test_elementwise_heaviside_op.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest
import paddle


21 22 23 24 25 26 27
def Heaviside_grad(x, y, dout):
    tmp = np.zeros(x.shape).astype("float16")
    dx = np.multiply(tmp, dout)
    dy = np.multiply(np.equal(x, 0), dout).astype("float16")
    return dx, dy


28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_heaviside"
        x = np.random.random((13, 17)).astype("float64")
        y = np.random.random((13, 17)).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.heaviside(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


class TestHeavisideBroadcast(unittest.TestCase):
    def setUp(self):
        self.input_1 = np.random.rand(2, 100, 13, 17).astype("float32")
        self.input_2 = np.random.rand(100, 13, 17).astype("float32")
        self.input_3 = np.random.rand(100, 13, 1).astype("float32")
        self.input_4 = np.random.rand(13, 17).astype("float32")
        self.input_5 = np.random.rand(1).astype("float32")

        self.np_expected1 = np.heaviside(self.input_1, self.input_2)
        self.np_expected2 = np.heaviside(self.input_2, self.input_3)
        self.np_expected3 = np.heaviside(self.input_2, self.input_4)
        self.np_expected4 = np.heaviside(self.input_4, self.input_5)

    def test_broadcast(self):
        paddle.disable_static()
        self.tensor_1 = paddle.to_tensor(self.input_1)
        self.tensor_2 = paddle.to_tensor(self.input_2)
        self.tensor_3 = paddle.to_tensor(self.input_3)
        self.tensor_4 = paddle.to_tensor(self.input_4)
        self.tensor_5 = paddle.to_tensor(self.input_5)

        res = paddle.heaviside(self.tensor_1, self.tensor_2)
        res = res.numpy()
72
        np.testing.assert_allclose(res, self.np_expected1, rtol=1e-05)
73 74 75

        res = paddle.heaviside(self.tensor_2, self.tensor_3)
        res = res.numpy()
76
        np.testing.assert_allclose(res, self.np_expected2, rtol=1e-05)
77 78 79

        res = paddle.heaviside(self.tensor_2, self.tensor_4)
        res = res.numpy()
80
        np.testing.assert_allclose(res, self.np_expected3, rtol=1e-05)
81 82 83

        res = paddle.heaviside(self.tensor_4, self.tensor_5)
        res = res.numpy()
84
        np.testing.assert_allclose(res, self.np_expected4, rtol=1e-05)
85 86 87 88 89 90 91 92 93 94


class TestHeavisideAPI_float64(unittest.TestCase):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("float64")
        self.y_np = np.random.random((13, 17)).astype("float64")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "float64"

    def test_static(self):
95 96 97
        for use_cuda in (
            [False, True] if paddle.device.is_compiled_with_cuda() else [False]
        ):
98 99 100 101 102
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
            prog = paddle.static.Program()
            with paddle.static.program_guard(prog):
103 104 105 106 107 108
                x = paddle.static.data(
                    name=f"x_{self.dtype}", shape=[13, 17], dtype=self.dtype
                )
                y = paddle.static.data(
                    name=f"y_{self.dtype}", shape=[13, 17], dtype=self.dtype
                )
109 110 111
                out = paddle.heaviside(x, y)

            exe = paddle.static.Executor(place=place)
112 113 114 115 116 117 118 119 120
            (res,) = exe.run(
                prog,
                feed={
                    f"x_{self.dtype}": self.x_np,
                    f"y_{self.dtype}": self.y_np,
                },
                fetch_list=out,
                use_prune=True,
            )
121

122
            np.testing.assert_allclose(res, self.out_np, rtol=1e-05)
123 124

    def test_dygraph(self):
125 126 127
        for use_cuda in (
            [False, True] if paddle.device.is_compiled_with_cuda() else [False]
        ):
128 129
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.disable_static(place=place)
130 131 132
            result = paddle.heaviside(
                paddle.to_tensor(self.x_np), paddle.to_tensor(self.y_np)
            )
133

134
            np.testing.assert_allclose(result.numpy(), self.out_np, rtol=1e-05)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160


class TestHeavisideAPI_float32(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("float32")
        self.y_np = np.random.random((13, 17)).astype("float32")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "float32"


class TestHeavisideAPI_int64(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("int64")
        self.y_np = np.random.random((13, 17)).astype("int64")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "int64"


class TestHeavisideAPI_int32(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("int32")
        self.y_np = np.random.random((13, 17)).astype("int32")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "int32"


161 162 163 164 165 166 167
class TestHeavisideAPI_float16(OpTest):
    def setUp(self):
        self.dtype = np.float16
        self.op_type = "elementwise_heaviside"
        self.python_api = paddle.heaviside
        self.inputs = {
            'X': np.random.uniform(1, 2, [20, 5]).astype("float16"),
168
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float16"),
169 170 171 172 173 174 175
        }
        self.outputs = {'Out': np.heaviside(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
176 177 178 179 180 181 182 183
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=Heaviside_grad(
                self.inputs['X'], self.inputs['Y'], 1 / self.inputs['X'].size
            ),
            check_eager=True,
        )
184 185


186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
class TestHeavisideError(unittest.TestCase):
    def test_input(self):
        paddle.disable_static()

        def test_input_x():
            paddle.heaviside(1, paddle.randn([100]))

        self.assertRaises(ValueError, test_input_x)

        def test_input_y():
            paddle.heaviside(paddle.randn([100]), 1)

        self.assertRaises(ValueError, test_input_y)

        def test_input_xy():
201 202 203
            paddle.heaviside(
                paddle.randn([100], 'float32'), paddle.randn([100], 'float64')
            )
204 205 206 207 208 209

        self.assertRaises(ValueError, test_input_xy)


if __name__ == '__main__':
    unittest.main()