test_elementwise_heaviside_op.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17
import numpy as np
18
from eager_op_test import OpTest, convert_float_to_uint16
19

20
import paddle
21
from paddle.fluid import core
22 23


24 25
def Heaviside_grad(x, y, dout, astype="float16", is_bfloat16=False):
    tmp = np.zeros(x.shape).astype(astype)
26
    dx = np.multiply(tmp, dout)
27 28 29 30
    dy = np.multiply(np.equal(x, 0), dout).astype(astype)
    if is_bfloat16:
        dx = convert_float_to_uint16(dx)
        dy = convert_float_to_uint16(dy)
31 32 33
    return dx, dy


34 35 36 37 38
class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_heaviside"
        x = np.random.random((13, 17)).astype("float64")
        y = np.random.random((13, 17)).astype("float64")
W
Weilong Wu 已提交
39
        self.python_api = paddle.heaviside
40 41 42 43
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.heaviside(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
W
wanghuancoder 已提交
44
        self.check_output()
45 46

    def test_check_grad_normal(self):
W
wanghuancoder 已提交
47
        self.check_grad(['X', 'Y'], 'Out')
48 49

    def test_check_grad_ingore_x(self):
W
wanghuancoder 已提交
50
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))
51 52

    def test_check_grad_ingore_y(self):
W
wanghuancoder 已提交
53
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78


class TestHeavisideBroadcast(unittest.TestCase):
    def setUp(self):
        self.input_1 = np.random.rand(2, 100, 13, 17).astype("float32")
        self.input_2 = np.random.rand(100, 13, 17).astype("float32")
        self.input_3 = np.random.rand(100, 13, 1).astype("float32")
        self.input_4 = np.random.rand(13, 17).astype("float32")
        self.input_5 = np.random.rand(1).astype("float32")

        self.np_expected1 = np.heaviside(self.input_1, self.input_2)
        self.np_expected2 = np.heaviside(self.input_2, self.input_3)
        self.np_expected3 = np.heaviside(self.input_2, self.input_4)
        self.np_expected4 = np.heaviside(self.input_4, self.input_5)

    def test_broadcast(self):
        paddle.disable_static()
        self.tensor_1 = paddle.to_tensor(self.input_1)
        self.tensor_2 = paddle.to_tensor(self.input_2)
        self.tensor_3 = paddle.to_tensor(self.input_3)
        self.tensor_4 = paddle.to_tensor(self.input_4)
        self.tensor_5 = paddle.to_tensor(self.input_5)

        res = paddle.heaviside(self.tensor_1, self.tensor_2)
        res = res.numpy()
79
        np.testing.assert_allclose(res, self.np_expected1, rtol=1e-05)
80 81 82

        res = paddle.heaviside(self.tensor_2, self.tensor_3)
        res = res.numpy()
83
        np.testing.assert_allclose(res, self.np_expected2, rtol=1e-05)
84 85 86

        res = paddle.heaviside(self.tensor_2, self.tensor_4)
        res = res.numpy()
87
        np.testing.assert_allclose(res, self.np_expected3, rtol=1e-05)
88 89 90

        res = paddle.heaviside(self.tensor_4, self.tensor_5)
        res = res.numpy()
91
        np.testing.assert_allclose(res, self.np_expected4, rtol=1e-05)
92 93 94 95 96 97 98 99 100 101


class TestHeavisideAPI_float64(unittest.TestCase):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("float64")
        self.y_np = np.random.random((13, 17)).astype("float64")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "float64"

    def test_static(self):
102 103 104
        for use_cuda in (
            [False, True] if paddle.device.is_compiled_with_cuda() else [False]
        ):
105 106 107 108 109
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
            prog = paddle.static.Program()
            with paddle.static.program_guard(prog):
110 111 112 113 114 115
                x = paddle.static.data(
                    name=f"x_{self.dtype}", shape=[13, 17], dtype=self.dtype
                )
                y = paddle.static.data(
                    name=f"y_{self.dtype}", shape=[13, 17], dtype=self.dtype
                )
116 117 118
                out = paddle.heaviside(x, y)

            exe = paddle.static.Executor(place=place)
119 120 121 122 123 124 125 126 127
            (res,) = exe.run(
                prog,
                feed={
                    f"x_{self.dtype}": self.x_np,
                    f"y_{self.dtype}": self.y_np,
                },
                fetch_list=out,
                use_prune=True,
            )
128

129
            np.testing.assert_allclose(res, self.out_np, rtol=1e-05)
130 131

    def test_dygraph(self):
132 133 134
        for use_cuda in (
            [False, True] if paddle.device.is_compiled_with_cuda() else [False]
        ):
135 136
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.disable_static(place=place)
137 138 139
            result = paddle.heaviside(
                paddle.to_tensor(self.x_np), paddle.to_tensor(self.y_np)
            )
140

141
            np.testing.assert_allclose(result.numpy(), self.out_np, rtol=1e-05)
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167


class TestHeavisideAPI_float32(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("float32")
        self.y_np = np.random.random((13, 17)).astype("float32")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "float32"


class TestHeavisideAPI_int64(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("int64")
        self.y_np = np.random.random((13, 17)).astype("int64")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "int64"


class TestHeavisideAPI_int32(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("int32")
        self.y_np = np.random.random((13, 17)).astype("int32")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "int32"


168
class TestHeavisideFP16Op(OpTest):
169 170 171 172 173 174
    def setUp(self):
        self.dtype = np.float16
        self.op_type = "elementwise_heaviside"
        self.python_api = paddle.heaviside
        self.inputs = {
            'X': np.random.uniform(1, 2, [20, 5]).astype("float16"),
175
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float16"),
176 177 178 179 180 181 182
        }
        self.outputs = {'Out': np.heaviside(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
183 184 185 186 187 188 189
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=Heaviside_grad(
                self.inputs['X'], self.inputs['Y'], 1 / self.inputs['X'].size
            ),
        )
190 191


192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
@unittest.skipIf(
    not core.is_compiled_with_cuda()
    or not core.is_bfloat16_supported(core.CUDAPlace(0)),
    "core is not compiled with CUDA or not support bfloat16",
)
class TestHeavisideBF16Op(OpTest):
    def setUp(self):
        self.dtype = np.uint16
        self.np_dtype = np.float32
        self.op_type = "elementwise_heaviside"
        self.python_api = paddle.heaviside
        self.inputs = {
            'X': np.random.uniform(1, 2, [20, 5]).astype(self.np_dtype),
            'Y': np.random.uniform(1, 2, [20, 5]).astype(self.np_dtype),
        }
        self.outputs = {'Out': np.heaviside(self.inputs['X'], self.inputs['Y'])}

        self.place = core.CUDAPlace(0)
        self.inputs['X'] = convert_float_to_uint16(self.inputs['X'])
        self.inputs['Y'] = convert_float_to_uint16(self.inputs['Y'])
        self.outputs['Out'] = convert_float_to_uint16(self.outputs['Out'])

    def test_check_output(self):
        self.check_output_with_place(self.place)

    def test_check_grad(self):
        self.check_grad_with_place(
            self.place,
            ['X', 'Y'],
            'Out',
            user_defined_grads=Heaviside_grad(
                self.inputs['X'],
                self.inputs['Y'],
                1 / self.inputs['X'].size,
                self.np_dtype,
                True,
            ),
        )


232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
class TestHeavisideError(unittest.TestCase):
    def test_input(self):
        paddle.disable_static()

        def test_input_x():
            paddle.heaviside(1, paddle.randn([100]))

        self.assertRaises(ValueError, test_input_x)

        def test_input_y():
            paddle.heaviside(paddle.randn([100]), 1)

        self.assertRaises(ValueError, test_input_y)

        def test_input_xy():
247 248 249
            paddle.heaviside(
                paddle.randn([100], 'float32'), paddle.randn([100], 'float64')
            )
250 251 252 253 254 255

        self.assertRaises(ValueError, test_input_xy)


if __name__ == '__main__':
    unittest.main()