test_set_value_op.py 44.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
# Test set_value op in static graph mode
16 17

import unittest
18 19
from functools import reduce

20 21 22
import numpy as np

import paddle
23
from paddle.fluid.layer_helper import LayerHelper
24

25

26
class TestSetValueBase(unittest.TestCase):
27 28 29 30
    def setUp(self):
        paddle.enable_static()
        self.set_dtype()
        self.set_value()
31
        self.set_shape()
32 33 34
        self.data = np.ones(self.shape).astype(self.dtype)
        self.program = paddle.static.Program()

35 36 37
    def set_shape(self):
        self.shape = [2, 3, 4]

38 39 40 41 42 43 44 45 46 47 48 49 50 51
    def set_value(self):
        self.value = 6

    def set_dtype(self):
        self.dtype = "float32"

    def _call_setitem(self, x):
        x[0, 0] = self.value

    def _get_answer(self):
        self.data[0, 0] = self.value


class TestSetValueApi(TestSetValueBase):
52 53
    def _run_static(self):
        paddle.enable_static()
54 55 56 57 58 59
        with paddle.static.program_guard(self.program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            self._call_setitem(x)

        exe = paddle.static.Executor(paddle.CPUPlace())
        out = exe.run(self.program, fetch_list=[x])
60 61 62 63 64 65 66 67 68 69 70
        paddle.disable_static()
        return out

    def _run_dynamic(self):
        paddle.disable_static()
        x = paddle.ones(shape=self.shape, dtype=self.dtype)
        self._call_setitem(x)
        out = x.numpy()
        paddle.enable_static()
        return out

71
    def test_api(self):
72 73
        static_out = self._run_static()
        dynamic_out = self._run_dynamic()
74
        self._get_answer()
75

76 77 78 79 80 81 82 83 84 85 86
        error_msg = (
            "\nIn {} mode: \nExpected res = \n{}, \n\nbut received : \n{}"
        )
        self.assertTrue(
            (self.data == static_out).all(),
            msg=error_msg.format("static", self.data, static_out),
        )
        self.assertTrue(
            (self.data == dynamic_out).all(),
            msg=error_msg.format("dynamic", self.data, dynamic_out),
        )
87 88


89 90
# 1. Test different type of item: int, Python slice, Paddle Tensor
# 1.1 item is int
91 92 93 94 95 96 97 98
class TestSetValueItemInt(TestSetValueApi):
    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


99 100
# 1.2 item is slice
# 1.2.1 step is 1
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
class TestSetValueItemSlice(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:2] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemSlice2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1] = self.value

    def _get_answer(self):
        self.data[0:-1] = self.value


class TestSetValueItemSlice3(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1, 0:2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemSlice4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2, :] = self.value


133 134 135 136 137 138 139 140
class TestSetValueItemSlice5(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:1, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:1, :] = self.value


141 142 143 144 145 146 147 148 149 150
class TestSetValueItemSliceInWhile(TestSetValueApi):
    def _call_setitem(self, x):
        def cond(i, x):
            return i < 1

        def body(i, x):
            x[i] = self.value
            i = i + 1
            return i, x

151
        i = paddle.zeros(shape=(1,), dtype='int32')
152
        i, x = paddle.static.nn.while_loop(cond, body, [i, x])
153 154 155 156 157

    def _get_answer(self):
        self.data[0] = self.value


158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
# 1.2.2 step > 1
class TestSetValueItemSliceStep(TestSetValueApi):
    def set_shape(self):
        self.shape = [5, 5, 5]

    def _call_setitem(self, x):
        x[0:2:2] = self.value

    def _get_answer(self):
        self.data[0:2:2] = self.value


class TestSetValueItemSliceStep2(TestSetValueApi):
    def set_shape(self):
        self.shape = [7, 5, 5]

    def _call_setitem(self, x):
        x[0:-1:3] = self.value

    def _get_answer(self):
        self.data[0:-1:3] = self.value


class TestSetValueItemSliceStep3(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:-1, 0:2, ::2] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemSliceStep4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, 1:2:2, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


# 1.2.3 step < 0
class TestSetValueItemSliceNegetiveStep(TestSetValueApi):
    def set_shape(self):
        self.shape = [5, 2]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[5:2:-1] = self.value

    def _get_answer(self):
        self.data[5:2:-1] = self.value


class TestSetValueItemSliceNegetiveStep2(TestSetValueApi):
    def set_shape(self):
        self.shape = [5]

    def set_value(self):
        self.value = np.array([3, 4])

    def _call_setitem(self, x):
        x[1::-1] = self.value

    def _get_answer(self):
        self.data[1::-1] = self.value


class TestSetValueItemSliceNegetiveStep3(TestSetValueApi):
    def set_shape(self):
        self.shape = [3]

    def set_value(self):
        self.value = np.array([3, 4, 5])

    def _call_setitem(self, x):
        x[::-1] = self.value

    def _get_answer(self):
        self.data[::-1] = self.value


class TestSetValueItemSliceNegetiveStep4(TestSetValueApi):
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        x[2:0:-1, 0:2, ::-1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


# 1.3 item is Ellipsis


254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
class TestSetValueItemEllipsis1(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, ..., 1:] = self.value

    def _get_answer(self):
        self.data[0:, ..., 1:] = self.value


class TestSetValueItemEllipsis2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0:, ...] = self.value

    def _get_answer(self):
        self.data[0:, ...] = self.value


class TestSetValueItemEllipsis3(TestSetValueApi):
    def _call_setitem(self, x):
        x[..., 1:] = self.value

    def _get_answer(self):
        self.data[..., 1:] = self.value


class TestSetValueItemEllipsis4(TestSetValueApi):
    def _call_setitem(self, x):
        x[...] = self.value

    def _get_answer(self):
        self.data[...] = self.value


286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
# 1.4 item is Paddle Tensor
class TestSetValueItemTensor(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        x[zero] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueItemTensor2(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:two] = self.value

    def _get_answer(self):
        self.data[0:2] = self.value


class TestSetValueItemTensor3(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:-1, 0:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2] = self.value


class TestSetValueItemTensor4(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[0:-1, zero:2, 0:6:two] = self.value

    def _get_answer(self):
        self.data[0:-1, 0:2, ::2] = self.value


class TestSetValueItemTensor5(TestSetValueApi):
    def _call_setitem(self, x):
        zero = paddle.full([1], 0, dtype="int32")
        two = paddle.full([1], 2, dtype="int64")
        x[zero:, 1:2:two, :] = self.value

    def _get_answer(self):
        self.data[0:, 1:2:2, :] = self.value


class TestSetValueItemTensor6(TestSetValueApi):
    def set_shape(self):
        self.shape = [3, 4, 5]

    def _call_setitem(self, x):
        minus1 = paddle.full([1], -1, dtype="int32")
        zero = paddle.full([1], 0, dtype="int32")
        x[2:zero:minus1, 0:2, 10:-6:minus1] = self.value

    def _get_answer(self):
        self.data[2:0:-1, 0:2, ::-1] = self.value


Z
zyfncg 已提交
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
# 1.5 item is None
class TestSetValueItemNone1(TestSetValueApi):
    def _call_setitem(self, x):
        x[None] = self.value

    def _get_answer(self):
        self.data[None] = self.value


class TestSetValueItemNone2(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 1] = self.value


class TestSetValueItemNone3(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, None, None, 1] = self.value

    def _get_answer(self):
        self.data[:, None, None, 1] = self.value


class TestSetValueItemNone4(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, 0, None, 1] = self.value


class TestSetValueItemNone5(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, None, 0, None, 1] = self.value

    def _get_answer(self):
        self.data[0, None, 0, None, 1] = self.value


class TestSetValueItemNone6(TestSetValueApi):
    def _call_setitem(self, x):
        x[None, 0, 0, None, 0] = self.value

    def _get_answer(self):
        self.data[None, 0, 0, None, 0] = self.value


class TestSetValueItemNone7(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, None, 1] = np.zeros(self.shape)[:, None, 0]

    def _get_answer(self):
        self.data[:, None, 1] = np.zeros(self.shape)[:, None, 0]


class TestSetValueItemNone8(TestSetValueApi):
    def _call_setitem(self, x):
        x[:, 1, None] = np.zeros(self.shape)[:, 0, None]

    def _get_answer(self):
        self.data[:, 1, None] = np.zeros(self.shape)[:, 0, None]


class TestSetValueItemNone9(TestSetValueApi):
    def _call_setitem(self, x):
        x[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]

    def _get_answer(self):
        self.data[None, :, 1, ..., None] = np.zeros(self.shape)[0, 0, :, None]


422 423 424 425 426 427 428 429
class TestSetValueItemNone10(TestSetValueApi):
    def _call_setitem(self, x):
        x[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]

    def _get_answer(self):
        self.data[..., None, :, None] = np.zeros(self.shape)[..., None, :, None]


Z
zyfncg 已提交
430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
# 1.5 item is list or Tensor of bol
class TestSetValueItemBool1(TestSetValueApi):
    def _call_setitem(self, x):
        x[[True, False]] = self.value

    def _get_answer(self):
        self.data[[True, False]] = self.value


class TestSetValueItemBool2(TestSetValueApi):
    def _call_setitem(self, x):
        x[[False, False]] = self.value

    def _get_answer(self):
        self.data[[False, False]] = self.value


class TestSetValueItemBool3(TestSetValueApi):
    def _call_setitem(self, x):
        x[[False, True]] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[[False, True]] = np.zeros(self.shape[2])


class TestSetValueItemBool4(TestSetValueApi):
    def _call_setitem(self, x):
        idx = paddle.assign(np.array([False, True]))
        x[idx] = np.zeros(self.shape[2])

    def _get_answer(self):
        self.data[np.array([False, True])] = np.zeros(self.shape[2])


class TestSetValueItemBool5(TestSetValueApi):
    def _call_setitem(self, x):
        idx = paddle.assign(
467 468
            np.array([[False, True, False], [True, True, False]])
        )
Z
zyfncg 已提交
469 470 471
        x[idx] = self.value

    def _get_answer(self):
472 473 474
        self.data[
            np.array([[False, True, False], [True, True, False]])
        ] = self.value
Z
zyfncg 已提交
475 476 477 478 479 480 481 482 483 484 485 486


class TestSetValueItemBool6(TestSetValueApi):
    def _call_setitem(self, x):
        x[0, ...] = 0
        x[x > 0] = self.value

    def _get_answer(self):
        self.data[0, ...] = 0
        self.data[self.data > 0] = self.value


487
# 2. Test different type of value: int, float, numpy.ndarray, Tensor
488
# 2.1 value is int32, int64, float32, float64, bool
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530


def create_test_value_int32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int32(TestSetValueItemInt)
create_test_value_int32(TestSetValueItemSlice)
create_test_value_int32(TestSetValueItemSlice2)
create_test_value_int32(TestSetValueItemSlice3)
create_test_value_int32(TestSetValueItemSlice4)


def create_test_value_int64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 7

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_int64(TestSetValueItemInt)
create_test_value_int64(TestSetValueItemSlice)
create_test_value_int64(TestSetValueItemSlice2)
create_test_value_int64(TestSetValueItemSlice3)
create_test_value_int64(TestSetValueItemSlice4)


531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
def create_test_value_fp16(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 3.7

        def set_dtype(self):
            self.dtype = "float16"

    cls_name = "{0}_{1}".format(parent.__name__, "Valuefp16")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp16(TestSetValueItemInt)
create_test_value_fp16(TestSetValueItemSlice)
create_test_value_fp16(TestSetValueItemSlice2)
create_test_value_fp16(TestSetValueItemSlice3)
create_test_value_fp16(TestSetValueItemSlice4)


551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
def create_test_value_fp32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 3.3

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp32(TestSetValueItemInt)
create_test_value_fp32(TestSetValueItemSlice)
create_test_value_fp32(TestSetValueItemSlice2)
create_test_value_fp32(TestSetValueItemSlice3)
create_test_value_fp32(TestSetValueItemSlice4)


571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
def create_test_value_fp64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 2.0**127  # float32:[-2^128, 2^128)

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_fp64(TestSetValueItemInt)
create_test_value_fp64(TestSetValueItemSlice)
create_test_value_fp64(TestSetValueItemSlice2)
create_test_value_fp64(TestSetValueItemSlice3)
create_test_value_fp64(TestSetValueItemSlice4)


591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
def create_test_value_bool(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = 0

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_bool(TestSetValueItemInt)
create_test_value_bool(TestSetValueItemSlice)
create_test_value_bool(TestSetValueItemSlice2)
create_test_value_bool(TestSetValueItemSlice3)
create_test_value_bool(TestSetValueItemSlice4)


611
# 2.2 value is numpy.array (int32, int64, float32, float64, bool)
612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
def create_test_value_numpy_int32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([5])

        def set_dtype(self):
            self.dtype = "int32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int32(TestSetValueItemInt)
create_test_value_numpy_int32(TestSetValueItemSlice)
create_test_value_numpy_int32(TestSetValueItemSlice2)
create_test_value_numpy_int32(TestSetValueItemSlice3)
create_test_value_numpy_int32(TestSetValueItemSlice4)


def create_test_value_numpy_int64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "int64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_int64(TestSetValueItemInt)
create_test_value_numpy_int64(TestSetValueItemSlice)
create_test_value_numpy_int64(TestSetValueItemSlice2)
create_test_value_numpy_int64(TestSetValueItemSlice3)
create_test_value_numpy_int64(TestSetValueItemSlice4)


def create_test_value_numpy_fp32(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([1])

        def set_dtype(self):
            self.dtype = "float32"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp32(TestSetValueItemInt)
create_test_value_numpy_fp32(TestSetValueItemSlice)
create_test_value_numpy_fp32(TestSetValueItemSlice2)
create_test_value_numpy_fp32(TestSetValueItemSlice3)
create_test_value_numpy_fp32(TestSetValueItemSlice4)


672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
def create_test_value_numpy_fp64(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([2**127]).astype("float64")

        def set_dtype(self):
            self.dtype = "float64"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_fp64(TestSetValueItemInt)
create_test_value_numpy_fp64(TestSetValueItemSlice)
create_test_value_numpy_fp64(TestSetValueItemSlice2)
create_test_value_numpy_fp64(TestSetValueItemSlice3)
create_test_value_numpy_fp64(TestSetValueItemSlice4)


692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857
def create_test_value_numpy_bool(parent):
    class TestValueInt(parent):
        def set_value(self):
            self.value = np.array([0])

        def set_dtype(self):
            self.dtype = "bool"

    cls_name = "{0}_{1}".format(parent.__name__, "ValueNumpyBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_numpy_bool(TestSetValueItemInt)
create_test_value_numpy_bool(TestSetValueItemSlice)
create_test_value_numpy_bool(TestSetValueItemSlice2)
create_test_value_numpy_bool(TestSetValueItemSlice3)
create_test_value_numpy_bool(TestSetValueItemSlice4)


# 2.3 value is a Paddle Tensor (int32, int64, float32, float64, bool)
def create_test_value_tensor_int32(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "int32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int32(TestSetValueItemInt)
create_test_value_tensor_int32(TestSetValueItemSlice)
create_test_value_tensor_int32(TestSetValueItemSlice2)
create_test_value_tensor_int32(TestSetValueItemSlice3)
create_test_value_tensor_int32(TestSetValueItemSlice4)


def create_test_value_tensor_int64(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "int64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorInt64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_int64(TestSetValueItemInt)
create_test_value_tensor_int64(TestSetValueItemSlice)
create_test_value_tensor_int64(TestSetValueItemSlice2)
create_test_value_tensor_int64(TestSetValueItemSlice3)
create_test_value_tensor_int64(TestSetValueItemSlice4)


def create_test_value_tensor_fp32(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "float32"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp32")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp32(TestSetValueItemInt)
create_test_value_tensor_fp32(TestSetValueItemSlice)
create_test_value_tensor_fp32(TestSetValueItemSlice2)
create_test_value_tensor_fp32(TestSetValueItemSlice3)
create_test_value_tensor_fp32(TestSetValueItemSlice4)


def create_test_value_tensor_fp64(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "float64"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=3, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = 3

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorFp64")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_fp64(TestSetValueItemInt)
create_test_value_tensor_fp64(TestSetValueItemSlice)
create_test_value_tensor_fp64(TestSetValueItemSlice2)
create_test_value_tensor_fp64(TestSetValueItemSlice3)
create_test_value_tensor_fp64(TestSetValueItemSlice4)


def create_test_value_tensor_bool(parent):
    class TestValueInt(parent):
        def set_dtype(self):
            self.dtype = "bool"

        def _call_setitem(self, x):
            value = paddle.full(shape=[1], fill_value=False, dtype=self.dtype)
            x[0, 1] = value

        def _get_answer(self):
            self.data[0, 1] = False

    cls_name = "{0}_{1}".format(parent.__name__, "ValueTensorBool")
    TestValueInt.__name__ = cls_name
    globals()[cls_name] = TestValueInt


create_test_value_tensor_bool(TestSetValueItemInt)
create_test_value_tensor_bool(TestSetValueItemSlice)
create_test_value_tensor_bool(TestSetValueItemSlice2)
create_test_value_tensor_bool(TestSetValueItemSlice3)
create_test_value_tensor_bool(TestSetValueItemSlice4)


# 3. Test different shape of value
class TestSetValueValueShape1(TestSetValueApi):
    def set_value(self):
        self.value = np.array([3, 4, 5, 6])  # shape is (4,)

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape2(TestSetValueApi):
    def set_value(self):
        self.value = np.array([[3, 4, 5, 6]])  # shape is (1,4)

    def _call_setitem(self, x):
        x[0:1] = self.value

    def _get_answer(self):
        self.data[0:1] = self.value


class TestSetValueValueShape3(TestSetValueApi):
    def set_value(self):
858 859 860
        self.value = np.array(
            [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]
        )  # shape is (3,4)
861 862 863 864 865 866 867 868 869 870

    def _call_setitem(self, x):
        x[0] = self.value

    def _get_answer(self):
        self.data[0] = self.value


class TestSetValueValueShape4(TestSetValueApi):
    def set_value(self):
871 872 873 874 875
        self.value = np.array(
            [[1, 1, 1, 1], [2, 2, 2, 2], [3, 3, 3, 3]]
        ).astype(
            self.dtype
        )  # shape is (3,4)
876 877 878 879 880 881 882 883

    def _call_setitem(self, x):
        x[0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[0] = self.value


884 885 886 887 888 889 890 891 892 893 894 895 896 897
class TestSetValueValueShape5(TestSetValueApi):
    def set_value(self):
        self.value = np.array([3, 3, 3]).astype(self.dtype)

    def set_shape(self):
        self.shape = [3, 4]

    def _call_setitem(self, x):
        x[:, 0] = paddle.assign(self.value)  # x is Paddle.Tensor

    def _get_answer(self):
        self.data[:, 0] = self.value


898 899 900
# 4. Test error
class TestError(TestSetValueBase):
    def _value_type_error(self):
901
        with self.assertRaisesRegex(
902 903
            TypeError,
            "Only support to assign an integer, float, numpy.ndarray or paddle.Tensor",
904 905 906 907 908 909
        ):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = [1]
            x[0] = value

    def _dtype_error(self):
910
        with self.assertRaisesRegex(
911 912
            TypeError,
            "When assign a numpy.ndarray, integer or float to a paddle.Tensor, ",
913
        ):
914
            y = paddle.ones(shape=self.shape, dtype="float16")
915 916 917
            y[0] = 1

    def _step_error(self):
918
        with self.assertRaisesRegex(ValueError, "step can not be 0"):
919
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
920
            x[0:1:0] = self.value
921

922
    def _ellipsis_error(self):
923
        with self.assertRaisesRegex(
924 925
            IndexError, "An index can only have a single ellipsis"
        ):
926 927
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[..., ...] = self.value
928
        with self.assertRaisesRegex(ValueError, "the start or end is None"):
929 930 931
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            one = paddle.ones([1])
            x[::one] = self.value
932

Z
zyfncg 已提交
933 934 935 936 937 938 939 940 941 942 943 944 945 946 947
    def _bool_list_error(self):
        with self.assertRaises(TypeError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False, 0]] = 0

        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            x[[True, False], [True, False]] = 0

    def _bool_tensor_error(self):
        with self.assertRaises(IndexError):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            idx = paddle.assign([True, False, True])
            x[idx] = 0

948 949 950 951 952 953 954
    def _broadcast_mismatch(self):
        program = paddle.static.Program()
        with paddle.static.program_guard(program):
            x = paddle.ones(shape=self.shape, dtype=self.dtype)
            value = np.array([3, 4, 5, 6, 7])
            x[0] = value
        exe = paddle.static.Executor(paddle.CPUPlace())
Z
zyfncg 已提交
955
        with self.assertRaises(ValueError):
956 957 958
            exe.run(program)

    def test_error(self):
959
        paddle.enable_static()
960 961 962
        with paddle.static.program_guard(self.program):
            self._value_type_error()
            self._step_error()
Z
zyfncg 已提交
963 964
            self._bool_list_error()
            self._bool_tensor_error()
965 966 967
        self._broadcast_mismatch()


968 969 970 971 972
# 5. Test backward


class Model(paddle.nn.Layer):
    def __init__(self):
973
        super().__init__()
974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
        self.conv = paddle.nn.Conv2D(12, 12, 3)

    def forward(self, x, y):
        x = self.conv(x)
        y = self.conv(y)
        var = y.flatten()

        x[0, :, 0, 0] = var
        loss = paddle.mean(x)
        return loss, var, x


class TestBackward(unittest.TestCase):
    def test_static(self):
        paddle.enable_static()
        main_program = paddle.static.Program()
        startup_program = paddle.static.Program()

        x_np = np.random.random(size=(4, 4)).astype('float32')
        y_np = np.random.random(size=(4, 4)).astype('float32')
        label_np = np.random.randint(2, size=(4, 1)).astype('int64')

        with paddle.static.program_guard(main_program, startup_program):
            x = paddle.static.data(name="x", shape=[4, 4], dtype='float32')
            y = paddle.static.data(name="y", shape=[4, 4], dtype='float32')

1000 1001 1002
            label = paddle.static.data(
                name="label", shape=[4, 1], dtype='int64'
            )
1003 1004 1005 1006 1007 1008 1009

            z = paddle.add(x, y)
            var = y[0, :]
            z[0, :] = var

            prediction = paddle.static.nn.fc(x=z, size=2, activation='softmax')

1010 1011 1012
            cost = paddle.nn.functional.cross_entropy(
                input=prediction, label=label
            )
1013 1014 1015 1016 1017 1018 1019 1020 1021
            loss = paddle.mean(cost)
            sgd = paddle.optimizer.SGD(learning_rate=0.01)
            sgd.minimize(loss)

        exe = paddle.static.Executor(paddle.CPUPlace())
        exe.run(startup_program)

        var_grad, z_grad = exe.run(
            main_program,
1022 1023 1024
            feed={"x": x_np, "y": y_np, "label": label_np},
            fetch_list=[var.name + "@GRAD", z.name + "@GRAD"],
        )
1025 1026 1027

        self.assertTrue((var_grad == z_grad[0, :]).all())
        paddle.disable_static()
W
wanghuancoder 已提交
1028 1029

    def func_test_dynamic(self):
1030 1031 1032 1033 1034 1035 1036
        model = Model()
        x = paddle.ones([1, 12, 3, 3]).astype("float32")
        y = paddle.ones([1, 12, 3, 3]).astype("float32")
        loss, var, x = model(x, y)
        loss.backward()

        self.assertTrue(var.grad.shape == x.grad[0, :, 0, 0].shape)
1037
        self.assertTrue((0 == x.grad[0, :, 0, 0]).all())
1038 1039 1040


class TestGradientTruncated(unittest.TestCase):
1041
    def test_consistent_with_competitor(self):
1042 1043 1044 1045 1046 1047 1048 1049 1050
        paddle.disable_static()

        def set_value(t, value):
            a = t * t
            a[0, 1] = value
            y = a * a
            return y.sum()

        # case 1
1051 1052 1053
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [1, 2, 1, 3, 1, 4]
        )
1054 1055 1056 1057 1058 1059 1060 1061
        value = np.arange(100, 104, dtype="float32").reshape(1, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps, value)
        loss.backward()

1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082
        value_grad = np.array([[600.0, 606.0, 612.0, 618.0]])
        input_grad = np.array(
            [
                [
                    [
                        [
                            [[4.0, 32.0, 108.0, 256.0]],
                            [[500.0, 864.0, 1372.0, 2048.0]],
                            [[2916.0, 4000.0, 5324.0, 6912.0]],
                        ]
                    ],
                    [
                        [
                            [[0.0, 0.0, 0.0, 0.0]],
                            [[0.0, 0.0, 0.0, 0.0]],
                            [[0.0, 0.0, 0.0, 0.0]],
                        ]
                    ],
                ]
            ]
        )
1083 1084 1085
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1086 1087 1088 1089
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1090 1091 1092
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1093 1094 1095 1096
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107

        # case 2
        array = np.arange(1, 2 * 3 * 4 + 1, dtype="float32").reshape([4, 2, 3])
        value = np.arange(100, 100 + 1, dtype="float32")

        inps2 = paddle.to_tensor(array, stop_gradient=False)
        value2 = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value(inps2, value2)
        loss.backward()

1108 1109 1110 1111 1112 1113 1114 1115 1116
        value_grad2 = np.array([600.0])
        input_grad2 = np.array(
            [
                [[4.0, 32.0, 108.0], [0.0, 0.0, 0.0]],
                [[1372.0, 2048.0, 2916.0], [4000.0, 5324.0, 6912.0]],
                [[8788.0, 10976.0, 13500.0], [16384.0, 19652.0, 23328.0]],
                [[27436.0, 32000.0, 37044.0], [42592.0, 48668.0, 55296.0]],
            ]
        )
1117 1118 1119
        np.testing.assert_array_equal(
            inps2.grad.numpy(),
            input_grad2,
1120 1121 1122 1123
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps2.grad.numpy()
            ),
        )
1124 1125 1126
        np.testing.assert_array_equal(
            value2.grad.numpy(),
            value_grad2,
1127 1128 1129 1130
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value2.grad.numpy()
            ),
        )
1131 1132 1133 1134 1135 1136 1137 1138

        # case 3
        def set_value3(t, value):
            a = t * t
            a[0, :, 0, :] = value
            y = a * a
            return y.sum()

1139 1140 1141
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [4, 3, 1, 1, 2, 1]
        )
1142 1143 1144 1145 1146 1147 1148 1149
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value3(inps, value)
        loss.backward()

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        value_grad = np.array([[[600.0], [606.0]]])
        input_grad = np.array(
            [
                [[[[[0.0], [0.0]]]], [[[[0.0], [0.0]]]], [[[[0.0], [0.0]]]]],
                [
                    [[[[1372.0], [2048.0]]]],
                    [[[[2916.0], [4000.0]]]],
                    [[[[5324.0], [6912.0]]]],
                ],
                [
                    [[[[8788.0], [10976.0]]]],
                    [[[[13500.0], [16384.0]]]],
                    [[[[19652.0], [23328.0]]]],
                ],
                [
                    [[[[27436.0], [32000.0]]]],
                    [[[[37044.0], [42592.0]]]],
                    [[[[48668.0], [55296.0]]]],
                ],
            ]
        )
1171 1172 1173
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1174 1175 1176 1177
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1178 1179 1180
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1181 1182 1183 1184
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1185

1186
        # case 4: step >0
1187 1188 1189 1190 1191 1192
        def set_value4(t, value):
            a = t * t
            a[0, :, 0, ::3] = value
            y = a * a
            return y.sum()

1193 1194 1195
        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape(
            [2, 3, 1, 4, 1]
        )
1196 1197 1198 1199 1200 1201 1202 1203
        value = np.arange(100, 100 + 2, dtype="float32").reshape(1, 2, 1)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value4(inps, value)
        loss.backward()

1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
        value_grad = np.array([[[600.0], [606.0]]])
        input_grad = np.array(
            [
                [
                    [[[0.0], [32.0], [108.0], [0.0]]],
                    [[[0.0], [864.0], [1372.0], [0.0]]],
                    [[[0.0], [4000.0], [5324.0], [0.0]]],
                ],
                [
                    [[[8788.0], [10976.0], [13500.0], [16384.0]]],
                    [[[19652.0], [23328.0], [27436.0], [32000.0]]],
                    [[[37044.0], [42592.0], [48668.0], [55296.0]]],
                ],
            ]
        )
1219 1220 1221
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1222 1223 1224 1225
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1226 1227 1228
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1229 1230 1231 1232
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249

        # case 5:a[0].shape==value.shape
        def set_value5(t, value):
            a = t * t
            a[0] = value
            y = a * a
            return y.sum()

        array = np.arange(1, 1 + 2 * 3 * 4, dtype="float32").reshape([2, 3, 4])
        value = np.arange(100, 100 + 12, dtype="float32").reshape(3, 4)

        inps = paddle.to_tensor(array, stop_gradient=False)
        value = paddle.to_tensor(value, stop_gradient=False)

        loss = set_value5(inps, value)
        loss.backward()

1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270
        value_grad = np.array(
            [
                [200.0, 202.0, 204.0, 206.0],
                [208.0, 210.0, 212.0, 214.0],
                [216.0, 218.0, 220.0, 222.0],
            ]
        )
        input_grad = np.array(
            [
                [
                    [0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0],
                    [0.0, 0.0, 0.0, 0.0],
                ],
                [
                    [8788.0, 10976.0, 13500.0, 16384.0],
                    [19652.0, 23328.0, 27436.0, 32000.0],
                    [37044.0, 42592.0, 48668.0, 55296.0],
                ],
            ]
        )
1271 1272 1273
        np.testing.assert_array_equal(
            inps.grad.numpy(),
            input_grad,
1274 1275 1276 1277
            err_msg='The gradient of value should be \n{},\n but reveived {}'.format(
                input_grad, inps.grad.numpy()
            ),
        )
1278 1279 1280
        np.testing.assert_array_equal(
            value.grad.numpy(),
            value_grad,
1281 1282 1283 1284
            err_msg='The gradient of input should be \n{},\n but reveived {}'.format(
                value_grad, value.grad.numpy()
            ),
        )
1285

1286 1287 1288 1289 1290 1291 1292 1293 1294
        # case 6: pass stop_gradient from value to x
        x = paddle.zeros([8, 8], dtype='float32')
        value = paddle.to_tensor([10], dtype='float32', stop_gradient=False)

        self.assertTrue(x.stop_gradient)
        self.assertTrue(x.is_leaf)

        x[0, :] = value

1295 1296
        self.assertTrue(not x.stop_gradient)
        self.assertTrue(not x.is_leaf)
1297

1298 1299 1300
    def test_static_graph(self):
        paddle.enable_static()

1301
        to_string = lambda x, i: x + '_' + str(i)
1302 1303 1304 1305
        numel = lambda input_shape: reduce(lambda x, y: x * y, input_shape)

        def op1(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
1306
            # test stop_gradient
1307 1308
            value.stop_gradient = True
            x.stop_gradient = False
1309 1310 1311 1312 1313 1314 1315 1316 1317
            start = paddle.fluid.layers.fill_constant(
                [1], "int32", 5, force_cpu=True
            )
            end = paddle.fluid.layers.fill_constant(
                [1], "int32", 0, force_cpu=True
            )
            step = paddle.fluid.layers.fill_constant(
                [1], "int32", -2, force_cpu=True
            )
1318 1319 1320 1321

            inputs = {
                'Input': x,
                'ValueTensor': value,
1322 1323 1324 1325 1326 1327 1328 1329
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
1330
                ],
1331 1332 1333 1334 1335
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1336 1337 1338 1339 1340 1341
            helper.append_op(
                type="set_value",
                inputs=inputs,
                outputs={'Out': y},
                attrs={'axes': [0]},
            )
1342 1343 1344 1345 1346

            return y, value

        def op2(x):
            value = paddle.fluid.layers.fill_constant([1, 3, 2], "float32", 1)
1347
            # test stop_gradient
1348 1349 1350 1351 1352 1353 1354 1355 1356
            value.stop_gradient = False
            x.stop_gradient = False
            attrs = {
                'axes': [0],
                'starts': [6],
                'ends': [0],
                'steps': [-4],
                'decrease_axes': [],
                'none_axes': [],
1357
                'dtype': paddle.float32,
1358 1359 1360 1361 1362 1363
            }
            inputs = {'Input': x, 'ValueTensor': value}

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1364 1365 1366
            helper.append_op(
                type="set_value", inputs=inputs, outputs={'Out': y}, attrs=attrs
            )
1367 1368 1369 1370 1371 1372 1373

            return y, value

        def op3(x):
            value = paddle.fluid.layers.fill_constant([1], "float32", 1)
            x.stop_gradient = True
            value.stop_gradient = False
1374 1375 1376 1377 1378 1379 1380 1381 1382
            start = paddle.fluid.layers.fill_constant(
                [1], "int32", 0, force_cpu=True
            )
            end = paddle.fluid.layers.fill_constant(
                [1], "int32", 5, force_cpu=True
            )
            step = paddle.fluid.layers.fill_constant(
                [1], "int32", 3, force_cpu=True
            )
1383 1384 1385 1386

            inputs = {
                'Input': x,
                'ValueTensor': value,
1387 1388 1389 1390 1391 1392 1393 1394
                'StartsTensorList': [
                    start,
                ],
                'EndsTensorList': [
                    end,
                ],
                'StepsTensorList': [
                    step,
1395
                ],
1396 1397 1398 1399 1400
            }

            helper = LayerHelper("set_value")
            y = helper.create_variable_for_type_inference(dtype=x.dtype)

1401 1402 1403 1404 1405 1406
            helper.append_op(
                type="set_value",
                inputs=inputs,
                outputs={'Out': y},
                attrs={'axes': [0]},
            )
1407 1408 1409 1410 1411

            return y, value

        def set_value(array, i, op):
            name_x = to_string('x', i)
1412 1413 1414
            x = paddle.static.data(
                name=name_x, shape=array.shape, dtype='float32'
            )
1415

1416 1417
            # set_value_op in __get/setitem__ is an inplace operation.
            # When `input.stop_gradient = True` and `value.stop_gradient = False`,
1418 1419 1420
            # set_value_grad_op will not be run during backward.
            y, value = op(x)
            y2 = y + 1
1421
            loss = paddle.sum(y2)
1422 1423
            sgd = paddle.optimizer.Adam()
            sgd.minimize(loss)
1424 1425 1426 1427 1428
            place = (
                paddle.fluid.CPUPlace()
                if not paddle.fluid.core.is_compiled_with_cuda()
                else paddle.fluid.CUDAPlace(0)
            )
1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

            prog = paddle.static.default_main_program()
            exe = paddle.static.Executor(place)
            exe.run(paddle.static.default_startup_program())
            fetch_list = []
            if not x.stop_gradient:
                fetch_list.append(x.grad_name)
            if not value.stop_gradient:
                fetch_list.append(value.grad_name)
            out = exe.run(prog, feed={x.name: array}, fetch_list=fetch_list)
            return out

        input_shape = [7, 6, 5, 4, 3, 2]

1443 1444 1445
        array = np.arange(0, numel(input_shape), dtype="float32").reshape(
            input_shape
        )
1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464

        for i in range(len(input_shape)):
            program = paddle.static.Program()
            with paddle.static.program_guard(program):
                out1 = set_value(array, i, op1)
                self.assertTrue((out1[0][5:0:-2] == 0).all())

            if len(array.shape) > 2:
                program2 = paddle.static.Program()
                with paddle.static.program_guard(program2):
                    out2 = set_value(array, i, op2)
                    self.assertTrue((out2[0][6:0:-4] == 0).all())

            program3 = paddle.static.Program()
            with paddle.static.program_guard(program3):
                out3 = set_value(array, i, op3)
                self.assertTrue((numel(out1[0][0:5:3].shape) == out3[0]).all())

            array = array[0]
W
wanghuancoder 已提交
1465
        paddle.disable_static()
1466 1467


Z
zyfncg 已提交
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
class TestSetValueInplace(unittest.TestCase):
    def test_inplace(self):
        paddle.disable_static()
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b = a[:]
            c = b
            b[paddle.to_tensor(0)] = 1.0

            self.assertTrue(id(b) == id(c))
1480
            np.testing.assert_array_equal(b.numpy(), c.numpy())
1481
            self.assertEqual(b.inplace_version, 0)
Z
zyfncg 已提交
1482 1483 1484 1485

        paddle.enable_static()


1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516
class TestSetValueInplaceLeafVar(unittest.TestCase):
    def test_inplace_var_become_leaf_var(self):
        paddle.disable_static()

        a_grad_1, b_grad_1, a_grad_2, b_grad_2 = 0, 1, 2, 3
        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            c.sum().backward()
            a_grad_1 = a.grad.numpy()
            b_grad_1 = b.grad.numpy()

        with paddle.fluid.dygraph.guard():
            paddle.seed(100)
            a = paddle.rand(shape=[1, 4])
            b = paddle.rand(shape=[1, 4])
            a.stop_gradient = False
            b.stop_gradient = False
            c = a / b
            d = paddle.zeros((4, 4))
            self.assertTrue(d.stop_gradient)
            d[0, :] = c
            self.assertFalse(d.stop_gradient)
            d[0, :].sum().backward()
            a_grad_2 = a.grad.numpy()
            b_grad_2 = b.grad.numpy()

1517 1518
        np.testing.assert_array_equal(a_grad_1, a_grad_2)
        np.testing.assert_array_equal(b_grad_1, b_grad_2)
1519 1520 1521
        paddle.enable_static()


1522 1523
if __name__ == '__main__':
    unittest.main()