device_worker.h 16.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hutuxian 已提交
17
#include <atomic>
18 19 20 21
#include <fstream>
#include <map>
#include <memory>
#include <mutex>  // NOLINT
Z
zhang wenhui 已提交
22
#include <set>
23
#include <string>
X
xujiaqi01 已提交
24 25 26 27
#include <thread>         // NOLINT
#include <unordered_map>  // NOLINT
#include <unordered_set>  // NOLINT
#include <utility>        // NOLINT
28 29 30
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
T
Thunderbrook 已提交
31
#include "paddle/fluid/framework/heter_service.h"
32 33 34 35 36 37 38 39
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/place.h"
D
dongdaxiang 已提交
40
#include "paddle/fluid/platform/port.h"
41 42
#include "paddle/fluid/platform/timer.h"

W
wanghuancoder 已提交
43 44 45 46 47 48 49 50 51 52 53 54
namespace paddle {
namespace framework {
class LoDTensor;
class ProgramDesc;
class Scope;
class Tensor;
}  // namespace framework
namespace platform {
class DeviceContext;
}  // namespace platform
}  // namespace paddle

55
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
56 57 58
#include "paddle/fluid/platform/nccl_helper.h"
#endif

59 60 61
namespace paddle {
namespace framework {

62
std::string PrintLodTensor(Tensor* tensor, int64_t start, int64_t end);
63 64 65
std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index);
bool CheckValidOutput(LoDTensor* tensor, size_t batch_size);

66 67
class FleetWrapper;

T
Thunderbrook 已提交
68 69 70 71
#ifdef PADDLE_WITH_PSLIB
class HeterWrapper;
#endif

72 73 74 75
class PullDenseWorker {
 public:
  virtual ~PullDenseWorker() {}
  virtual void Initialize(const TrainerDesc& param);
T
Thunderbrook 已提交
76 77
#ifdef PADDLE_WITH_CUDA
  void AddStream(const cudaStream_t stream) { copy_streams_.push_back(stream); }
T
Thunderbrook 已提交
78
#endif
T
Thunderbrook 已提交
79

T
Thunderbrook 已提交
80
#if (defined PADDLE_WITH_CUDA) || (defined PADDLE_WITH_XPU)
T
Thunderbrook 已提交
81 82 83 84 85 86
  void AddPlace(const paddle::platform::Place place) {
    places_.push_back(place);
  }

  void AddThreadScope(Scope* scope) { thread_scopes_.push_back(scope); }
#endif
87 88
  int Start();
  void Stop();
89
  void SetRootScope(Scope* scope) { root_scope_ = scope; }
90 91 92
  void IncreaseThreadVersion(int thread_id, uint64_t table_id);
  void ResetThreadVersion(uint64_t table_id);
  void Wait(std::vector<::std::future<int32_t>>* status_vec);
93
  void PullDense(bool force_update = false);
T
Thunderbrook 已提交
94
  void CreatePinVar();
95 96
  int GetThreadIdByScope(const Scope* scope);
  void SetThreadIdByScope(const Scope* scope, int tid);
97 98 99 100 101 102 103
  static std::shared_ptr<PullDenseWorker> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PullDenseWorker());
    }
    return s_instance_;
  }

104 105
  static std::shared_ptr<PullDenseWorker> s_instance_;

106
 private:
107
  PullDenseWorker() : root_scope_(NULL) {}
108 109 110 111 112 113
  void Run();
  bool CheckUpdateParam(uint64_t table_id);

 private:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  PullDenseWorkerParameter param_;
H
heqiaozhi 已提交
114
  DownpourWorkerParameter dwp_param_;
115 116 117
  Scope* root_scope_;
  bool running_;

D
dongdaxiang 已提交
118 119 120 121 122
  static std::map<uint64_t, uint64_t> last_versions_;
  static std::map<uint64_t, uint64_t> current_version_;
  static std::mutex mutex_for_version_;
  static std::map<uint64_t, std::vector<uint64_t>> training_versions_;
  static std::map<uint64_t, std::vector<std::string>> dense_value_names_;
123 124 125 126 127 128 129 130 131 132 133 134 135 136

  std::thread t_;
  int thread_num_;
  int sleep_time_ms_;
  int threshold_;

  std::vector<::std::future<int32_t>> pull_dense_status_;
  uint32_t pull_dense_fail_times_ = 0;
  std::vector<float> base_norm_param_;
  std::vector<float> mean_;
  std::vector<float> scale_;
  float squared_sum_epsilon_ = 1e-4;
  std::mutex mutex_for_mean_scale_;
  float total_batch_num_ = 0;
137
  std::unordered_map<const Scope*, int> scope_to_thread_id_;
T
Thunderbrook 已提交
138 139 140

#ifdef PADDLE_WITH_CUDA
  std::vector<cudaStream_t> copy_streams_;
T
Thunderbrook 已提交
141
#endif
T
Thunderbrook 已提交
142 143
  std::vector<paddle::platform::Place> places_;
  std::vector<Scope*> thread_scopes_;
144 145 146 147 148
};

// should incorporate different type of device
class DeviceWorker {
 public:
149 150 151 152
  DeviceWorker() {
    no_cvm_ = true;
    use_cvm_ = false;
  }
153 154
  virtual ~DeviceWorker() {}
  virtual void Initialize(const TrainerDesc& desc) = 0;
H
hutuxian 已提交
155
  virtual void InitRandomDumpConfig(const TrainerDesc& desc);
156 157
  virtual void SetDeviceIndex(int tid) = 0;
  virtual void TrainFiles() = 0;
D
dongdaxiang 已提交
158
  virtual void PrintFetchVars() = 0;
159 160 161 162 163
  virtual void TrainFilesWithProfiler() = 0;
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0;
  // will make this zero copy in the future
  virtual void BindingDataFeedMemory() = 0;
  virtual void SetRootScope(Scope* root_scope);
J
jiaqi 已提交
164
  virtual void SetDataFeed(DataFeed* data_feed);
T
Thunderbrook 已提交
165 166
  virtual void SetWorkerNum(int num) {}
  virtual void CacheProgram(const ProgramDesc& main_program) {}
T
Thunderbrook 已提交
167
  virtual void GetXpuOpIndex() {}
H
hutuxian 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
  virtual void SetNeedDumpField(bool need_dump_field) {
    need_dump_field_ = need_dump_field;
  }
  virtual void SetNeedDumpParam(bool need_dump_param) {
    need_dump_param_ = need_dump_param;
  }
  virtual void SetDumpFieldVector(const std::vector<std::string>& dump_fields) {
    dump_fields_ = &dump_fields;
  }
  virtual void SetDumpParamVector(const std::vector<std::string>& dump_param) {
    dump_param_ = &dump_param;
  }
  virtual void SetChannelWriter(ChannelObject<std::string>* queue) {
    writer_.Reset(queue);
  }
183 184 185
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
186 187 188
  virtual void SetReaderPlace(const paddle::platform::Place& place) {
    device_reader_->SetPlace(place);
  }
189
  virtual Scope* GetThreadScope() { return thread_scope_; }
190 191

 protected:
H
hutuxian 已提交
192 193 194
  virtual void DumpParam(const Scope& scope, const int batch_id);
  virtual void DumpField(const Scope& scope, int dump_mode,
                         int dump_interval = 10000);
J
jiaqi 已提交
195
  Scope* root_scope_ = nullptr;
196
  Scope* thread_scope_;
197
  paddle::platform::Place place_;
J
jiaqi 已提交
198
  DataFeed* device_reader_ = nullptr;
D
dongdaxiang 已提交
199 200
  int64_t batch_num_;
  FetchConfig fetch_config_;
201
  bool use_cvm_;
202
  bool no_cvm_;
T
Thunderbrook 已提交
203
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
204 205 206 207 208 209

  // dump params or grads for debug
  bool need_dump_param_;
  bool need_dump_field_;
  const std::vector<std::string>* dump_param_;
  const std::vector<std::string>* dump_fields_;
210
  std::vector<std::string> all_param_;
H
hutuxian 已提交
211 212 213 214

  int dump_mode_ = 0;
  int dump_interval_ = 10000;
  ChannelWriter<std::string> writer_;
215 216 217 218 219 220 221 222 223
};

class CPUWorkerBase : public DeviceWorker {
 public:
  CPUWorkerBase() {}
  virtual ~CPUWorkerBase() {}
  virtual void SetDeviceIndex(int tid) { thread_id_ = tid; }
  virtual void TrainFiles() = 0;
  virtual void TrainFilesWithProfiler() {}
D
dongdaxiang 已提交
224
  virtual void PrintFetchVars() {}
225 226 227 228 229 230 231 232 233
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) {}

 protected:
  int thread_id_;
};

class HogwildWorker : public CPUWorkerBase {
 public:
  HogwildWorker() {}
234 235 236 237 238 239
  virtual ~HogwildWorker() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
D
dongdaxiang 已提交
240
  virtual void Initialize(const TrainerDesc& desc);
241 242
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
D
dongdaxiang 已提交
243
  virtual void PrintFetchVars();
244 245
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void BindingDataFeedMemory();
246 247
  template <typename T>
  void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim);
248 249 250 251

 protected:
  void CreateThreadOperators(const ProgramDesc& program);
  void CreateThreadScope(const ProgramDesc& program);
252

253 254
  std::vector<std::string> op_names_;
  std::vector<OperatorBase*> ops_;
255
  bool thread_barrier_;
256
  // Scope* thread_scope_;
257 258
  HogwildWorkerParameter param_;
  std::vector<std::string> skip_ops_;
259
  std::map<std::string, int> stat_var_name_map_;
260 261 262 263 264 265
};

class DownpourWorker : public HogwildWorker {
 public:
  DownpourWorker() {}
  virtual ~DownpourWorker() {}
266
  virtual void Initialize(const TrainerDesc& desc);
267
  virtual void TrainFiles();
268
  virtual void TrainFilesWithProfiler();
269 270 271 272 273 274 275

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(size_t table_id);
  void PushGradients();
  void CollectLabelInfo(size_t table_id);
276
  void AdjustInsWeight();
X
xujiaqi01 已提交
277 278 279
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();
280

281
  DownpourWorkerParameter param_;
282 283 284 285
  // copy table
  CopyTableConfig copy_table_config_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
286 287
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
288
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
289 290 291 292
  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
293 294 295 296 297 298 299 300 301
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  bool need_to_push_sparse_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
302 303
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
304 305 306 307 308 309
  std::vector<::std::future<int32_t>> push_sparse_status_;
  bool dump_slot_;
  bool need_to_push_dense_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  float scale_datanorm_;
  std::vector<::std::future<int32_t>> push_dense_status_;
310 311
  // skipped ops
  std::vector<std::string> skip_ops_;
312 313 314 315 316
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
Z
zhang wenhui 已提交
317 318 319 320
  // multitask
  std::map<int32_t, uint64_t> cond2table_map_;
  std::set<uint64_t> condvalue_set_;
  bool flag_partial_push_;
321 322 323 324 325 326

 private:
  // std::vector<std::string> dump_param_;
  // just save the value in param_ for easy access
  // std::map<uint64_t, std::string> label_var_name_;
  // std::map<uint64_t, std::vector<std::string>> dense_value_names_;
327 328

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;
329 330

  std::vector<float> nid_show_;
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
  // std::map<uint64_t, uint64_t> table_dependency_;
  // std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
};

class DownpourWorkerOpt : public DownpourWorker {
 public:
  DownpourWorkerOpt() {}
  virtual ~DownpourWorkerOpt() {}
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();

 protected:
  void CreateThreadOperatorsWithRerank(const ProgramDesc& program);
  std::vector<std::vector<OperatorBase*>> loss_ops_;
  std::vector<std::vector<std::string>> loss_op_names_;
  std::vector<std::string> loss_names_;
  std::string async_wait_name_;
  int async_index_ = -1;
  uint64_t async_tid_ = 0;
351 352
};

T
Thunderbrook 已提交
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
#ifdef PADDLE_WITH_PSLIB
class HeterCpuWorker : public HogwildWorker {
 public:
  HeterCpuWorker() {}
  virtual ~HeterCpuWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void Schedule(int taskid);
  virtual void JumpContext(std::shared_ptr<HeterTask> task);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual void GetXpuOpIndex();

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(std::shared_ptr<HeterTask> task, size_t table_id);
  void PushGradients();
  void CollectLabelInfo(std::shared_ptr<HeterTask> task, size_t table_id);
  void AdjustInsWeight(std::shared_ptr<HeterTask> task);
  void DumpParam();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  int worker_num_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  HeterList<int, std::shared_ptr<HeterTask>> run_queue_;
  HeterList<int, std::shared_ptr<HeterTask>> wait_queue_;
  bool need_dump_param_;
  std::vector<std::string> dump_param_;
  bool need_to_push_dense_;
  bool need_dump_field_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  std::vector<std::string> dump_fields_;
  ChannelWriter<std::string> writer_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
};
#endif

434
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
435 436
class SectionWorker : public DeviceWorker {
 public:
L
lilong12 已提交
437
  SectionWorker() { local_batch_id_ = 0; }
H
hutuxian 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
  ~SectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;

  void BindingDataFeedMemory() override {}
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
  void TrainFilesWithProfiler() override;

  void PrintFetchVars() override {}

  const platform::Place& place() const { return place_; }

  void SetSectionIndex(int section_id) { section_id_ = section_id; }
L
lilong12 已提交
453
  void SetDeviceIndex(int tid) override {}
H
hutuxian 已提交
454
  void SetThreadIndex(int thread_id) { thread_id_ = thread_id; }
L
lilong12 已提交
455 456 457
  void SetMicrobatchNum(int num) { num_microbatches_ = num; }
  void SetMicrobatchScopes(const std::vector<Scope*>& scope) {
    microbatch_scopes_ = scope;
H
hutuxian 已提交
458
  }
L
lilong12 已提交
459 460 461
  void SetMinibatchScope(const Scope* scope) { minibatch_scope_ = scope; }
  void SetSkipVars(const std::vector<std::string>& skip_vars) {
    skip_vars_ = skip_vars;
H
hutuxian 已提交
462
  }
463
  static void ResetBatchId() { batch_id_ = 0; }
464
  static void ResetThreadCompletedFlag() { threads_completed = false; }
H
hutuxian 已提交
465 466 467 468 469 470 471

  static std::atomic<int> cpu_id_;

 protected:
  void AutoSetCPUAffinity(bool reuse);
  int section_id_;
  int thread_id_;
L
lilong12 已提交
472 473 474 475
  int num_microbatches_;
  std::vector<Scope*> microbatch_scopes_;
  std::vector<std::string> skip_vars_;
  const Scope* minibatch_scope_;
H
hutuxian 已提交
476 477

  std::vector<std::unique_ptr<OperatorBase>> ops_;
L
lilong12 已提交
478 479 480 481 482 483
  static std::mutex thread_mutex;
  static std::condition_variable thread_condition;
  static bool threads_completed;
  std::shared_ptr<framework::ProgramDesc> program_;
  static uint64_t batch_id_;
  uint64_t local_batch_id_;
H
hutuxian 已提交
484 485 486 487

  platform::DeviceContext* dev_ctx_ = nullptr;
};
#endif
L
lilong12 已提交
488

489 490
}  // namespace framework
}  // namespace paddle