test_elementwise_heaviside_op.py 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
16

17 18
import numpy as np
from op_test import OpTest
19

20 21 22
import paddle


23 24 25 26 27 28 29
def Heaviside_grad(x, y, dout):
    tmp = np.zeros(x.shape).astype("float16")
    dx = np.multiply(tmp, dout)
    dy = np.multiply(np.equal(x, 0), dout).astype("float16")
    return dx, dy


30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
class TestElementwiseOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_heaviside"
        x = np.random.random((13, 17)).astype("float64")
        y = np.random.random((13, 17)).astype("float64")
        self.inputs = {'X': x, 'Y': y}
        self.outputs = {'Out': np.heaviside(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['X', 'Y'], 'Out')

    def test_check_grad_ingore_x(self):
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))

    def test_check_grad_ingore_y(self):
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))


class TestHeavisideBroadcast(unittest.TestCase):
    def setUp(self):
        self.input_1 = np.random.rand(2, 100, 13, 17).astype("float32")
        self.input_2 = np.random.rand(100, 13, 17).astype("float32")
        self.input_3 = np.random.rand(100, 13, 1).astype("float32")
        self.input_4 = np.random.rand(13, 17).astype("float32")
        self.input_5 = np.random.rand(1).astype("float32")

        self.np_expected1 = np.heaviside(self.input_1, self.input_2)
        self.np_expected2 = np.heaviside(self.input_2, self.input_3)
        self.np_expected3 = np.heaviside(self.input_2, self.input_4)
        self.np_expected4 = np.heaviside(self.input_4, self.input_5)

    def test_broadcast(self):
        paddle.disable_static()
        self.tensor_1 = paddle.to_tensor(self.input_1)
        self.tensor_2 = paddle.to_tensor(self.input_2)
        self.tensor_3 = paddle.to_tensor(self.input_3)
        self.tensor_4 = paddle.to_tensor(self.input_4)
        self.tensor_5 = paddle.to_tensor(self.input_5)

        res = paddle.heaviside(self.tensor_1, self.tensor_2)
        res = res.numpy()
74
        np.testing.assert_allclose(res, self.np_expected1, rtol=1e-05)
75 76 77

        res = paddle.heaviside(self.tensor_2, self.tensor_3)
        res = res.numpy()
78
        np.testing.assert_allclose(res, self.np_expected2, rtol=1e-05)
79 80 81

        res = paddle.heaviside(self.tensor_2, self.tensor_4)
        res = res.numpy()
82
        np.testing.assert_allclose(res, self.np_expected3, rtol=1e-05)
83 84 85

        res = paddle.heaviside(self.tensor_4, self.tensor_5)
        res = res.numpy()
86
        np.testing.assert_allclose(res, self.np_expected4, rtol=1e-05)
87 88 89 90 91 92 93 94 95 96


class TestHeavisideAPI_float64(unittest.TestCase):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("float64")
        self.y_np = np.random.random((13, 17)).astype("float64")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "float64"

    def test_static(self):
97 98 99
        for use_cuda in (
            [False, True] if paddle.device.is_compiled_with_cuda() else [False]
        ):
100 101 102 103 104
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()

            paddle.enable_static()
            prog = paddle.static.Program()
            with paddle.static.program_guard(prog):
105 106 107 108 109 110
                x = paddle.static.data(
                    name=f"x_{self.dtype}", shape=[13, 17], dtype=self.dtype
                )
                y = paddle.static.data(
                    name=f"y_{self.dtype}", shape=[13, 17], dtype=self.dtype
                )
111 112 113
                out = paddle.heaviside(x, y)

            exe = paddle.static.Executor(place=place)
114 115 116 117 118 119 120 121 122
            (res,) = exe.run(
                prog,
                feed={
                    f"x_{self.dtype}": self.x_np,
                    f"y_{self.dtype}": self.y_np,
                },
                fetch_list=out,
                use_prune=True,
            )
123

124
            np.testing.assert_allclose(res, self.out_np, rtol=1e-05)
125 126

    def test_dygraph(self):
127 128 129
        for use_cuda in (
            [False, True] if paddle.device.is_compiled_with_cuda() else [False]
        ):
130 131
            place = paddle.CUDAPlace(0) if use_cuda else paddle.CPUPlace()
            paddle.disable_static(place=place)
132 133 134
            result = paddle.heaviside(
                paddle.to_tensor(self.x_np), paddle.to_tensor(self.y_np)
            )
135

136
            np.testing.assert_allclose(result.numpy(), self.out_np, rtol=1e-05)
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162


class TestHeavisideAPI_float32(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("float32")
        self.y_np = np.random.random((13, 17)).astype("float32")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "float32"


class TestHeavisideAPI_int64(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("int64")
        self.y_np = np.random.random((13, 17)).astype("int64")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "int64"


class TestHeavisideAPI_int32(TestHeavisideAPI_float64):
    def setUp(self):
        self.x_np = np.random.random((13, 17)).astype("int32")
        self.y_np = np.random.random((13, 17)).astype("int32")
        self.out_np = np.heaviside(self.x_np, self.y_np)
        self.dtype = "int32"


163 164 165 166 167 168 169
class TestHeavisideAPI_float16(OpTest):
    def setUp(self):
        self.dtype = np.float16
        self.op_type = "elementwise_heaviside"
        self.python_api = paddle.heaviside
        self.inputs = {
            'X': np.random.uniform(1, 2, [20, 5]).astype("float16"),
170
            'Y': np.random.uniform(1, 2, [20, 5]).astype("float16"),
171 172 173 174 175 176 177
        }
        self.outputs = {'Out': np.heaviside(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
178 179 180 181 182 183 184 185
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=Heaviside_grad(
                self.inputs['X'], self.inputs['Y'], 1 / self.inputs['X'].size
            ),
            check_eager=True,
        )
186 187


188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
class TestHeavisideError(unittest.TestCase):
    def test_input(self):
        paddle.disable_static()

        def test_input_x():
            paddle.heaviside(1, paddle.randn([100]))

        self.assertRaises(ValueError, test_input_x)

        def test_input_y():
            paddle.heaviside(paddle.randn([100]), 1)

        self.assertRaises(ValueError, test_input_y)

        def test_input_xy():
203 204 205
            paddle.heaviside(
                paddle.randn([100], 'float32'), paddle.randn([100], 'float64')
            )
206 207 208 209 210 211

        self.assertRaises(ValueError, test_input_xy)


if __name__ == '__main__':
    unittest.main()