device_worker.h 15.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hutuxian 已提交
17
#include <atomic>
18 19 20 21 22
#include <fstream>
#include <map>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
X
xujiaqi01 已提交
23 24 25 26
#include <thread>         // NOLINT
#include <unordered_map>  // NOLINT
#include <unordered_set>  // NOLINT
#include <utility>        // NOLINT
27 28 29
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
T
Thunderbrook 已提交
30
#include "paddle/fluid/framework/heter_service.h"
31 32 33 34 35 36 37 38
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/place.h"
D
dongdaxiang 已提交
39
#include "paddle/fluid/platform/port.h"
40 41
#include "paddle/fluid/platform/timer.h"

42
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
43 44 45
#include "paddle/fluid/platform/nccl_helper.h"
#endif

46 47 48
namespace paddle {
namespace framework {

49
std::string PrintLodTensor(Tensor* tensor, int64_t start, int64_t end);
50 51 52
std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index);
bool CheckValidOutput(LoDTensor* tensor, size_t batch_size);

53 54
class FleetWrapper;

T
Thunderbrook 已提交
55 56 57 58
#ifdef PADDLE_WITH_PSLIB
class HeterWrapper;
#endif

59 60 61 62
class PullDenseWorker {
 public:
  virtual ~PullDenseWorker() {}
  virtual void Initialize(const TrainerDesc& param);
T
Thunderbrook 已提交
63 64 65 66 67 68 69 70 71
#ifdef PADDLE_WITH_CUDA
  void AddStream(const cudaStream_t stream) { copy_streams_.push_back(stream); }

  void AddPlace(const paddle::platform::Place place) {
    places_.push_back(place);
  }

  void AddThreadScope(Scope* scope) { thread_scopes_.push_back(scope); }
#endif
72 73
  int Start();
  void Stop();
74
  void SetRootScope(Scope* scope) { root_scope_ = scope; }
75 76 77
  void IncreaseThreadVersion(int thread_id, uint64_t table_id);
  void ResetThreadVersion(uint64_t table_id);
  void Wait(std::vector<::std::future<int32_t>>* status_vec);
78
  void PullDense(bool force_update = false);
T
Thunderbrook 已提交
79
  void CreatePinVar();
80 81
  int GetThreadIdByScope(const Scope* scope);
  void SetThreadIdByScope(const Scope* scope, int tid);
82 83 84 85 86 87 88
  static std::shared_ptr<PullDenseWorker> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PullDenseWorker());
    }
    return s_instance_;
  }

89 90
  static std::shared_ptr<PullDenseWorker> s_instance_;

91
 private:
92
  PullDenseWorker() : root_scope_(NULL) {}
93 94 95 96 97 98
  void Run();
  bool CheckUpdateParam(uint64_t table_id);

 private:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  PullDenseWorkerParameter param_;
H
heqiaozhi 已提交
99
  DownpourWorkerParameter dwp_param_;
100 101 102
  Scope* root_scope_;
  bool running_;

D
dongdaxiang 已提交
103 104 105 106 107
  static std::map<uint64_t, uint64_t> last_versions_;
  static std::map<uint64_t, uint64_t> current_version_;
  static std::mutex mutex_for_version_;
  static std::map<uint64_t, std::vector<uint64_t>> training_versions_;
  static std::map<uint64_t, std::vector<std::string>> dense_value_names_;
108 109 110 111 112 113 114 115 116 117 118 119 120 121

  std::thread t_;
  int thread_num_;
  int sleep_time_ms_;
  int threshold_;

  std::vector<::std::future<int32_t>> pull_dense_status_;
  uint32_t pull_dense_fail_times_ = 0;
  std::vector<float> base_norm_param_;
  std::vector<float> mean_;
  std::vector<float> scale_;
  float squared_sum_epsilon_ = 1e-4;
  std::mutex mutex_for_mean_scale_;
  float total_batch_num_ = 0;
122
  std::unordered_map<const Scope*, int> scope_to_thread_id_;
T
Thunderbrook 已提交
123 124 125 126 127 128

#ifdef PADDLE_WITH_CUDA
  std::vector<cudaStream_t> copy_streams_;
  std::vector<paddle::platform::Place> places_;
  std::vector<Scope*> thread_scopes_;
#endif
129 130 131 132 133
};

// should incorporate different type of device
class DeviceWorker {
 public:
134 135 136 137
  DeviceWorker() {
    no_cvm_ = true;
    use_cvm_ = false;
  }
138 139
  virtual ~DeviceWorker() {}
  virtual void Initialize(const TrainerDesc& desc) = 0;
H
hutuxian 已提交
140
  virtual void InitRandomDumpConfig(const TrainerDesc& desc);
141 142
  virtual void SetDeviceIndex(int tid) = 0;
  virtual void TrainFiles() = 0;
D
dongdaxiang 已提交
143
  virtual void PrintFetchVars() = 0;
144 145 146 147 148
  virtual void TrainFilesWithProfiler() = 0;
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0;
  // will make this zero copy in the future
  virtual void BindingDataFeedMemory() = 0;
  virtual void SetRootScope(Scope* root_scope);
J
jiaqi 已提交
149
  virtual void SetDataFeed(DataFeed* data_feed);
T
Thunderbrook 已提交
150 151
  virtual void SetWorkerNum(int num) {}
  virtual void CacheProgram(const ProgramDesc& main_program) {}
H
hutuxian 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
  virtual void SetNeedDumpField(bool need_dump_field) {
    need_dump_field_ = need_dump_field;
  }
  virtual void SetNeedDumpParam(bool need_dump_param) {
    need_dump_param_ = need_dump_param;
  }
  virtual void SetDumpFieldVector(const std::vector<std::string>& dump_fields) {
    dump_fields_ = &dump_fields;
  }
  virtual void SetDumpParamVector(const std::vector<std::string>& dump_param) {
    dump_param_ = &dump_param;
  }
  virtual void SetChannelWriter(ChannelObject<std::string>* queue) {
    writer_.Reset(queue);
  }
167 168 169
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
170 171 172
  virtual void SetReaderPlace(const paddle::platform::Place& place) {
    device_reader_->SetPlace(place);
  }
173
  virtual Scope* GetThreadScope() { return thread_scope_; }
174 175

 protected:
H
hutuxian 已提交
176 177 178
  virtual void DumpParam(const Scope& scope, const int batch_id);
  virtual void DumpField(const Scope& scope, int dump_mode,
                         int dump_interval = 10000);
J
jiaqi 已提交
179
  Scope* root_scope_ = nullptr;
180
  Scope* thread_scope_;
181
  paddle::platform::Place place_;
J
jiaqi 已提交
182
  DataFeed* device_reader_ = nullptr;
D
dongdaxiang 已提交
183 184
  int64_t batch_num_;
  FetchConfig fetch_config_;
185
  bool use_cvm_;
186
  bool no_cvm_;
T
Thunderbrook 已提交
187
  TrainerDesc trainer_desc_;
H
hutuxian 已提交
188 189 190 191 192 193

  // dump params or grads for debug
  bool need_dump_param_;
  bool need_dump_field_;
  const std::vector<std::string>* dump_param_;
  const std::vector<std::string>* dump_fields_;
194
  std::vector<std::string> all_param_;
H
hutuxian 已提交
195 196 197 198

  int dump_mode_ = 0;
  int dump_interval_ = 10000;
  ChannelWriter<std::string> writer_;
199 200 201 202 203 204 205 206 207
};

class CPUWorkerBase : public DeviceWorker {
 public:
  CPUWorkerBase() {}
  virtual ~CPUWorkerBase() {}
  virtual void SetDeviceIndex(int tid) { thread_id_ = tid; }
  virtual void TrainFiles() = 0;
  virtual void TrainFilesWithProfiler() {}
D
dongdaxiang 已提交
208
  virtual void PrintFetchVars() {}
209 210 211 212 213 214 215 216 217
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) {}

 protected:
  int thread_id_;
};

class HogwildWorker : public CPUWorkerBase {
 public:
  HogwildWorker() {}
218 219 220 221 222 223
  virtual ~HogwildWorker() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
D
dongdaxiang 已提交
224
  virtual void Initialize(const TrainerDesc& desc);
225 226
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
D
dongdaxiang 已提交
227
  virtual void PrintFetchVars();
228 229
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void BindingDataFeedMemory();
230 231
  template <typename T>
  void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim);
232 233 234 235

 protected:
  void CreateThreadOperators(const ProgramDesc& program);
  void CreateThreadScope(const ProgramDesc& program);
236

237 238
  std::vector<std::string> op_names_;
  std::vector<OperatorBase*> ops_;
239
  bool thread_barrier_;
240
  // Scope* thread_scope_;
241 242
  HogwildWorkerParameter param_;
  std::vector<std::string> skip_ops_;
243
  std::map<std::string, int> stat_var_name_map_;
244 245 246 247 248 249
};

class DownpourWorker : public HogwildWorker {
 public:
  DownpourWorker() {}
  virtual ~DownpourWorker() {}
250
  virtual void Initialize(const TrainerDesc& desc);
251
  virtual void TrainFiles();
252
  virtual void TrainFilesWithProfiler();
253 254 255 256 257 258 259

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(size_t table_id);
  void PushGradients();
  void CollectLabelInfo(size_t table_id);
260
  void AdjustInsWeight();
X
xujiaqi01 已提交
261 262 263
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();
264

265
  DownpourWorkerParameter param_;
266 267 268 269
  // copy table
  CopyTableConfig copy_table_config_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
270 271
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
272
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
273 274 275 276
  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
277 278 279 280 281 282 283 284 285
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  bool need_to_push_sparse_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
286 287
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
288 289 290 291 292 293
  std::vector<::std::future<int32_t>> push_sparse_status_;
  bool dump_slot_;
  bool need_to_push_dense_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  float scale_datanorm_;
  std::vector<::std::future<int32_t>> push_dense_status_;
294 295
  // skipped ops
  std::vector<std::string> skip_ops_;
296 297 298 299 300 301 302 303 304 305 306
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;

 private:
  // std::vector<std::string> dump_param_;
  // just save the value in param_ for easy access
  // std::map<uint64_t, std::string> label_var_name_;
  // std::map<uint64_t, std::vector<std::string>> dense_value_names_;
307 308

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;
309 310

  std::vector<float> nid_show_;
311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
  // std::map<uint64_t, uint64_t> table_dependency_;
  // std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
};

class DownpourWorkerOpt : public DownpourWorker {
 public:
  DownpourWorkerOpt() {}
  virtual ~DownpourWorkerOpt() {}
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();

 protected:
  void CreateThreadOperatorsWithRerank(const ProgramDesc& program);
  std::vector<std::vector<OperatorBase*>> loss_ops_;
  std::vector<std::vector<std::string>> loss_op_names_;
  std::vector<std::string> loss_names_;
  std::string async_wait_name_;
  int async_index_ = -1;
  uint64_t async_tid_ = 0;
331 332
};

T
Thunderbrook 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
#ifdef PADDLE_WITH_PSLIB
class HeterCpuWorker : public HogwildWorker {
 public:
  HeterCpuWorker() {}
  virtual ~HeterCpuWorker() {}
  virtual void Initialize(const TrainerDesc& desc);
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
  virtual void SetWorkerNum(int num) { worker_num_ = num; }
  virtual void Schedule(int taskid);
  virtual void JumpContext(std::shared_ptr<HeterTask> task);
  virtual void CacheProgram(const ProgramDesc& main_program) {
    new (&program_) ProgramDesc(main_program);
  }
  virtual void GetXpuOpIndex();

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::HeterWrapper> heter_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(std::shared_ptr<HeterTask> task, size_t table_id);
  void PushGradients();
  void CollectLabelInfo(std::shared_ptr<HeterTask> task, size_t table_id);
  void AdjustInsWeight(std::shared_ptr<HeterTask> task);
  void DumpParam();
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();

 private:
  int mpi_rank_;
  int worker_num_;
  int xpu_begin_op_index_;
  int xpu_end_op_index_;
  ProgramDesc program_;
  HeterObjectPool<HeterTask> object_pool_;
  HeterList<int, std::shared_ptr<HeterTask>> run_queue_;
  HeterList<int, std::shared_ptr<HeterTask>> wait_queue_;
  bool need_dump_param_;
  std::vector<std::string> dump_param_;
  bool need_to_push_dense_;
  bool need_dump_field_;
  bool dump_slot_;
  bool need_to_push_sparse_;
  std::vector<std::string> dump_fields_;
  ChannelWriter<std::string> writer_;
  DownpourWorkerParameter param_;
  float scale_datanorm_;
  // just save the value in param_ for easy access
  std::map<uint64_t, std::string> label_var_name_;
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
  platform::Place root_place_;
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;

  // skipped ops
  std::vector<std::string> skip_ops_;

  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
};
#endif

414
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
415 416
class SectionWorker : public DeviceWorker {
 public:
L
lilong12 已提交
417
  SectionWorker() { local_batch_id_ = 0; }
H
hutuxian 已提交
418 419 420 421 422 423 424 425 426 427 428 429 430 431 432
  ~SectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;

  void BindingDataFeedMemory() override {}
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
  void TrainFilesWithProfiler() override;

  void PrintFetchVars() override {}

  const platform::Place& place() const { return place_; }

  void SetSectionIndex(int section_id) { section_id_ = section_id; }
L
lilong12 已提交
433
  void SetDeviceIndex(int tid) override {}
H
hutuxian 已提交
434
  void SetThreadIndex(int thread_id) { thread_id_ = thread_id; }
L
lilong12 已提交
435 436 437
  void SetMicrobatchNum(int num) { num_microbatches_ = num; }
  void SetMicrobatchScopes(const std::vector<Scope*>& scope) {
    microbatch_scopes_ = scope;
H
hutuxian 已提交
438
  }
L
lilong12 已提交
439 440 441
  void SetMinibatchScope(const Scope* scope) { minibatch_scope_ = scope; }
  void SetSkipVars(const std::vector<std::string>& skip_vars) {
    skip_vars_ = skip_vars;
H
hutuxian 已提交
442
  }
443
  static void ResetBatchId() { batch_id_ = 0; }
444
  static void ResetThreadCompletedFlag() { threads_completed = false; }
H
hutuxian 已提交
445 446 447 448 449 450 451

  static std::atomic<int> cpu_id_;

 protected:
  void AutoSetCPUAffinity(bool reuse);
  int section_id_;
  int thread_id_;
L
lilong12 已提交
452 453 454 455
  int num_microbatches_;
  std::vector<Scope*> microbatch_scopes_;
  std::vector<std::string> skip_vars_;
  const Scope* minibatch_scope_;
H
hutuxian 已提交
456 457

  std::vector<std::unique_ptr<OperatorBase>> ops_;
L
lilong12 已提交
458 459 460 461 462 463
  static std::mutex thread_mutex;
  static std::condition_variable thread_condition;
  static bool threads_completed;
  std::shared_ptr<framework::ProgramDesc> program_;
  static uint64_t batch_id_;
  uint64_t local_batch_id_;
H
hutuxian 已提交
464 465 466 467

  platform::DeviceContext* dev_ctx_ = nullptr;
};
#endif
L
lilong12 已提交
468

469 470
}  // namespace framework
}  // namespace paddle