naive_executor.cc 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

X
Xin Pan 已提交
15
#include "paddle/fluid/framework/naive_executor.h"
16

17
#include <string>
18 19
#include <unordered_map>
#include <unordered_set>
20

21
#include "paddle/fluid/framework/op_registry.h"
22
#include "paddle/fluid/framework/scope.h"
W
Wang Guibao 已提交
23
#include "paddle/fluid/framework/variable_helper.h"
24
#include "paddle/fluid/platform/denormal.h"
25 26 27
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
28
#ifdef PADDLE_WITH_TENSORRT
W
wenbin 已提交
29 30
#include "paddle/fluid/operators/tensorrt/tensorrt_engine_op.h"
#endif
31 32 33
#ifdef PADDLE_WITH_INFERENCE_NVTX
#include "paddle/fluid/platform/device/gpu/cuda/cuda_profiler.h"
#endif
34 35 36

namespace paddle {
namespace framework {
37 38 39 40
void NaiveExecutor::Prepare(Scope *scope,
                            const ProgramDesc &program_desc,
                            int block_id,
                            bool with_feed_fetch_ops) {
41
  if (!scope) {
42 43
    scope_ = new framework::Scope;
  } else {
44
    scope_ = scope;
45
  }
46 47

  VLOG(3) << "NaiveExecutor init with scope " << scope;
48 49 50 51
  CreateOps(program_desc, block_id, with_feed_fetch_ops);
}

void NaiveExecutor::Run() {
52 53
#ifdef PADDLE_WITH_MKLDNN
  platform::AttachPointerHashToMKLDNNKey(this, place_);
J
Jacek Czaja 已提交
54
  platform::RegisterModelLayout(ops_, place_);
55
#endif
56
  platform::ScopedFlushDenormal flush;
57 58 59
#ifdef PADDLE_WITH_INFERENCE_NVTX
  platform::CudaNvtxRangePush("model", platform::NvtxRangeColor::Yellow);
#endif
60
  for (auto &op : ops_) {
Y
Yan Chunwei 已提交
61 62
    VLOG(4) << std::this_thread::get_id() << " run "
            << op->DebugStringEx(scope_) << " on scope " << scope_;
63
    op->SetIsCalledByExecutor(false);
64 65 66
#ifdef PADDLE_WITH_INFERENCE_NVTX
    platform::CudaNvtxRangePush(op->Type(), platform::NvtxRangeColor::Green);
#endif
67 68 69 70 71 72 73 74

    // According to reuse table, we share the out tensor's holder.
    if (reuse_cache_.count(op.get())) {
      for (auto &it : reuse_cache_[op.get()]) {
        it.first->ShareBufferWith(*cluster_buffer_[it.second]);
      }
    }

75
    op->Run(*scope_, place_);
76 77 78 79 80 81 82 83 84 85 86

    // Update the shared_holder so that only records the max one.
    if (reuse_cache_.count(op.get())) {
      for (auto &it : reuse_cache_[op.get()]) {
        if (it.first->memory_size() >
            cluster_buffer_[it.second]->memory_size()) {
          cluster_buffer_[it.second] = it.first;
        }
      }
    }

87 88 89
#ifdef PADDLE_WITH_INFERENCE_NVTX
    platform::CudaNvtxRangePop();
#endif
90 91
    for (auto &func : hookfunc_) {
      func(op.get());
92
    }
93
  }
94 95 96
#ifdef PADDLE_WITH_INFERENCE_NVTX
  platform::CudaNvtxRangePop();
#endif
97 98
}

99 100 101 102
void NaiveExecutor::CreateVariables(const ProgramDesc &desc,
                                    int block_id,
                                    bool persistable,
                                    Scope *scope) {
103 104 105
  PADDLE_ENFORCE_NOT_NULL(scope,
                          platform::errors::InvalidArgument(
                              "The Scope to hold variables is nullptr."));
106

107 108
  auto &global_block = desc.Block(block_id);

109
  const auto *anc = scope;
110
  PADDLE_ENFORCE_NE(
111 112
      anc->parent(),
      anc,
113
      platform::errors::InvalidArgument("Input scope should be child scope."));
114 115
  while (anc->parent()) {
    anc = anc->parent();
116 117
  }

Y
Yan Chunwei 已提交
118
  int num_vars = 0;
119 120 121 122
  for (auto &var : global_block.AllVars()) {
    if (var->Name() == framework::kEmptyVarName) {
      continue;
    }
Y
Yan Chunwei 已提交
123
    num_vars++;
124 125 126 127 128 129 130 131 132 133 134 135 136

    if (persistable == var->Persistable()) {
      if (persistable) {
        if (!anc->FindVar(var->Name())) {
          auto *ptr = const_cast<Scope *>(anc)->Var(var->Name());
          VLOG(3) << scope << " Create persistable variable " << var->Name()
                  << ", which pointer is " << ptr;
          InitializeVariable(ptr, var->GetType());
        }
      } else {
        auto *ptr = const_cast<Scope *>(scope)->Var(var->Name());
        VLOG(3) << scope << " Create variable " << var->Name()
                << ", which pointer is " << ptr;
137 138 139 140
        InitializeVariable(ptr, var->GetType());
      }
    }
  }
Y
Yan Chunwei 已提交
141
  VLOG(4) << "naive executor create " << num_vars << " vars";
142 143
}

144 145
void NaiveExecutor::CreateOps(const ProgramDesc &desc,
                              int block_id,
146 147 148 149
                              bool with_feed_fetch_ops) {
  for (const auto &op_desc : desc.Block(block_id).AllOps()) {
    if (!with_feed_fetch_ops &&
        (op_desc->Type() == "feed" || op_desc->Type() == "fetch")) {
150 151
      LOG(INFO) << "---  skip [" << op_desc->Input("X")[0] << "], "
                << op_desc->Type() << " -> " << op_desc->Output("Out")[0];
152 153 154 155 156 157
      continue;
    }
    ops_.emplace_back(OpRegistry::CreateOp(*op_desc));
  }
}

158
phi::DenseTensor *NaiveExecutor::FindTensor(const std::string &name) {
159 160 161
  PADDLE_ENFORCE_NOT_NULL(scope_,
                          platform::errors::PreconditionNotMet(
                              "Need to init scope in NaiveExecutor firstly."));
162
  auto *var = scope_->FindVar(name);
163 164 165
  PADDLE_ENFORCE_NOT_NULL(
      var,
      platform::errors::NotFound("No variable [%s] in current scope.", name));
166
  auto *tensor = const_cast<phi::DenseTensor *>(&var->Get<phi::DenseTensor>());
167 168 169
  return tensor;
}

170
void NaiveExecutor::RegisterOutputHook(const HookFunc &hookfunc) {
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
  hookfunc_.push_back(hookfunc);
}

void NaiveExecutor::MakeReusePlan(
    const std::unordered_map<std::string, std::string> &reuse_table) {
  std::unordered_map<std::string, std::unordered_set<std::string>> clusters;
  for (auto &it : reuse_table) {
    clusters[it.second].insert(it.first);
  }

  std::vector<std::string> cluster_names;
  for (auto &it : clusters) {
    cluster_names.push_back(it.first);
  }
  cluster_buffer_.resize(cluster_names.size());

  for (auto &op : ops_) {
    for (auto &name : op->OutputVars(true)) {
      if (reuse_table.count(name)) {
        const auto &reuse_name = reuse_table.at(name);
        auto it =
            std::find(cluster_names.begin(), cluster_names.end(), reuse_name);
        int idx = it - cluster_names.begin();
        auto *var = scope_->FindVar(name);
        auto *reuse_var = scope_->FindVar(reuse_name);
        if (var && reuse_var && var->IsType<phi::DenseTensor>() &&
            reuse_var->IsType<phi::DenseTensor>()) {
          auto *tensor = var->GetMutable<phi::DenseTensor>();
          auto *reuse_tensor = reuse_var->GetMutable<phi::DenseTensor>();
          cluster_buffer_[idx] = reuse_tensor;
          if (reuse_cache_.count(op.get())) {
            reuse_cache_[op.get()].emplace(tensor, idx);
          } else {
            reuse_cache_[op.get()] =
                std::unordered_map<phi::DenseTensor *, int>{{tensor, idx}};
          }
        }
      }
    }
  }
211 212
}

213 214 215 216
NaiveExecutor::~NaiveExecutor() {
#ifdef PADDLE_WITH_MKLDNN
  // Clear mkl-dnn cache,
  // this is needed to have mkl-dnn unit tests working
217
  platform::ClearMKLDNNCache(place_, this);
218 219 220
#endif
}

W
wenbin 已提交
221
void NaiveExecutor::ResetTrtOps(int num) {
222
#ifdef PADDLE_WITH_TENSORRT
W
wenbin 已提交
223 224 225 226 227 228 229 230 231
  for (auto &op : ops_) {
    if (op->Type() == "tensorrt_engine") {
      operators::TensorRTEngineOp *trtop =
          dynamic_cast<operators::TensorRTEngineOp *>(op.get());
      if (!trtop) return;
      std::string engine_key = trtop->Attr<std::string>("engine_key");
      int engine_predictor_id = trtop->Attr<int>("predictor_id");
      std::string engine_name =
          engine_key + std::to_string(engine_predictor_id);
W
wenbin 已提交
232 233 234
      operators::TensorRTEngine *trt_engine = nullptr;
      // can't get trt engine if int8 calibration table data process.
      if (paddle::inference::Singleton<
W
wenbin 已提交
235
              inference::tensorrt::TRTEngineManager>::Global()
W
wenbin 已提交
236 237 238 239 240 241
              .Has(engine_name)) {
        trt_engine = paddle::inference::Singleton<
                         inference::tensorrt::TRTEngineManager>::Global()
                         .Get(engine_name);
      }
      if (trt_engine && trt_engine->with_dynamic_shape()) {
W
wenbin 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
        LOG(INFO) << "rebuild trt engine, this may cost a lot of time!";
        trt_engine->ResetContext();
        trt_engine->ClearTensorMap();
        trt_engine->SetProfileNum(num);
        auto *anc = scope_->parent();
        while (anc && anc->parent()) {
          anc = anc->parent();
        }
        if (anc == nullptr) {
          anc = scope_;
        }
        trtop->PrepareTRTEngine(*anc, trt_engine);
      }
    }
  }
#endif
}
259

260 261
}  // namespace framework
}  // namespace paddle