Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
Paddle
提交
a7512db2
P
Paddle
项目概览
PaddlePaddle
/
Paddle
1 年多 前同步成功
通知
2302
Star
20931
Fork
5422
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
1423
列表
看板
标记
里程碑
合并请求
543
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
1,423
Issue
1,423
列表
看板
标记
里程碑
合并请求
543
合并请求
543
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
a7512db2
编写于
9月 26, 2019
作者:
G
gongweibao
提交者:
GitHub
9月 26, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Polish elementwise max min pow document to add more examples. (#19946)
Polish elementwise max min pow document to add more examples
上级
2b5b4b3c
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
250 addition
and
35 deletion
+250
-35
paddle/fluid/API.spec
paddle/fluid/API.spec
+9
-9
paddle/fluid/operators/elementwise/elementwise_max_op.cc
paddle/fluid/operators/elementwise/elementwise_max_op.cc
+17
-0
paddle/fluid/operators/elementwise/elementwise_min_op.cc
paddle/fluid/operators/elementwise/elementwise_min_op.cc
+17
-0
paddle/fluid/operators/elementwise/elementwise_op.h
paddle/fluid/operators/elementwise/elementwise_op.h
+42
-20
paddle/fluid/operators/elementwise/elementwise_pow_op.cc
paddle/fluid/operators/elementwise/elementwise_pow_op.cc
+9
-0
python/paddle/fluid/layers/layer_function_generator.py
python/paddle/fluid/layers/layer_function_generator.py
+8
-1
python/paddle/fluid/layers/nn.py
python/paddle/fluid/layers/nn.py
+148
-5
未找到文件。
paddle/fluid/API.spec
浏览文件 @
a7512db2
...
...
@@ -236,15 +236,15 @@ paddle.fluid.layers.unique_with_counts (ArgSpec(args=['x', 'dtype'], varargs=Non
paddle.fluid.layers.expand (ArgSpec(args=['x', 'expand_times', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', '7b97042c3ba55fb5fec6a06308523b73'))
paddle.fluid.layers.sequence_concat (ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,)), ('document', 'b992616c1afbd6b0c2a897ac23036381'))
paddle.fluid.layers.scale (ArgSpec(args=['x', 'scale', 'bias', 'bias_after_scale', 'act', 'name'], varargs=None, keywords=None, defaults=(1.0, 0.0, True, None, None)), ('document', '463e4713806e5adaa4d20a41e2218453'))
paddle.fluid.layers.elementwise_add (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
5c0fb7298aec32525f96d451ae4c2851
'))
paddle.fluid.layers.elementwise_div (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
1da49b7cda887dd84087ef8c060fcf6a
'))
paddle.fluid.layers.elementwise_sub (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
992559c8327c61babd2ed25fc9047fbf
'))
paddle.fluid.layers.elementwise_mul (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
213db11a61dcb0f31159d343cc35e2f5
'))
paddle.fluid.layers.elementwise_max (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
409167a1409ec31b0d3a2f8852a7943f
'))
paddle.fluid.layers.elementwise_min (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
4e1322836eb69473d5606bfe346c5375
'))
paddle.fluid.layers.elementwise_pow (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', 'b
9e7e9fa1ca28d8b6f07cc59eadb4a02
'))
paddle.fluid.layers.elementwise_mod (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
614984304f810f3ddae6b489ec01296b
'))
paddle.fluid.layers.elementwise_floordiv (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
a8c4b26d899246378e878f169582c7a4
'))
paddle.fluid.layers.elementwise_add (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
7fa4f12d3dad010f3862df271b31e4de
'))
paddle.fluid.layers.elementwise_div (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
39ee2e90c1ede44e47f279fc466f3151
'))
paddle.fluid.layers.elementwise_sub (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
890017540bd2f982f80da81a98832609
'))
paddle.fluid.layers.elementwise_mul (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
7994818219805a2ec34a37cd9baceeb7
'))
paddle.fluid.layers.elementwise_max (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
3b3c2e528712552f6f44aef88796321d
'))
paddle.fluid.layers.elementwise_min (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
817e8ce2b39de9b4a94b1b6d592144e0
'))
paddle.fluid.layers.elementwise_pow (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', 'b
5e3964c8711058634cf5b57b4884258
'))
paddle.fluid.layers.elementwise_mod (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
4101ee1f9280f00dce54054ccc434890
'))
paddle.fluid.layers.elementwise_floordiv (ArgSpec(args=['x', 'y', 'axis', 'act', 'name'], varargs=None, keywords=None, defaults=(-1, None, None)), ('document', '
67e6101c31314d4082621e8e443cfb68
'))
paddle.fluid.layers.uniform_random_batch_size_like (ArgSpec(args=['input', 'shape', 'dtype', 'input_dim_idx', 'output_dim_idx', 'min', 'max', 'seed'], varargs=None, keywords=None, defaults=('float32', 0, 0, -1.0, 1.0, 0)), ('document', 'cfa120e583cd4a5bfa120c8a26f98a28'))
paddle.fluid.layers.gaussian_random (ArgSpec(args=['shape', 'mean', 'std', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')), ('document', 'ebbf399d4e03190ce5dc9488f05c92f4'))
paddle.fluid.layers.sampling_id (ArgSpec(args=['x', 'min', 'max', 'seed', 'dtype'], varargs=None, keywords=None, defaults=(0.0, 1.0, 0, 'float32')), ('document', 'c39b647b6cf08e058d96ee503d5284fe'))
...
...
paddle/fluid/operators/elementwise/elementwise_max_op.cc
浏览文件 @
a7512db2
...
...
@@ -24,6 +24,23 @@ class ElementwiseMaxOpMaker : public ElementwiseOpMaker {
protected:
std
::
string
GetName
()
const
override
{
return
"Max"
;
}
std
::
string
GetEquation
()
const
override
{
return
"Out = max(X, Y)"
;
}
void
AddInputX
()
override
{
AddInput
(
"X"
,
"(Variable), The first tensor holding the elements to be compared."
);
}
void
AddInputY
()
override
{
AddInput
(
"Y"
,
"(Variable), The second tensor holding the elements to be compared."
);
}
std
::
string
GetOpFuntionality
()
const
override
{
return
"Compare two tensors and returns a new tensor containing the "
"element-wise maxima."
;
}
};
class
ElementwiseMaxGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
...
...
paddle/fluid/operators/elementwise/elementwise_min_op.cc
浏览文件 @
a7512db2
...
...
@@ -24,6 +24,23 @@ class ElementwiseMinOpMaker : public ElementwiseOpMaker {
protected:
std
::
string
GetName
()
const
override
{
return
"Min"
;
}
std
::
string
GetEquation
()
const
override
{
return
"Out = min(X, Y)"
;
}
void
AddInputX
()
override
{
AddInput
(
"X"
,
"(Variable), The first tensor holding the elements to be compared."
);
}
void
AddInputY
()
override
{
AddInput
(
"Y"
,
"(Variable), The second tensor holding the elements to be compared."
);
}
std
::
string
GetOpFuntionality
()
const
override
{
return
"Compare two tensors and returns a new tensor containing the "
"element-wise minima."
;
}
};
class
ElementwiseMinGradOpDescMaker
:
public
framework
::
SingleGradOpDescMaker
{
...
...
paddle/fluid/operators/elementwise/elementwise_op.h
浏览文件 @
a7512db2
...
...
@@ -96,12 +96,15 @@ class ElementwiseOpInferVarType
class
ElementwiseOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
public:
void
Make
()
final
{
AddInput
(
"X"
,
"(Tensor), The first input tensor of elementwise op."
);
AddInput
(
"Y"
,
"(Tensor), The second input tensor of elementwise op."
);
AddOutput
(
"Out"
,
"The output of elementwise op."
);
AddInputX
();
AddInputY
();
AddOpOutput
();
AddAttr
<
int
>
(
"axis"
,
"(int, default -1). The start dimension index "
"for broadcasting Y onto X."
)
"(int, default -1). If X.dimension != Y.dimension,"
"Y.dimension must be a subsequence of x.dimension. And axis "
"is the start dimension index "
"for broadcasting Y onto X. "
)
.
SetDefault
(
-
1
)
.
EqualGreaterThan
(
-
1
);
AddAttr
<
bool
>
(
"use_mkldnn"
,
"(bool, default false). Used by MKLDNN."
)
...
...
@@ -120,14 +123,41 @@ class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker {
"Defaults to
\"\"
. Specify the data format of the output data, "
"the input will be transformed automatically. "
)
.
SetDefault
(
""
);
AddComment
(
string
::
Sprintf
(
R"DOC(
Elementwise %s Operator
AddOpComment
();
}
protected:
virtual
void
AddInputX
()
{
AddInput
(
"X"
,
"(Tensor), The first input tensor of elementwise op."
);
}
virtual
void
AddInputY
()
{
AddInput
(
"Y"
,
"(Tensor), The second input tensor of elementwise op."
);
}
virtual
void
AddOpOutput
()
{
AddOutput
(
"Out"
,
"N-dimension tensor. A location into which the result is stored. "
"It's dimension "
"equals with x"
);
}
virtual
void
AddOpComment
()
{
AddComment
(
GetCommentExamples
());
}
virtual
std
::
string
GetOpFuntionality
()
const
{
return
""
;
}
virtual
std
::
string
GetName
()
const
=
0
;
virtual
std
::
string
GetEquation
()
const
=
0
;
std
::
string
GetCommentExamples
()
const
{
return
string
::
Sprintf
(
R"DOC(
Elementwise %s Operator.
%s
The equation is:
$$%s$$
- $X$: a tensor of any dimension.
- $X$: a tensor of any dimension.
- $Y$: a tensor whose dimensions must be less than or equal to the dimensions of $X$.
There are two cases for this operator:
...
...
@@ -137,10 +167,10 @@ There are two cases for this operator:
For case 2:
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
for broadcasting $Y$ onto $X$.
1. Broadcast $Y$ to match the shape of $X$, where $axis$ is the start dimension index
for broadcasting $Y$ onto $X$.
2. If $axis$ is -1 (default), $axis = rank(X) - rank(Y)$.
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
3. The trailing dimensions of size 1 for $Y$ will be ignored for the consideration of
subsequence, such as shape(Y) = (2, 1) => (2).
For example:
...
...
@@ -154,17 +184,9 @@ For example:
shape(X) = (2, 3, 4, 5), shape(Y) = (2), with axis=0
shape(X) = (2, 3, 4, 5), shape(Y) = (2, 1), with axis=0
The inputs $X$ and $Y$ can carry the different LoD information.
But the output only shares the LoD information with the input $X$.
)DOC"
,
GetName
(),
GetEquation
()
));
GetName
(),
GetOpFuntionality
(),
GetEquation
(
));
}
protected:
virtual
std
::
string
GetName
()
const
=
0
;
virtual
std
::
string
GetEquation
()
const
=
0
;
};
class
ElementwiseOpGrad
:
public
framework
::
OperatorWithKernel
{
...
...
paddle/fluid/operators/elementwise/elementwise_pow_op.cc
浏览文件 @
a7512db2
...
...
@@ -38,6 +38,15 @@ class ElementwisePowOpMaker : public ElementwiseOpMaker {
protected:
std
::
string
GetName
()
const
override
{
return
"Pow"
;
}
std
::
string
GetEquation
()
const
override
{
return
"Out = X ^ Y"
;
}
void
AddInputX
()
override
{
AddInput
(
"X"
,
"(Variable), The Base."
);
}
void
AddInputY
()
override
{
AddInput
(
"Y"
,
"(Variable), The exponents."
);
}
std
::
string
GetOpFuntionality
()
const
override
{
return
"First tensor elements raised to powers from the second tensor, "
"element-wise."
;
}
};
}
// namespace operators
}
// namespace paddle
...
...
python/paddle/fluid/layers/layer_function_generator.py
浏览文件 @
a7512db2
...
...
@@ -61,7 +61,9 @@ def escape_math(text):
_two_dollar_pattern_
.
sub
(
r
"!!\1!!"
,
text
)))
def
_generate_doc_string_
(
op_proto
,
additional_args_lines
=
None
):
def
_generate_doc_string_
(
op_proto
,
additional_args_lines
=
None
,
skip_attrs_set
=
None
):
"""
Generate docstring by OpProto
...
...
@@ -93,6 +95,11 @@ def _generate_doc_string_(op_proto, additional_args_lines=None):
skip_attrs
.
add
(
"use_mkldnn"
)
skip_attrs
.
add
(
"is_test"
)
skip_attrs
.
add
(
"use_cudnn"
)
if
skip_attrs_set
:
for
t
in
skip_attrs_set
:
skip_attrs
.
add
(
t
)
for
each_attr
in
op_proto
.
attrs
:
if
each_attr
.
name
in
skip_attrs
:
continue
...
...
python/paddle/fluid/layers/nn.py
浏览文件 @
a7512db2
...
...
@@ -11718,14 +11718,139 @@ def elementwise_mul(x, y, axis=-1, act=None, name=None):
def elementwise_max(x, y, axis=-1, act=None, name=None):
"""
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.array([2, 3, 4]),
"y": np.array([1, 5, 2])
}
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
y = fluid.layers.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_max(x, y)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) #[2, 5, 4]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.ones((2, 3, 4, 5)).astype('float32'),
"y": np.zeros((3, 4)).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_max(x, y, axis=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value)#[[[[1., 1., 1., 1., 1.] .... [1., 1., 1., 1., 1.]]]]
"""
return _elementwise_op(LayerHelper('elementwise_max', **locals()))
def elementwise_min(x, y, axis=-1, act=None, name=None):
"""
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.array([2, 3, 4]),
"y": np.array([1, 5, 2])
}
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
y = fluid.layers.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_max(x, y)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) #[1, 3, 2]
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.ones((2, 3, 4, 5)).astype('float32'),
"y": np.zeros((3, 4)).astype('float32')
}
x = fluid.layers.data(name="x", shape=[2,3,4,5], dtype='float32')
y = fluid.layers.data(name="y", shape=[3,4], dtype='float32')
z = fluid.layers.elementwise_max(x, y, axis=1)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value)#[[[[0., 0., 0., 0., 0.] .... [0., 0., 0., 0., 0.]]]]
"""
return _elementwise_op(LayerHelper('elementwise_min', **locals()))
def elementwise_pow(x, y, axis=-1, act=None, name=None):
"""
Examples:
.. code-block:: python
import paddle.fluid as fluid
import numpy as np
def gen_data():
return {
"x": np.array([2, 3, 4]),
"y": np.array([1, 5, 2])
}
x = fluid.layers.data(name="x", shape=[3], dtype='float32')
y = fluid.layers.data(name="y", shape=[3], dtype='float32')
z = fluid.layers.elementwise_pow(x, y)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
z_value = exe.run(feed=gen_data(),
fetch_list=[z.name])
print(z_value) #[2, 243, 16]
"""
return _elementwise_op(LayerHelper('elementwise_pow', **locals()))
...
...
@@ -11738,15 +11863,33 @@ def elementwise_floordiv(x, y, axis=-1, act=None, name=None):
for func in [
elementwise_add,
elementwise_div,
elementwise_sub,
elementwise_mul,
elementwise_max,
elementwise_min,
elementwise_pow,
elementwise_min,
]:
op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
func.__doc__ = _generate_doc_string_(
op_proto,
additional_args_lines=[
"axis (int32, optional): If X.dimension != Y.dimension, \
Y.dimension must be a subsequence of x.dimension. \
And axis is the start dimension index for broadcasting Y onto X. ",
"act (string, optional): Activation applied to the output. \
Default is None. Details: :ref:`api_guide_activations_en` ",
"name (string, optional): Name of the output. \
Default is None. It's used to print debug info for developers. Details: \
:ref:`api_guide_Name` "
],
skip_attrs_set={"x_data_format", "y_data_format", "axis"
}) + """\n""" + str(func.__doc__)
for func in [
elementwise_mod,
elementwise_floordiv,
elementwise_add,
elementwise_div,
elementwise_sub,
elementwise_mul,
]:
op_proto = OpProtoHolder.instance().get_op_proto(func.__name__)
func.__doc__ = _generate_doc_string_(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录