device_worker.h 11.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

H
hutuxian 已提交
17
#include <atomic>
18 19 20 21 22
#include <fstream>
#include <map>
#include <memory>
#include <mutex>  // NOLINT
#include <string>
X
xujiaqi01 已提交
23 24 25 26
#include <thread>         // NOLINT
#include <unordered_map>  // NOLINT
#include <unordered_set>  // NOLINT
#include <utility>        // NOLINT
27 28 29 30 31 32 33 34 35 36 37
#include <vector>

#include "paddle/fluid/framework/data_feed.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/variable_helper.h"
#include "paddle/fluid/operators/reader/blocking_queue.h"
#include "paddle/fluid/platform/place.h"
D
dongdaxiang 已提交
38
#include "paddle/fluid/platform/port.h"
39 40
#include "paddle/fluid/platform/timer.h"

41
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
42 43 44
#include "paddle/fluid/platform/nccl_helper.h"
#endif

45 46 47
namespace paddle {
namespace framework {

48 49
class FleetWrapper;

H
hutuxian 已提交
50 51 52 53
#define SEC_LOG                                                              \
  VLOG(3) << "[s" << section_id_ << "p" << pipeline_id_ << "t" << thread_id_ \
          << "]: "

54 55 56 57 58 59
class PullDenseWorker {
 public:
  virtual ~PullDenseWorker() {}
  virtual void Initialize(const TrainerDesc& param);
  int Start();
  void Stop();
60
  void SetRootScope(Scope* scope) { root_scope_ = scope; }
61 62 63
  void IncreaseThreadVersion(int thread_id, uint64_t table_id);
  void ResetThreadVersion(uint64_t table_id);
  void Wait(std::vector<::std::future<int32_t>>* status_vec);
64
  void PullDense(bool force_update = false);
65 66 67 68 69 70 71 72
  static std::shared_ptr<PullDenseWorker> GetInstance() {
    if (NULL == s_instance_) {
      s_instance_.reset(new paddle::framework::PullDenseWorker());
    }
    return s_instance_;
  }

 private:
73
  PullDenseWorker() : root_scope_(NULL) {}
74 75 76 77
  void Run();
  bool CheckUpdateParam(uint64_t table_id);

 private:
78
  static std::shared_ptr<PullDenseWorker> s_instance_;
79 80
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  PullDenseWorkerParameter param_;
H
heqiaozhi 已提交
81
  DownpourWorkerParameter dwp_param_;
82 83 84
  Scope* root_scope_;
  bool running_;

D
dongdaxiang 已提交
85 86 87 88 89
  static std::map<uint64_t, uint64_t> last_versions_;
  static std::map<uint64_t, uint64_t> current_version_;
  static std::mutex mutex_for_version_;
  static std::map<uint64_t, std::vector<uint64_t>> training_versions_;
  static std::map<uint64_t, std::vector<std::string>> dense_value_names_;
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

  std::thread t_;
  int thread_num_;
  int sleep_time_ms_;
  int threshold_;

  std::vector<::std::future<int32_t>> pull_dense_status_;
  uint32_t pull_dense_fail_times_ = 0;
  std::vector<float> base_norm_param_;
  std::vector<float> mean_;
  std::vector<float> scale_;
  float squared_sum_epsilon_ = 1e-4;
  std::mutex mutex_for_mean_scale_;
  float total_batch_num_ = 0;
};

// should incorporate different type of device
class DeviceWorker {
 public:
109 110 111 112
  DeviceWorker() {
    no_cvm_ = true;
    use_cvm_ = false;
  }
113 114 115 116
  virtual ~DeviceWorker() {}
  virtual void Initialize(const TrainerDesc& desc) = 0;
  virtual void SetDeviceIndex(int tid) = 0;
  virtual void TrainFiles() = 0;
D
dongdaxiang 已提交
117
  virtual void PrintFetchVars() = 0;
118 119 120 121 122
  virtual void TrainFilesWithProfiler() = 0;
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) = 0;
  // will make this zero copy in the future
  virtual void BindingDataFeedMemory() = 0;
  virtual void SetRootScope(Scope* root_scope);
J
jiaqi 已提交
123
  virtual void SetDataFeed(DataFeed* data_feed);
124 125
  virtual void SetNeedDump(bool need_dump_field) {}
  virtual void SetChannelWriter(ChannelObject<std::string>* queue) {}
126 127 128
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
129 130 131
  virtual void SetReaderPlace(const paddle::platform::Place& place) {
    device_reader_->SetPlace(place);
  }
132
  virtual Scope* GetThreadScope() { return thread_scope_; }
133 134

 protected:
J
jiaqi 已提交
135
  Scope* root_scope_ = nullptr;
136
  Scope* thread_scope_;
137
  paddle::platform::Place place_;
J
jiaqi 已提交
138
  DataFeed* device_reader_ = nullptr;
D
dongdaxiang 已提交
139 140
  int64_t batch_num_;
  FetchConfig fetch_config_;
141
  bool use_cvm_;
142
  bool no_cvm_;
143 144 145 146 147 148 149 150 151
};

class CPUWorkerBase : public DeviceWorker {
 public:
  CPUWorkerBase() {}
  virtual ~CPUWorkerBase() {}
  virtual void SetDeviceIndex(int tid) { thread_id_ = tid; }
  virtual void TrainFiles() = 0;
  virtual void TrainFilesWithProfiler() {}
D
dongdaxiang 已提交
152
  virtual void PrintFetchVars() {}
153 154 155 156 157 158 159 160 161
  virtual void CreateDeviceResource(const ProgramDesc& main_prog) {}

 protected:
  int thread_id_;
};

class HogwildWorker : public CPUWorkerBase {
 public:
  HogwildWorker() {}
162 163 164 165 166 167
  virtual ~HogwildWorker() {
    for (OperatorBase* op : ops_) {
      delete op;
    }
    std::vector<OperatorBase*>().swap(ops_);
  }
D
dongdaxiang 已提交
168
  virtual void Initialize(const TrainerDesc& desc);
169 170
  virtual void TrainFiles();
  virtual void TrainFilesWithProfiler();
D
dongdaxiang 已提交
171
  virtual void PrintFetchVars();
172 173
  virtual void CreateDeviceResource(const ProgramDesc& main_prog);
  virtual void BindingDataFeedMemory();
174 175
  template <typename T>
  void SetZero(LoDTensor* tensor, LoDTensor* root_tensor, int tensor_dim);
176 177 178 179 180 181

 protected:
  void CreateThreadOperators(const ProgramDesc& program);
  void CreateThreadScope(const ProgramDesc& program);
  std::vector<std::string> op_names_;
  std::vector<OperatorBase*> ops_;
182
  bool thread_barrier_;
183
  // Scope* thread_scope_;
184 185
  HogwildWorkerParameter param_;
  std::vector<std::string> skip_ops_;
186
  std::map<std::string, int> stat_var_name_map_;
187 188 189 190 191 192
};

class DownpourWorker : public HogwildWorker {
 public:
  DownpourWorker() {}
  virtual ~DownpourWorker() {}
193
  virtual void Initialize(const TrainerDesc& desc);
194
  virtual void TrainFiles();
195
  virtual void TrainFilesWithProfiler();
196 197
  virtual void SetNeedDump(bool need_dump_field);
  virtual void SetChannelWriter(ChannelObject<std::string>* queue);
198 199 200 201 202 203 204

 protected:
  std::shared_ptr<paddle::framework::FleetWrapper> fleet_ptr_;
  std::shared_ptr<paddle::framework::PullDenseWorker> pull_dense_worker_;
  void FillSparseValue(size_t table_id);
  void PushGradients();
  void CollectLabelInfo(size_t table_id);
205
  void AdjustInsWeight();
206
  void DumpParam();
X
xujiaqi01 已提交
207 208 209
  void CopySparseTable();
  void CopyDenseTable();
  void CopyDenseVars();
210 211

 private:
212 213
  bool need_dump_param_;
  std::vector<std::string> dump_param_;
214
  bool need_to_push_dense_;
215
  bool need_dump_field_;
T
Thunderbrook 已提交
216
  bool dump_slot_;
217
  bool need_to_push_sparse_;
218 219
  std::vector<std::string> dump_fields_;
  ChannelWriter<std::string> writer_;
220
  DownpourWorkerParameter param_;
221
  float scale_datanorm_;
222
  // just save the value in param_ for easy access
223
  std::map<uint64_t, std::string> label_var_name_;
224 225 226 227 228
  std::map<uint64_t, std::vector<std::string>> sparse_key_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_value_names_;
  std::map<uint64_t, std::vector<std::string>> sparse_grad_names_;
  std::map<uint64_t, std::vector<std::string>> dense_value_names_;
  std::map<uint64_t, std::vector<std::string>> dense_grad_names_;
229 230
  // actually pushed feasign of each table
  std::map<uint64_t, std::vector<uint64_t>> sparse_push_keys_;
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245

  // feasign
  std::map<uint64_t, std::vector<uint64_t>> features_;
  // feasign stats
  std::map<uint64_t, std::vector<float>> feature_labels_;
  // feasign embedding
  std::map<uint64_t, std::vector<std::vector<float>>> feature_values_;
  // feasign embedding gradient
  std::map<uint64_t, std::vector<std::vector<float>>> feature_grads_;
  // skipped ops
  std::vector<std::string> skip_ops_;

  std::shared_ptr<PullDenseWorker> _pull_dense_worker;
  std::vector<::std::future<int32_t>> push_sparse_status_;
  std::vector<::std::future<int32_t>> push_dense_status_;
246 247 248 249

  // adjust ins weight
  AdjustInsWeightConfig adjust_ins_weight_config_;
  std::vector<float> nid_show_;
250 251
  // check nan and inf during training
  std::vector<std::string> check_nan_var_names_;
X
xujiaqi01 已提交
252 253 254 255 256 257
  // copy table
  CopyTableConfig copy_table_config_;
  std::map<uint64_t, uint64_t> table_dependency_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_sparse_tables_;
  std::vector<std::pair<uint64_t, uint64_t>> copy_dense_tables_;
  std::unordered_map<uint64_t, std::unordered_set<uint64_t>> feasign_set_;
258 259
};

260
#if defined(PADDLE_WITH_NCCL)
H
hutuxian 已提交
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
using ScopeQueue = operators::reader::BlockingQueue<Scope*>;

class SyncFunctor {
 public:
  SyncFunctor(int rank_id, int rank_num, int sync_steps);
  virtual ~SyncFunctor() {}

  void SetSyncParam(const std::vector<std::string>& sync_param) {
    sync_param_ = &sync_param;
  }
  void SetNcclCtxMap(platform::NCCLContextMap* nccl_ctx_map) {
    nccl_ctx_map_ = nccl_ctx_map;
  }

  int operator()(Scope* scope);
  static std::vector<Scope*> pipeline_scopes_;
  static uint64_t sync_flag_;

 protected:
  const int rank_id_;
  const int rank_num_;
  const std::vector<std::string>* sync_param_ = nullptr;
  platform::NCCLContextMap* nccl_ctx_map_ = nullptr;

  uint64_t sync_signal_;
  const int sync_steps_;
  int counter_;

  void Synchronize();
};

class SectionWorker : public DeviceWorker {
 public:
  SectionWorker() {}
  ~SectionWorker() override {}

  void Initialize(const TrainerDesc& desc) override;

  void BindingDataFeedMemory() override {}
  void CreateDeviceResource(const ProgramDesc& main_prog) override{};

  void TrainFiles() override;
  void TrainFilesWithProfiler() override;

  void PrintFetchVars() override {}

  const platform::Place& place() const { return place_; }

  void SetSectionIndex(int section_id) { section_id_ = section_id; }
  void SetDeviceIndex(int tid) override { pipeline_id_ = tid; }
  void SetThreadIndex(int thread_id) { thread_id_ = thread_id; }
  void SetVarNames(const std::vector<std::string>& in_var_names,
                   const std::vector<std::string>& out_var_names) {
    in_var_names_ = &in_var_names;
    out_var_names_ = &out_var_names;
  }
  void SetScopeQueue(ScopeQueue* in_scope_queue, ScopeQueue* out_scope_queue) {
    in_scope_queue_ = in_scope_queue;
    out_scope_queue_ = out_scope_queue;
  }
  void SetCountMutex(std::mutex* mutex) { worker_count_mutex_ = mutex; }
  void SetWorkerCount(int* worker_count) { worker_count_ = worker_count; }
  void SetSectionNum(int section_num) { section_num_ = section_num; }
  void SetPipelineNum(int pipeline_num) { pipeline_num_ = pipeline_num; }
  void SetNextSectionPlace(const paddle::platform::Place& place) {
    next_section_place_ = place;
  }
  SyncFunctor* sync_func_ = nullptr;
  void SetSyncFunctor(SyncFunctor* sync_func) { sync_func_ = sync_func; }

  static std::atomic<int> cpu_id_;

 protected:
  void AutoSetCPUAffinity(bool reuse);
  int section_id_;
  int pipeline_id_;
  int section_num_;
  int pipeline_num_;
  int thread_id_;
  // This worker will consume scope from in_scope_queue_
  // and produce scope to out_scope_queue_
  ScopeQueue* in_scope_queue_ = nullptr;
  ScopeQueue* out_scope_queue_ = nullptr;
  const std::vector<std::string>* in_var_names_ = nullptr;
  const std::vector<std::string>* out_var_names_ = nullptr;
  std::mutex* worker_count_mutex_ = nullptr;
  int* worker_count_ = nullptr;
  paddle::platform::Place next_section_place_;

  std::vector<std::unique_ptr<OperatorBase>> ops_;

  platform::DeviceContext* dev_ctx_ = nullptr;
};
#endif
355 356
}  // namespace framework
}  // namespace paddle