layer_function_generator.py 14.2 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14

D
dzhwinter 已提交
15 16
import re
import functools
17
import warnings
Y
yuyang18 已提交
18
import string
D
dzhwinter 已提交
19

20
from io import StringIO
21
from ..proto import framework_pb2
22 23 24 25 26 27 28
from ..framework import (
    OpProtoHolder,
    Variable,
    core,
    convert_np_dtype_to_dtype_,
    in_dygraph_mode,
)
29
from ..layer_helper import LayerHelper
30
from ..data_feeder import check_variable_and_dtype
31
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
32

33
__all__ = [
34 35 36 37 38
    'generate_layer_fn',
    'generate_activation_fn',
    'generate_inplace_fn',
    'autodoc',
    'templatedoc',
39
]
D
dzhwinter 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54


def _convert_(name):
    """
    Formatting.
    Args:
       name: The name/alias
    This function takes in a name and converts it to a standard format of
    group1_group2. Where as per the regular expression, group1 can have
    alphabets and numbers and group2 has capital alphabets.
    """
    s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name)
    return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower()


Y
yuyang18 已提交
55 56 57 58
def _type_to_str_(tp):
    return framework_pb2.AttrType.Name(tp)


59 60 61 62 63
_two_dollar_pattern_ = re.compile(r"\$\$([^\$]+)\$\$")
_single_dollar_pattern_ = re.compile(r"\$([^\$]+)\$")
_two_bang_pattern_ = re.compile(r"!!([^!]+)!!")


Y
yuyang18 已提交
64
def escape_math(text):
65
    # return _two_bang_pattern_.sub(
N
Noel 已提交
66 67 68 69
    #    r'$$\1$$',
    #    _single_dollar_pattern_.sub(r':math:\n`\1`',
    #                                _two_dollar_pattern_.sub(r"!!\1!!", text)))
    return _two_dollar_pattern_.sub(r':math:`\1`', text)
Y
yuyang18 已提交
70 71


72 73 74
def _generate_doc_string_(
    op_proto, additional_args_lines=None, skip_attrs_set=None
):
D
dzhwinter 已提交
75 76 77 78 79 80 81 82 83 84 85
    """
    Generate docstring by OpProto
    Args:
        op_proto (framework_pb2.OpProto): a protobuf message typed OpProto
    Returns:
        str: the document string
    """

    if not isinstance(op_proto, framework_pb2.OpProto):
        raise TypeError("OpProto should be `framework_pb2.OpProto`")

86
    buf = StringIO()
87
    buf.write(escape_math(op_proto.comment))
D
dzhwinter 已提交
88 89
    buf.write('\nArgs:\n')
    for each_input in op_proto.inputs:
90
        line_begin = '    {0}'.format(_convert_(each_input.name))
D
dzhwinter 已提交
91
        buf.write(line_begin)
92
        buf.write(" (Tensor): ")
93 94 95 96 97
        buf.write(escape_math(each_input.comment))
        if each_input.duplicable:
            buf.write("  Duplicatable.")
        if each_input.dispensable:
            buf.write("  Optional.")
D
dzhwinter 已提交
98 99
        buf.write('\n')

100
    skip_attrs = OpProtoHolder.generated_op_attr_names()
101 102 103
    # attr use_mkldnn and is_test also should not be visible to users.
    skip_attrs.add("use_mkldnn")
    skip_attrs.add("is_test")
104
    skip_attrs.add("use_cudnn")
105 106 107 108 109

    if skip_attrs_set:
        for t in skip_attrs_set:
            skip_attrs.add(t)

D
dzhwinter 已提交
110
    for each_attr in op_proto.attrs:
111 112
        if each_attr.name in skip_attrs:
            continue
D
dzhwinter 已提交
113 114 115 116 117
        buf.write('    ')
        buf.write(each_attr.name)
        buf.write(' (')
        buf.write(_type_to_str_(each_attr.type))
        buf.write('): ')
118
        buf.write(escape_math(each_attr.comment))
D
dzhwinter 已提交
119 120
        buf.write('\n')

S
sneaxiy 已提交
121 122 123 124 125 126 127
    if additional_args_lines is not None:
        for line in additional_args_lines:
            line = line.strip()
            buf.write('    ')
            buf.write(line)
            buf.write('\n')

D
dzhwinter 已提交
128 129 130 131 132 133
    if len(op_proto.outputs) != 0:
        buf.write('\nReturns:\n')
        buf.write('    ')
        for each_opt in op_proto.outputs:
            if not each_opt.intermediate:
                break
134 135
        buf.write(_convert_(each_opt.name))
        buf.write(' (Tensor): ')
136
        buf.write(escape_math(each_opt.comment))
D
dzhwinter 已提交
137 138 139 140

    return buf.getvalue()


141
def generate_layer_fn(op_type):
142
    """Register the Python layer for an Operator.
D
dzhwinter 已提交
143
    Args:
144
       op_type: The name of the operator to be created.
D
dzhwinter 已提交
145 146 147 148
    This function takes in the operator type (sigmoid, mean , average etc) and
    creates the operator functionality.
    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)
149 150 151 152 153 154
    not_intermediate_outputs = [
        output for output in op_proto.outputs if not output.intermediate
    ]
    intermediate_outputs = [
        output for output in op_proto.outputs if output.intermediate
    ]
D
dzhwinter 已提交
155 156

    if len(not_intermediate_outputs) != 1:
157 158 159 160
        raise ValueError(
            "Only one non intermediate output operator can be",
            "automatically generated. {0}".format(op_type),
        )
D
dzhwinter 已提交
161 162 163

    if not_intermediate_outputs[0].duplicable:
        raise ValueError(
164 165
            "Only non duplicable op can be automatically generated."
        )
D
dzhwinter 已提交
166 167 168

    for output in intermediate_outputs:
        if output.duplicable:
169 170 171 172
            raise ValueError(
                "The op can be automatically generated only when ",
                "all intermediate ops are not duplicable.",
            )
D
dzhwinter 已提交
173 174 175 176

    o_name = not_intermediate_outputs[0].name
    intermediate_output_names = [output.name for output in intermediate_outputs]

Y
Yu Yang 已提交
177
    def infer_and_check_dtype(op_proto, *args, **kwargs):
D
dzhwinter 已提交
178 179 180 181 182 183 184 185 186 187
        """
        This function performs the sanity check for dtype and
        instance type.
        """
        dtype = None
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
188
            if len(val) == 0:
189 190
                if len(args) == 0:
                    continue
Y
Yu Yang 已提交
191 192 193
                val = [args[0]]
                args = args[1:]

D
dzhwinter 已提交
194 195
            for each in val:
                if not isinstance(each, Variable):
196
                    raise ValueError(
197 198
                        "input of {0} must be variable".format(op_type)
                    )
D
dzhwinter 已提交
199 200 201 202 203 204

                if dtype is None:
                    dtype = each.dtype
                elif dtype != each.dtype:
                    raise ValueError(
                        "operator {0} must input same dtype. {1} vs {2}".format(
205 206 207
                            op_type, dtype, each.dtype
                        )
                    )
D
dzhwinter 已提交
208

W
Wu Yi 已提交
209 210 211 212 213 214 215 216 217
        if dtype is None:
            arg_dtype = kwargs.get("dtype")
            if arg_dtype:
                if not isinstance(arg_dtype, core.VarDesc.VarType):
                    dtype = convert_np_dtype_to_dtype_(arg_dtype)
                else:
                    dtype = arg_dtype
            else:
                dtype = core.VarDesc.VarType.FP32
D
dzhwinter 已提交
218 219
        return dtype

Y
Yu Yang 已提交
220
    def func(*args, **kwargs):
D
dzhwinter 已提交
221 222
        helper = LayerHelper(op_type, **kwargs)

Y
Yu Yang 已提交
223
        dtype = infer_and_check_dtype(op_proto, *args, **kwargs)
D
dzhwinter 已提交
224 225 226 227 228 229 230

        inputs = dict()
        for ipt in op_proto.inputs:
            name = _convert_(ipt.name)
            val = kwargs.pop(name, [])
            if not isinstance(val, list) and not isinstance(val, tuple):
                val = [val]
Y
Yu Yang 已提交
231 232 233
            if len(val) == 0 and len(args) != 0:
                val = args[0]
                args = args[1:]
D
dzhwinter 已提交
234 235 236
            inputs[ipt.name] = val

        outputs = dict()
237 238
        out = kwargs.pop(_convert_(o_name), [])
        if out:
239 240 241 242 243
            out_var = (
                out[0]
                if (isinstance(out, list) or isinstance(out, tuple))
                else out
            )
244
        else:
X
Xin Pan 已提交
245
            out_var = helper.create_variable_for_type_inference(dtype=dtype)
246
        outputs[o_name] = [out_var]
D
dzhwinter 已提交
247
        for name in intermediate_output_names:
X
Xin Pan 已提交
248 249 250
            outputs[name] = [
                helper.create_variable_for_type_inference(dtype=dtype)
            ]
251 252 253
        helper.append_op(
            type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs
        )
254
        return helper.append_activation(out_var)
D
dzhwinter 已提交
255 256 257 258 259 260

    func.__name__ = op_type
    func.__doc__ = _generate_doc_string_(op_proto)
    return func


261
def generate_activation_fn(op_type):
262 263 264 265 266 267 268 269
    """Register the Python layer for an Operator without Attribute.
    Args:
       op_type: The name of the operator to be created.
    This function takes in the operator type (sigmoid, exp , tanh etc) and
    creates the operator functionality.
    """
    op_proto = OpProtoHolder.instance().get_op_proto(op_type)

T
tensor-tang 已提交
270
    def func(x, name=None):
271 272
        if in_dygraph_mode() and hasattr(_C_ops, op_type):
            op = getattr(_C_ops, op_type)
273 274
            return op(x)
        # TODO(dev): Because some ops' yaml has not been migrated.
姜永久 已提交
275
        if in_dygraph_mode() and hasattr(_legacy_C_ops, op_type):
276
            op = getattr(_legacy_C_ops, op_type)
277
            return op(x)
278

279
        if op_type not in ["abs", "exp", "square"]:
280
            check_variable_and_dtype(
281
                x, 'x', ['float16', 'float32', 'float64', 'uint16'], op_type
282
            )
283 284
        else:
            # abs exp square ops support dtype(int32, int64, float16, float32, float64)
285 286 287 288 289 290 291 292 293 294 295
            check_variable_and_dtype(
                x,
                'x',
                [
                    'int32',
                    'int64',
                    'float16',
                    'float32',
                    'float64',
                    'complex64',
                    'complex128',
296
                    'uint16',
297 298 299
                ],
                op_type,
            )
300

301 302
        helper = LayerHelper(op_type, **locals())

X
Xin Pan 已提交
303
        output = helper.create_variable_for_type_inference(dtype=x.dtype)
T
tensor-tang 已提交
304
        helper.append_op(type=op_type, inputs={"X": x}, outputs={"Out": output})
305 306 307
        return output

    func.__name__ = op_type
308 309 310
    func.__doc__ = _generate_doc_string_(
        op_proto,
        additional_args_lines=[
311
            "name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`."
312 313
        ],
    )
314 315 316
    return func


317 318 319 320 321 322 323 324 325 326
def generate_inplace_fn(inplace_op_type):
    """Register the Python layer for an Inplace Operator without Attribute.
    Args:
       inplace_op_type: The name of the inplace operator to be created.
    This function takes in the inplace operator type (exp_ , ceil_ etc) and
    creates the operator functionality.
    """
    origin_op_type = inplace_op_type[:-1]

    def func(x, name=None):
姜永久 已提交
327
        if in_dygraph_mode():
328
            op = getattr(_legacy_C_ops, inplace_op_type)
329
            return op(x)
姜永久 已提交
330 331 332 333 334
        else:
            warnings.warn(
                "In static mode, {}() is the same as {}() and does not perform inplace operation.".format(
                    inplace_op_type, origin_op_type
                )
335
            )
336
            from ..dygraph.base import in_to_static_mode
W
wanghuancoder 已提交
337 338

            if (
339
                in_to_static_mode()
W
wanghuancoder 已提交
340 341 342 343 344 345 346
                and hasattr(x, "is_view_var")
                and x.is_view_var
            ):
                raise ValueError(
                    'Sorry about what\'s happend. In to_static mode, %s\'s output variable %s is a viewed Tensor in dygraph. This will result in inconsistent calculation behavior between dynamic and static graphs. You mast find the location of the strided API be called, and call %s = %s.assign().'
                    % (inplace_op_type, x.name, x.name, x.nameb)
                )
姜永久 已提交
347
            return generate_activation_fn(origin_op_type)(x, name)
348 349 350 351

    func.__name__ = inplace_op_type
    func.__doc__ = """
Inplace version of ``{0}`` API, the output Tensor will be inplaced with input ``x``.
352
Please refer to :ref:`api_base_layers_{1}`.
353 354 355
""".format(
        origin_op_type, origin_op_type
    )
356 357 358 359

    return func


360 361
def autodoc(comment=""):
    def __impl__(func):
362 363 364 365 366 367
        func.__doc__ = (
            _generate_doc_string_(
                OpProtoHolder.instance().get_op_proto(func.__name__)
            )
            + comment
        )
368 369 370
        return func

    return __impl__
Y
yuyang18 已提交
371 372


Y
yuyang18 已提交
373
def templatedoc(op_type=None):
Y
yuyang18 已提交
374 375 376 377 378 379 380 381
    """
    Decorator of layer function. It will use the docstring from the layer
    function as the template. The template arguments are:
    * ${comment}: The operator comment written in CPP.
    * ${{name}_comment}: The comment of ${name} written with AddAttr, AddOutput,
        and AddInput. The ${name} is Python snake style. i.e., xxx_xxx.
    * ${{name}_type}: The type of ${name}.
    Returns:
Y
yuyang18 已提交
382
        Decorated function.
Y
yuyang18 已提交
383 384
    """

Y
yuyang18 已提交
385 386 387
    def trim_ending_dot(msg):
        return msg.rstrip('.')

Y
yuyang18 已提交
388
    def __impl__(func):
Y
yuyang18 已提交
389 390 391 392 393
        if op_type is None:
            op_type_name = func.__name__
        else:
            op_type_name = op_type
        op_proto = OpProtoHolder.instance().get_op_proto(op_type_name)
Y
yuyang18 已提交
394
        tmpl = string.Template(func.__doc__)
Y
yuyang18 已提交
395 396 397 398

        comment_lines = op_proto.comment.split("\n")
        comment = ""
        for line in comment_lines:
Y
yuyang18 已提交
399 400
            line = line.strip()
            if len(line) != 0:
Y
yuyang18 已提交
401
                comment += escape_math(line)
Y
yuyang18 已提交
402
                comment += " "
Y
yuyang18 已提交
403 404
            elif len(comment) != 0:
                comment += "\n    \n    "
Y
yuyang18 已提交
405

Y
yuyang18 已提交
406
        args = {"comment": trim_ending_dot(comment)}
Y
yuyang18 已提交
407 408
        for each_input in op_proto.inputs:
            input_name = _convert_(each_input.name)
Y
yuyang18 已提交
409
            args["{0}_comment".format(input_name)] = trim_ending_dot(
410 411
                each_input.comment
            )
Y
yuyang18 已提交
412 413 414
            args["{0}_type".format(input_name)] = "Variable"
        for each_attr in op_proto.attrs:
            input_name = _convert_(each_attr.name)
Y
yuyang18 已提交
415
            args["{0}_comment".format(input_name)] = trim_ending_dot(
416 417
                each_attr.comment
            )
Y
yuyang18 已提交
418 419 420 421
            args["{0}_type".format(input_name)] = _type_to_str_(each_attr.type)

        for each_opt in op_proto.outputs:
            output_name = _convert_(each_opt.name)
Y
yuyang18 已提交
422
            args["{0}_comment".format(output_name)] = trim_ending_dot(
423 424
                each_opt.comment
            )
Y
yuyang18 已提交
425 426 427 428 429
            args["{0}_type".format(output_name)] = "Variable"
        func.__doc__ = tmpl.substitute(args)
        return func

    return __impl__
430 431 432 433


def add_sample_code(func, sample_code):
    """
434
    Append sample code for dynamically generated functions.
435 436 437 438 439
    Args:
       func: The function of the function to be append sample code to.
       sample_code: sample code session in rst format.
    """
    func.__doc__ = func.__doc__ + sample_code