已提交
519 520 521 522 523 524 525 526 527
    def _call_setitem(self, x):
        x[0, ...] = 0
        x[x > 0] = self.value

    def _get_answer(self):
        self.data[0, ...] = 0
        self.data[self.data > 0] = self.value


528
# 2. Test different type of value: int, float, numpy.ndarray, Tensor
529
# 2.1 value is int32, int64, float32, float64, bool
530 531 532


def create_test_value_int32(parent):
533

534
    class TestValueInt(parent):
535

536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int32(TestSetValueItemInt)
create_test_value_int32(TestSetValueItemSlice)
create_test_value_int32(TestSetValueItemSlice2)
create_test_value_int32(TestSetValueItemSlice3)
create_test_value_int32(TestSetValueItemSlice4)


def create_test_value_int64(parent):
555

556
    class TestValueInt(parent):
557

558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int64(TestSetValueItemInt)
create_test_value_int64(TestSetValueItemSlice)
create_test_value_int64(TestSetValueItemSlice2)
create_test_value_int64(TestSetValueItemSlice3)
create_test_value_int64(TestSetValueItemSlice4)


576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
def create_test_value_fp16(parent):

    class TestValueInt(parent):

        def set_value(self):
            self.value = 3.7

        def set_dtype(self):
            self.dtype = "float16"

    cls_name = "{0}_{1}".format(parent.__name__, "Valuefp16")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp16(TestSetValueItemInt)
create_test_value_fp16(TestSetValueItemSlice)
create_test_value_fp16(TestSetValueItemSlice2)
create_test_value_fp16(TestSetValueItemSlice3)
create_test_value_fp16(TestSetValueItemSlice4)


598
def create_test_value_fp32(parent):
599

600
    class TestValueInt(parent):
601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
        def set_value(self):
            self.value = 3.3

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp32(TestSetValueItemInt)
create_test_value_fp32(TestSetValueItemSlice)
create_test_value_fp32(TestSetValueItemSlice2)
create_test_value_fp32(TestSetValueItemSlice3)
create_test_value_fp32(TestSetValueItemSlice4)


620
def create_test_value_fp64(parent):
621

622
    class TestValueInt(parent):
623

624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641
        def set_value(self):
            self.value = 2.0**127  # float32:[-2^128, 2^128)

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp64(TestSetValueItemInt)
create_test_value_fp64(TestSetValueItemSlice)
create_test_value_fp64(TestSetValueItemSlice2)
create_test_value_fp64(TestSetValueItemSlice3)
create_test_value_fp64(TestSetValueItemSlice4)


642
def create_test_value_bool(parent):
643

644
    class TestValueInt(parent):
645

646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
        def set_value(self):
            self.value = 0

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_bool(TestSetValueItemInt)
create_test_value_bool(TestSetValueItemSlice)
create_test_value_bool(TestSetValueItemSlice2)
create_test_value_bool(TestSetValueItemSlice3)
create_test_value_bool(TestSetValueItemSlice4)


664
# 2.2 value is numpy.array (int32, int64, float32, float64, bool)
665
def create_test_value_numpy_int32(parent):
666

667
    class TestValueInt(parent):
668

669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
        def set_value(self):
            self.value = np.array([5])

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int32(TestSetValueItemInt)
create_test_value_numpy_int32(TestSetValueItemSlice)
create_test_value_numpy_int32(TestSetValueItemSlice2)
create_test_value_numpy_int32(TestSetValueItemSlice3)
create_test_value_numpy_int32(TestSetValueItemSlice4)


def create_test_value_numpy_int64(parent):
688

689
    class TestValueInt(parent):
690

691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int64(TestSetValueItemInt)
create_test_value_numpy_int64(TestSetValueItemSlice)
create_test_value_numpy_int64(TestSetValueItemSlice2)
create_test_value_numpy_int64(TestSetValueItemSlice3)
create_test_value_numpy_int64(TestSetValueItemSlice4)


def create_test_value_numpy_fp32(parent):
710

711
    class TestValueInt(parent):
712

713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp32(TestSetValueItemInt)
create_test_value_numpy_fp32(TestSetValueItemSlice)
create_test_value_numpy_fp32(TestSetValueItemSlice2)
create_test_value_numpy_fp32(TestSetValueItemSlice3)
create_test_value_numpy_fp32(TestSetValueItemSlice4)


731
def create_test_value_numpy_fp64(parent):
732

733
    class TestValueInt(parent):
734

735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
        def set_value(self):
            self.value = np.array([2**127]).astype("float64")

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp64(TestSetValueItemInt)
create_test_value_numpy_fp64(TestSetValueItemSlice)
create_test_value_numpy_fp64(TestSetValueItemSlice2)
create_test_value_numpy_fp64(TestSetValueItemSlice3)
create_test_value_numpy_fp64(TestSetValueItemSlice4)


753
def create_test_value_numpy_bool(parent):
754

755
    class TestValueInt(parent):
756

757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776
        def set_value(self):
            self.value = np.array([0])

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_bool(TestSetValueItemInt)
create_test_value_numpy_bool(TestSetValueItemSlice)
create_test_value_numpy_bool(TestSetValueItemSlice2)
create_test_value_numpy_bool(TestSetValueItemSlice3)
create_test_value_numpy_bool(TestSetValueItemSlice4)


# 2.3 value is a Paddle Tensor (int32, int64, float32, float64, bool)
def create_test_value_tensor_int32(parent):
777

778
    class TestValueInt(parent):
779

780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802
        def set_dtype(self):
            self.dtype = "int32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int32(TestSetValueItemInt)
create_test_value_tensor_int32(TestSetValueItemSlice)
create_test_value_tensor_int32(TestSetValueItemSlice2)
create_test_value_tensor_int32(TestSetValueItemSlice3)
create_test_value_tensor_int32(TestSetValueItemSlice4)


def create_test_value_tensor_int64(parent):
803

804
    class TestValueInt(parent):
805

806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828
        def set_dtype(self):
            self.dtype = "int64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int64(TestSetValueItemInt)
create_test_value_tensor_int64(TestSetValueItemSlice)
create_test_value_tensor_int64(TestSetValueItemSlice2)
create_test_value_tensor_int64(TestSetValueItemSlice3)
create_test_value_tensor_int64(TestSetValueItemSlice4)


def create_test_value_tensor_fp32(parent):
829

830
    class TestValueInt(parent):
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854
        def set_dtype(self):
            self.dtype = "float32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp32(TestSetValueItemInt)
create_test_value_tensor_fp32(TestSetValueItemSlice)
create_test_value_tensor_fp32(TestSetValueItemSlice2)
create_test_value_tensor_fp32(TestSetValueItemSlice3)
create_test_value_tensor_fp32(TestSetValueItemSlice4)


def create_test_value_tensor_fp64(parent):
855

856
    class TestValueInt(parent):
857

858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
        def set_dtype(self):
            self.dtype = "float64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp64(TestSetValueItemInt)
create_test_value_tensor_fp64(TestSetValueItemSlice)
create_test_value_tensor_fp64(TestSetValueItemSlice2)
create_test_value_tensor_fp64(TestSetValueItemSlice3)
create_test_value_tensor_fp64(TestSetValueItemSlice4)


def create_test_value_tensor_bool(parent):
881

882
    class TestValueInt(parent):
883

884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
        def set_dtype(self):
            self.dtype = "bool"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=False, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = False

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_bool(TestSetValueItemInt)
create_test_value_tensor_bool(TestSetValueItemSlice)
create_test_value_tensor_bool(TestSetValueItemSlice2)
create_test_value_tensor_bool(TestSetValueItemSlice3)
create_test_value_tensor_bool(TestSetValueItemSlice4)


# 3. Test different shape of value
class TestSetValueValueShape1(TestSetValueApi):
908

909 910 911 912 913 914 915 916 917 918 919
    def set_value(self):
        self.value = np.array([3, 4, 5, 6])  # shape is (4,)

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape2(TestSetValueApi):
920

921 922 923 924 925 926 927 928 929 930 931
    def set_value(self):
        self.value = np.array([[3, 4, 5, 6]])  # shape is (1,4)

    def _call_setitem(self, x):
        x[0:1] = self.value

    def _get_answer(self):
        self.data[0:1] = self.value


class TestSetValueValueShape3(TestSetValueApi):
932

933
    def set_value(self):
934 935
        self.value = np.array([[1, 1, 1, 1], [2, 2, 2, 2],
                               [3, 3, 3, 3]])  # shape is (3,4)
936 937 938 939 940 941 942 943 944

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape4(TestSetValueApi):
945

946
    def set_value(self):
947 948 949
        self.value = np.array([[1, 1, 1, 1], [2, 2, 2, 2],
                               [3, 3, 3,
                                3]]).astype(self.dtype)  # shape is (3,4)
950 951 952 953 954 955 956 957

    def _call_setitem(self, x):
        x[0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[0] = self.value


958
class TestSetValueValueShape5(TestSetValueApi):
959

960 961 962 963 964 965 966 967 968 969 970 971 972
    def set_value(self):
        self.value = np.array([3, 3, 3]).astype(self.dtype)

    def set_shape(self):
        self.shape = [3, 4]

    def _call_setitem(self, x):
        x[:, 0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[:, 0] = self.value


973 974
# 4. Test error
class TestError(TestSetValueBase):
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989
    def _value_type_error(self):
        with self.assertRaisesRegexp(
                TypeError,
                "Only support to assign an integer, float, numpy.ndarray or paddle.Tensor"
        ):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = [1]
            x[0] = value

    def _dtype_error(self):
        with self.assertRaisesRegexp(
                TypeError,
                "When assign a numpy.ndarray, integer or float to a paddle.Tensor, "
        ):
990
            y = paddle.ones(shape=self.shape, dtype="float16")
991 992 993
            y[0] = 1

    def _step_error(self):
994
        with self.assertRaisesRegexp(ValueError, "step can not be 0"):
995
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
996
            x[0:1:0] = self.value
997

998 999 1000 1001 1002
    def _ellipsis_error(self):
        with self.assertRaisesRegexp(
                IndexError, "An index can only have a single ellipsis"):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[..., ...] = self.value
1003 1004 1005 1006
        with self.assertRaisesRegexp(ValueError, "the start or end is None"):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            one = paddle.ones([1])
            x[::one] = self.value
1007

Z
zyfncg 已提交
1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
    def _bool_list_error(self):
        with self.assertRaises(TypeError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False, 0]] = 0

        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False], [True, False]] = 0

    def _bool_tensor_error(self):
        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            idx = paddle.assign([True, False, True])
            x[idx] = 0

1023 1024 1025 1026 1027 1028 1029
    def _broadcast_mismatch(self):
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = np.array([3, 4, 5, 6, 7])
            x[0] = value
        exe = paddle.static.Executor(paddle.CPUPlace())
Z
zyfncg 已提交
1030
        with self.assertRaises(ValueError):
1031 1032 1033
            exe.run(program)

    def test_error(self):
1034
        paddle.enable_static()
1035 1036 1037
        with paddle.static.program_guard(self.program):
            self._value_type_error()
            self._step_error()
Z
zyfncg 已提交
1038 1039
            self._bool_list_error()
            self._bool_tensor_error()
1040 1041 1042
        self._broadcast_mismatch()


1043 1044 1045 1046
# 5. Test backward


class Model(paddle.nn.Layer):
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062
    def __init__(self):
        super(Model, self).__init__()
        self.conv = paddle.nn.Conv2D(12, 12, 3)

    def forward(self, x, y):
        x = self.conv(x)
        y = self.conv(y)
        var = y.flatten()

        x[0, :, 0, 0] = var
        loss = paddle.mean(x)
        return loss, var, x


class TestBackward(unittest.TestCase):
1063

1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    def test_static(self):
        paddle.enable_static()
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        x_np = np.random.random(size=(4, 4)).astype('float32')
        y_np = np.random.random(size=(4, 4)).astype('float32')
        label_np = np.random.randint(2, size=(4, 1)).astype('int64')

        with paddle.static.program_guard(main_program, startup_program):
            x = paddle.static.data(name="x", shape=[4, 4], dtype='float32')
            y = paddle.static.data(name="y", shape=[4, 4], dtype='float32')

1077 1078 1079
            label = paddle.static.data(name="label",
                                       shape=[4, 1],
                                       dtype='int64')
1080 1081 1082 1083 1084 1085 1086

            z = paddle.add(x, y)
            var = y[0, :]
            z[0, :] = var

            prediction = paddle.static.nn.fc(x=z, size=2, activation='softmax')

1087 1088
            cost = paddle.nn.functional.cross_entropy(input=prediction,
                                                      label=label)
1089 1090 1091 1092 1093 1094 1095 1096 1097
            loss = paddle.mean(cost)
            sgd = paddle.optimizer.SGD(learning_rate=0.01)
            sgd.minimize(loss)

        exe = paddle.static.Executor(paddle.CPUPlace())
        exe.run(startup_program)

        var_grad, z_grad = exe.run(
            main_program,
1098 1099 1100 1101 1102
            feed={
                "x": x_np,
                "y": y_np,
                "label": label_np
            },
1103 1104 1105 1106
            fetch_list=[var.name + "@GRAD", z.name + "@GRAD"])

        self.assertTrue((var_grad == z_grad[0, :]).all())
        paddle.disable_static()
W
wanghuancoder 已提交
1107 1108

    def func_test_dynamic(self):
1109 1110 1111 1112 1113 1114 1115
        model = Model()
        x = paddle.ones([1, 12, 3, 3]).astype("float32")
        y = paddle.ones([1, 12, 3, 3]).astype("float32")
        loss, var, x = model(x, y)
        loss.backward()

        self.assertTrue(var.grad.shape == x.grad[0, :, 0, 0].shape)
1116
        self.assertTrue((0 == x.grad[0, :, 0, 0]).all())
W
wanghuancoder 已提交
1117 1118

    def test_dynamic(self):
1119
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
W
wanghuancoder 已提交
1120 1121 1122
        with _test_eager_guard():
            self.func_test_dynamic()
        self.func_test_dynamic()
1123
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
1124 1125 1126


class TestGradientTruncated(unittest.TestCase):
1127

W
wanghuancoder 已提交
1128
    def func_test_consistent_with_competitor(self):
1129 1130 1131 1132 1133 1134 1135 1136 1137
        paddle.disable_static()

        def set_value(t, value):
            a = t * t
            a[0, 1] = value
            y = a * a
            return y.sum()

        # case 1
1138 1139
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([1, 2, 1, 3, 1, 4])
1140 1141 1142 1143 1144 1145 1146 1147 1148
        value = np.arange(100, 104, dtype="float32").reshape(1, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps, value)
        loss.backward()

        value_grad = np.array([[600., 606., 612., 618.]])
1149 1150 1151 1152 1153
        input_grad = np.array([[[[[[4., 32., 108., 256.]],
                                  [[500., 864., 1372., 2048.]],
                                  [[2916., 4000., 5324., 6912.]]]],
                                [[[[0., 0., 0., 0.]], [[0., 0., 0., 0.]],
                                  [[0., 0., 0., 0.]]]]]])
1154 1155 1156 1157
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1158
            format(input_grad, inps.grad.numpy()))
1159 1160 1161 1162
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
            format(value_grad, value.grad.numpy()))

        # case 2
        array = np.arange(1, 2 * 3 * 4 + 1, dtype="float32").reshape([4, 2, 3])
        value = np.arange(100, 100 + 1, dtype="float32")

        inps2 = paddle.to_tensor(array, stop_gradient=False)
        value2 = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps2, value2)
        loss.backward()

        value_grad2 = np.array([600.])
1176 1177 1178 1179 1180 1181
        input_grad2 = np.array([[[4., 32., 108.], [0., 0., 0.]],
                                [[1372., 2048., 2916.], [4000., 5324., 6912.]],
                                [[8788., 10976., 13500.],
                                 [16384., 19652., 23328.]],
                                [[27436., 32000., 37044.],
                                 [42592., 48668., 55296.]]])
1182 1183 1184 1185
        np.testing.assert_array_equal(
            inps2.grad.numpy(),
            input_grad2,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1186
            format(input_grad, inps2.grad.numpy()))
1187 1188 1189 1190
        np.testing.assert_array_equal(
            value2.grad.numpy(),
            value_grad2,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1191 1192 1193 1194 1195 1196 1197 1198 1199
            format(value_grad, value2.grad.numpy()))

        # case 3
        def set_value3(t, value):
            a = t * t
            a[0, :, 0, :] = value
            y = a * a
            return y.sum()

1200 1201
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([4, 3, 1, 1, 2, 1])
1202 1203 1204 1205 1206 1207 1208 1209 1210
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value3(inps, value)
        loss.backward()

        value_grad = np.array([[[600.], [606.]]])
1211 1212 1213 1214 1215 1216 1217 1218 1219 1220
        input_grad = np.array([[[[[[0.], [0.]]]], [[[[0.], [0.]]]],
                                [[[[0.], [0.]]]]],
                               [[[[[1372.], [2048.]]]], [[[[2916.], [4000.]]]],
                                [[[[5324.], [6912.]]]]],
                               [[[[[8788.], [10976.]]]], [[[[13500.],
                                                            [16384.]]]],
                                [[[[19652.], [23328.]]]]],
                               [[[[[27436.], [32000.]]]],
                                [[[[37044.], [42592.]]]],
                                [[[[48668.], [55296.]]]]]])
1221 1222 1223 1224
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1225
            format(input_grad, inps.grad.numpy()))
1226 1227 1228 1229
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1230 1231 1232 1233 1234 1235 1236 1237 1238
            format(value_grad, value.grad.numpy()))

        #case 4: step >0
        def set_value4(t, value):
            a = t * t
            a[0, :, 0, ::3] = value
            y = a * a
            return y.sum()

1239 1240
        array = np.arange(1, 1 + 2 * 3 * 4,
                          dtype="float32").reshape([2, 3, 1, 4, 1])
1241 1242 1243 1244 1245 1246 1247 1248 1249
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value4(inps, value)
        loss.backward()

        value_grad = np.array([[[600.], [606.]]])
1250 1251
        input_grad = np.array([[[[[0.], [32.], [108.], [0.]]],
                                [[[0.], [864.], [1372.], [0.]]],
1252 1253 1254 1255
                                [[[0.], [4000.], [5324.], [0.]]]],
                               [[[[8788.], [10976.], [13500.], [16384.]]],
                                [[[19652.], [23328.], [27436.], [32000.]]],
                                [[[37044.], [42592.], [48668.], [55296.]]]]])
1256 1257 1258 1259
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1260
            format(input_grad, inps.grad.numpy()))
1261 1262 1263 1264
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282
            format(value_grad, value.grad.numpy()))

        # case 5:a[0].shape==value.shape
        def set_value5(t, value):
            a = t * t
            a[0] = value
            y = a * a
            return y.sum()

        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape([2, 3, 4])
        value = np.arange(100, 100 + 12, dtype="float32").reshape(3, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value5(inps, value)
        loss.backward()

1283 1284
        value_grad = np.array([[200., 202., 204.,
                                206.], [208., 210., 212., 214.],
1285 1286 1287 1288 1289 1290
                               [216., 218., 220., 222.]])
        input_grad = np.array([[[0., 0., 0., 0.], [0., 0., 0., 0.],
                                [0., 0., 0., 0.]],
                               [[8788., 10976., 13500., 16384.],
                                [19652., 23328., 27436., 32000.],
                                [37044., 42592., 48668., 55296.]]])
1291 1292 1293 1294
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
            err_msg='The gradient of value should be \n{},\n but reveived {}'.
1295
            format(input_grad, inps.grad.numpy()))
1296 1297 1298 1299
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
            err_msg='The gradient of input should be \n{},\n but reveived {}'.
1300 1301
            format(value_grad, value.grad.numpy()))

1302 1303 1304 1305 1306 1307 1308 1309 1310
        # case 6: pass stop_gradient from value to x
        x = paddle.zeros([8, 8], dtype='float32')
        value = paddle.to_tensor([10], dtype='float32', stop_gradient=False)

        self.assertTrue(x.stop_gradient)
        self.assertTrue(x.is_leaf)

        x[0, :] = value

1311 1312
        self.assertTrue(not x.stop_gradient)
        self.assertTrue(not x.is_leaf)
1313

W
wanghuancoder 已提交
1314 1315 1316 1317 1318
    def test_consistent_with_competitor(self):
        with _test_eager_guard():
            self.func_test_consistent_with_competitor()
        self.func_test_consistent_with_competitor()

1319 1320 1321 1322 1323 1324 1325 1326
    def test_static_graph(self):
        paddle.enable_static()

        to_string = lambda x, i, : x + '_' + str(i)
        numel = lambda input_shape: reduce(lambda x, y: x * y, input_shape)

        def op1(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
1327
            # test stop_gradient
1328 1329
            value.stop_gradient = True
            x.stop_gradient = False
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341
            start = paddle.fluid.layers.fill_constant([1],
                                                      "int32",
                                                      5,
                                                      force_cpu=True)
            end = paddle.fluid.layers.fill_constant([1],
                                                    "int32",
                                                    0,
                                                    force_cpu=True)
            step = paddle.fluid.layers.fill_constant([1],
                                                     "int32",
                                                     -2,
                                                     force_cpu=True)
1342 1343 1344 1345

            inputs = {
                'Input': x,
                'ValueTensor': value,
1346 1347 1348 1349 1350 1351 1352 1353 1354
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
                ]
1355 1356 1357 1358 1359
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1360 1361 1362 1363
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs={'axes': [0]})
1364 1365 1366 1367 1368

            return y, value

        def op2(x):
            value = paddle.fluid.layers.fill_constant([1, 3, 2], "float32", 1)
1369
            # test stop_gradient
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385
            value.stop_gradient = False
            x.stop_gradient = False
            attrs = {
                'axes': [0],
                'starts': [6],
                'ends': [0],
                'steps': [-4],
                'decrease_axes': [],
                'none_axes': [],
                'dtype': paddle.float32
            }
            inputs = {'Input': x, 'ValueTensor': value}

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1386 1387 1388 1389
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs=attrs)
1390 1391 1392 1393 1394 1395 1396

            return y, value

        def op3(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
            x.stop_gradient = True
            value.stop_gradient = False
1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408
            start = paddle.fluid.layers.fill_constant([1],
                                                      "int32",
                                                      0,
                                                      force_cpu=True)
            end = paddle.fluid.layers.fill_constant([1],
                                                    "int32",
                                                    5,
                                                    force_cpu=True)
            step = paddle.fluid.layers.fill_constant([1],
                                                     "int32",
                                                     3,
                                                     force_cpu=True)
1409 1410 1411 1412

            inputs = {
                'Input': x,
                'ValueTensor': value,
1413 1414 1415 1416 1417 1418 1419 1420 1421
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
                ]
1422 1423 1424 1425 1426
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1427 1428 1429 1430
            helper.append_op(type="set_value",
                             inputs=inputs,
                             outputs={'Out': y},
                             attrs={'axes': [0]})
1431 1432 1433 1434 1435

            return y, value

        def set_value(array, i, op):
            name_x = to_string('x', i)
1436 1437 1438
            x = paddle.static.data(name=name_x,
                                   shape=array.shape,
                                   dtype='float32')
1439

1440 1441
            # set_value_op in __get/setitem__ is an inplace operation.
            # When `input.stop_gradient = True` and `value.stop_gradient = False`,
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464
            # set_value_grad_op will not be run during backward.
            y, value = op(x)
            y2 = y + 1
            loss = paddle.fluid.layers.reduce_sum(y2)
            sgd = paddle.optimizer.Adam()
            sgd.minimize(loss)
            place = paddle.fluid.CPUPlace(
            ) if not paddle.fluid.core.is_compiled_with_cuda(
            ) else paddle.fluid.CUDAPlace(0)

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            fetch_list = []
            if not x.stop_gradient:
                fetch_list.append(x.grad_name)
            if not value.stop_gradient:
                fetch_list.append(value.grad_name)
            out = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)
            return out

        input_shape = [7, 6, 5, 4, 3, 2]

1465 1466
        array = np.arange(0, numel(input_shape),
                          dtype="float32").reshape(input_shape)
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485

        for i in range(len(input_shape)):
            program = paddle.static.Program()
            with paddle.static.program_guard(program):
                out1 = set_value(array, i, op1)
                self.assertTrue((out1[0][5:0:-2] == 0).all())

            if len(array.shape) > 2:
                program2 = paddle.static.Program()
                with paddle.static.program_guard(program2):
                    out2 = set_value(array, i, op2)
                    self.assertTrue((out2[0][6:0:-4] == 0).all())

            program3 = paddle.static.Program()
            with paddle.static.program_guard(program3):
                out3 = set_value(array, i, op3)
                self.assertTrue((numel(out1[0][0:5:3].shape) == out3[0]).all())

            array = array[0]
W
wanghuancoder 已提交
1486
        paddle.disable_static()
1487 1488


Z
zyfncg 已提交
1489
class TestSetValueInplace(unittest.TestCase):
1490

Z
zyfncg 已提交
1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501
    def test_inplace(self):
        paddle.disable_static()
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b = a[:]
            c = b
            b[paddle.to_tensor(0)] = 1.0

            self.assertTrue(id(b) == id(c))
1502
            np.testing.assert_array_equal(b.numpy(), c.numpy())
Z
zyfncg 已提交
1503 1504 1505 1506 1507
            self.assertEqual(b.inplace_version, 1)

        paddle.enable_static()


1508
class TestSetValueInplaceLeafVar(unittest.TestCase):
1509

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    def test_inplace_var_become_leaf_var(self):
        paddle.disable_static()

        a_grad_1, b_grad_1, a_grad_2, b_grad_2 = 0, 1, 2, 3
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            c.sum().backward()
            a_grad_1 = a.grad.numpy()
            b_grad_1 = b.grad.numpy()

        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            d = paddle.zeros((4, 4))
            self.assertTrue(d.stop_gradient)
            d[0, :] = c
            self.assertFalse(d.stop_gradient)
            d[0, :].sum().backward()
            a_grad_2 = a.grad.numpy()
            b_grad_2 = b.grad.numpy()

1540 1541
        np.testing.assert_array_equal(a_grad_1, a_grad_2)
        np.testing.assert_array_equal(b_grad_1, b_grad_2)
1542 1543 1544
        paddle.enable_static()


1545 1546
if __name__ == '__main__':
    unittest.main()