engine.cc 9.3 KB
Newer Older
Y
Yan Chunwei 已提交
1 2
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

N
nhzlx 已提交
3 4
Licensed under the Apache License, Version 2.0 (the "License"); you may not use
this file except in compliance with the License.
Y
Yan Chunwei 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/inference/tensorrt/engine.h"

#include <NvInfer.h>
#include <cuda.h>
#include <glog/logging.h>
A
Abhinav Arora 已提交
20
#include <string>
Y
Yan Chunwei 已提交
21
#include "paddle/fluid/inference/analysis/helper.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28
#include "paddle/fluid/inference/tensorrt/helper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace inference {
namespace tensorrt {

29 30
int TensorRTEngine::runtime_batch_ = 1;

31
void TensorRTEngine::Build(const DescType &paddle_model) {
Y
Yan Chunwei 已提交
32 33 34
  PADDLE_ENFORCE(false, "not implemented");
}

35 36
void TensorRTEngine::Execute(int batch_size, std::vector<void *> *buffers,
                             cudaStream_t stream) {
N
nhzlx 已提交
37
  freshDeviceId();
38
  const std::thread::id tid = std::this_thread::get_id();
N
nhzlx 已提交
39
  batch_size_ = batch_size;
40 41 42 43 44 45 46
  if (infer_context_.find(tid) == infer_context_.end()) {
    PADDLE_ENFORCE_NOT_NULL(
        infer_engine_,
        "You should build engine first and then set the context.");
    infer_context_[tid].reset(infer_engine_->createExecutionContext());
  }
  infer_context_[tid]->enqueue(batch_size, buffers->data(), stream, nullptr);
47
  cudaStreamSynchronize(stream);
N
nhzlx 已提交
48 49 50
  SetRuntimeBatch(batch_size);
}

Y
Yan Chunwei 已提交
51
void TensorRTEngine::FreezeNetwork() {
N
nhzlx 已提交
52
  freshDeviceId();
53
  VLOG(3) << "TRT to freeze network";
Y
Yan Chunwei 已提交
54 55 56 57 58 59 60
  PADDLE_ENFORCE(infer_builder_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  PADDLE_ENFORCE(infer_network_ != nullptr,
                 "Call InitNetwork first to initialize network.");
  // build engine.
  infer_builder_->setMaxBatchSize(max_batch_);
  infer_builder_->setMaxWorkspaceSize(max_workspace_);
Z
Zhaolong Xing 已提交
61
  bool enable_fp16 = (precision_ == AnalysisConfig::Precision::kHalf);
62
#if IS_TRT_VERSION_GE(5000)
Z
Zhaolong Xing 已提交
63 64 65 66 67 68 69 70
  if (enable_fp16) {
    bool support_fp16 = infer_builder_->platformHasFastFp16();
    infer_builder_->setFp16Mode(support_fp16);
    if (!support_fp16) {
      LOG(INFO) << "You specify FP16 mode, but the hardware do not support "
                   "FP16 speed up, use FP32 instead.";
    }
  }
71
#else
72
  if (enable_fp16)
73
    LOG(INFO) << "Using FP16 in Paddle-TRT must ensure that the version of TRT "
74 75
                 "is at least 5."
                 "So, use FP32 to run.";
76
#endif
Z
Zhaolong Xing 已提交
77 78 79
  bool enable_int8 = (precision_ == AnalysisConfig::Precision::kInt8);

  if (enable_int8) {
N
nhzlx 已提交
80
    infer_builder_->setInt8Mode(true);
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    if (calibrator_) {
      infer_builder_->setInt8Calibrator(calibrator_);
    } else {
      infer_builder_->setInt8Calibrator(nullptr);

#if IS_TRT_VERSION_GE(5000)
      infer_builder_->setStrictTypeConstraints(true);
      for (auto &quant_range : quant_dynamic_range_) {
        auto tensor = quant_range.first;
        float range = quant_range.second;
        tensor->setDynamicRange(-range, range);
      }

      std::unordered_set<nvinfer1::ITensor *> all_t;
      for (int i = 0; i < infer_network_->getNbLayers(); i++) {
        auto layer = infer_network_->getLayer(i);
        for (int j = 0; j < layer->getNbOutputs(); j++) {
          all_t.insert(layer->getOutput(j));
        }
      }
      for (int i = 0; i < infer_network_->getNbInputs(); i++) {
        all_t.insert(infer_network_->getInput(i));
      }

      for (auto &t : all_t) {
        if (!quant_dynamic_range_.count(t)) {
          LOG(WARNING)
              << "We are in trt int8 mode(not calibration), scale not setted"
              << " for tensor " << t->getName()
              << ", this might be ok when trt does not need this range";
        }
      }
#endif
    }
N
nhzlx 已提交
115
  }
Y
Yan Chunwei 已提交
116 117 118 119 120

  infer_engine_.reset(infer_builder_->buildCudaEngine(*infer_network_));
  PADDLE_ENFORCE(infer_engine_ != nullptr, "build cuda engine failed!");
}

121
nvinfer1::ITensor *TensorRTEngine::DeclareInput(const std::string &name,
Y
Yan Chunwei 已提交
122
                                                nvinfer1::DataType dtype,
123
                                                const nvinfer1::Dims &dims) {
Y
Yan Chunwei 已提交
124 125 126 127
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate input name %s",
                    name);

  PADDLE_ENFORCE(infer_network_ != nullptr, "should initnetwork first");
128
  auto *input = infer_network_->addInput(name.c_str(), dtype, dims);
Y
Yan Chunwei 已提交
129
  PADDLE_ENFORCE(input, "infer network add input %s failed", name);
Y
Yan Chunwei 已提交
130
  buffer_sizes_[name] = kDataTypeSize[static_cast<int>(dtype)] *
131
                        analysis::AccuDims(dims.d, dims.nbDims) * max_batch_;
132
  PADDLE_ENFORCE(input->isNetworkInput());
L
Luo Tao 已提交
133
  TensorRTEngine::SetITensor(name, input);
Y
Yan Chunwei 已提交
134 135 136
  return input;
}

137 138
void TensorRTEngine::DeclareOutput(const nvinfer1::ILayer *layer, int offset,
                                   const std::string &name) {
Y
Yan Chunwei 已提交
139 140 141
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

142
  auto *output = layer->getOutput(offset);
143
  SetITensor(name, output);
Y
Yan Chunwei 已提交
144 145
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
146
  PADDLE_ENFORCE(!output->isNetworkInput());
Y
Yan Chunwei 已提交
147
  infer_network_->markOutput(*output);
148
  PADDLE_ENFORCE(output->isNetworkOutput());
149 150
  // output buffers' size can only be decided later, set zero here to mark this
  // and will reset later.
Y
Yan Chunwei 已提交
151 152 153
  buffer_sizes_[name] = 0;
}

N
nhzlx 已提交
154 155 156 157
bool TensorRTEngine::HasDeclared(const std::string &name) {
  return buffer_sizes_.count(name) > 0;
}

158
void TensorRTEngine::DeclareOutput(const std::string &name) {
L
Luo Tao 已提交
159 160 161
  PADDLE_ENFORCE_EQ(0, buffer_sizes_.count(name), "duplicate output name %s",
                    name);

162
  auto *output = TensorRTEngine::GetITensor(name);
L
Luo Tao 已提交
163 164
  PADDLE_ENFORCE(output != nullptr);
  output->setName(name.c_str());
165
  PADDLE_ENFORCE(!output->isNetworkInput());
L
Luo Tao 已提交
166
  infer_network_->markOutput(*output);
167 168
  // output buffers' size can only be decided later, set zero here to mark this
  // and will reset later.
L
Luo Tao 已提交
169 170 171
  buffer_sizes_[name] = 0;
}

172 173
void TensorRTEngine::SetITensor(const std::string &name,
                                nvinfer1::ITensor *tensor) {
L
Luo Tao 已提交
174
  PADDLE_ENFORCE(tensor != nullptr);
Y
Yan Chunwei 已提交
175
  PADDLE_ENFORCE_EQ(0, itensor_map_.count(name), "duplicate ITensor name %s",
L
Luo Tao 已提交
176 177 178 179
                    name);
  itensor_map_[name] = tensor;
}

180
nvinfer1::ITensor *TensorRTEngine::GetITensor(const std::string &name) {
Y
Yan Chunwei 已提交
181
  PADDLE_ENFORCE(itensor_map_.count(name), "no ITensor %s", name);
L
Luo Tao 已提交
182 183 184
  return itensor_map_[name];
}

185 186 187 188
void TensorRTEngine::SetRuntimeBatch(size_t batch_size) {
  runtime_batch_ = batch_size;
}

189 190 191 192
float *TensorRTEngine::GetWeightCPUData(const std::string &name,
                                        framework::Tensor *weight_tensor,
                                        bool enable_int8,
                                        const std::vector<float> &scale) {
193 194
  static int name_suffix_counter = 0;
  std::string name_suffix = std::to_string(name_suffix_counter);
P
Pei Yang 已提交
195 196
  std::string splitter = "__";
  std::string name_with_suffix = name + splitter + name_suffix;
197 198
  auto w_dims = weight_tensor->dims();
  platform::CPUPlace cpu_place;
199 200 201 202 203 204 205 206 207 208 209
  PADDLE_ENFORCE_EQ(
      weight_map.count(name_with_suffix), 0,
      "During TRT Op converter: We set weight %s with the same name "
      "twice into the weight_map",
      name_with_suffix);
  weight_map[name_with_suffix].reset(new framework::Tensor());
  weight_map[name_with_suffix]->Resize(weight_tensor->dims());
  TensorCopySync(*weight_tensor, cpu_place, weight_map[name_with_suffix].get());
  float *weight_data =
      weight_map[name_with_suffix]->mutable_data<float>(cpu_place);
  name_suffix_counter += 1;
210 211 212

  if (enable_int8) {
    // when the op is fc, scale's size should be 1
213
    // when the op is conv, scale's size should be w_dims[0]
214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
    bool valid_scale_size =
        (scale.size() == 1 || scale.size() == static_cast<size_t>(w_dims[0]));
    PADDLE_ENFORCE(valid_scale_size, "TRT int8 quant: invalid scale size");
    for (int i = 0; i < weight_tensor->numel(); i++) {
      bool is_valid_int8 =
          ((weight_data[i] >= -128) && (weight_data[i] <= 127));
      PADDLE_ENFORCE(is_valid_int8,
                     "We are in anakin subgraph int8 mode, the weight of conv "
                     "should be in range [-128, 127]");
      if (scale.size() == 1) {
        weight_data[i] *= (scale[0] / 127);
      } else {
        PADDLE_ENFORCE(w_dims.size() == 4,
                       "TRT int8 quant : We only use the channel quant for "
                       "conv op, so the weight dims should be 4.");
        int inner_size = w_dims[1] * w_dims[2] * w_dims[3];
        weight_data[i] *= (scale[i / inner_size] / 127);
      }
    }
  }
  return weight_data;
}

237 238
int TensorRTEngine::GetRuntimeBatch() { return runtime_batch_; }

N
nhzlx 已提交
239
nvinfer1::IPluginLayer *TensorRTEngine::AddPlugin(
240 241
    nvinfer1::ITensor *const *inputs, int num_inputs,
    plugin::PluginTensorRT *plugin) {
242
  owned_plugin_.emplace_back(plugin);
243
  return infer_network_.get()->addPluginExt(inputs, num_inputs, *plugin);
244 245
}

N
nhzlx 已提交
246 247 248 249 250 251 252
void TensorRTEngine::freshDeviceId() {
  int count;
  cudaGetDeviceCount(&count);
  PADDLE_ENFORCE_LT(device_id_, count);
  cudaSetDevice(device_id_);
}

Y
Yan Chunwei 已提交
253 254 255
}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle