loss.py 73.0 KB
Newer Older
1
# -*- coding: utf-8 -*
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
# TODO: define loss functions of neural network
17
import numpy as np
L
Leo Chen 已提交
18
import paddle.fluid as fluid
19
import paddle
20
from .. import functional as F
L
Ligoml 已提交
21 22 23 24 25
from paddle.fluid.framework import (
    _varbase_creator,
    in_dygraph_mode,
    _in_legacy_dygraph,
)
Z
zhiboniu 已提交
26
from .. import Layer
Z
zhiboniu 已提交
27
from paddle import in_dynamic_mode
28

29 30
__all__ = []

L
Leo Chen 已提交
31

Z
zhiboniu 已提交
32
class BCEWithLogitsLoss(Layer):
33
    r"""
34 35 36 37 38 39 40 41 42 43 44 45 46
    This operator combines the sigmoid layer and the :ref:`api_nn_loss_BCELoss` layer.
    Also, we can see it as the combine of ``sigmoid_cross_entropy_with_logits``
    layer and some reduce operations.

    This measures the element-wise probability error in classification tasks
    in which each class is independent.
    This can be thought of as predicting labels for a data-point, where labels
    are not mutually exclusive. For example, a news article can be about
    politics, technology or sports at the same time or none of these.

    First this operator calculate loss function as follows:

    .. math::
47
           Out = -Labels * \log(\sigma(Logit)) - (1 - Labels) * \log(1 - \sigma(Logit))
48

49
    We know that :math:`\sigma(Logit) = \frac{1}{1 + e^{-Logit}}`. By substituting this we get:
50 51

    .. math::
52
           Out = Logit - Logit * Labels + \log(1 + e^{-Logit})
53

54
    For stability and to prevent overflow of :math:`e^{-Logit}` when Logit < 0,
55 56 57
    we reformulate the loss as follows:

    .. math::
58
           Out = \max(Logit, 0) - Logit * Labels + \log(1 + e^{-\|Logit\|})
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112

    Then, if ``weight`` or ``pos_weight`` is not None, this operator multiply the
    weight tensor on the loss `Out`. The ``weight`` tensor will attach different
    weight on every items in the batch. The ``pos_weight`` will attach different
    weight on the positive label of each class.

    Finally, this operator applies reduce operation on the loss.
    If :attr:`reduction` set to ``'none'``, the operator will return the original loss `Out`.
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is :math:`Out = MEAN(Out)`.
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is :math:`Out = SUM(Out)`.

    Note that the target labels ``label`` should be numbers between 0 and 1.

    Args:
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, it has to be a 1D Tensor whose size is `[N, ]`,
            The data type is float32, float64. Default is ``'None'``.
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.
        pos_weight (Tensor, optional): A weight of positive examples. Must be a vector
            with length equal to the number of classes. The data type is float32, float64.
            Default is ``'None'``.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shapes:
        logit (Tensor): The input predications tensor. 2-D tensor with shape: [N, *],
            N is batch_size, `*` means number of additional dimensions. The ``logit``
            is usually the output of Linear layer. Available dtype is float32, float64.
        label (Tensor): The target labels tensor. 2-D tensor with the same shape as
            ``logit``. The target labels which values should be numbers between 0 and 1.
            Available dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``logit`` , else the shape of output is scalar.

    Returns:
        A callable object of BCEWithLogitsLoss.

    Examples:

        .. code-block:: python
            import paddle
            logit = paddle.to_tensor([5.0, 1.0, 3.0], dtype="float32")
            label = paddle.to_tensor([1.0, 0.0, 1.0], dtype="float32")
            bce_logit_loss = paddle.nn.BCEWithLogitsLoss()
            output = bce_logit_loss(logit, label)
            print(output.numpy())  # [0.45618808]

    """

L
Ligoml 已提交
113 114 115
    def __init__(
        self, weight=None, reduction='mean', pos_weight=None, name=None
    ):
116 117 118
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in BCEWithLogitsLoss should be 'sum', 'mean' or 'none', but "
L
Ligoml 已提交
119 120
                "received %s, which is not allowed." % reduction
            )
121 122 123 124 125 126 127 128 129

        super(BCEWithLogitsLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
        self.pos_weight = pos_weight
        self.name = name

    def forward(self, logit, label):
        out = paddle.nn.functional.binary_cross_entropy_with_logits(
L
Ligoml 已提交
130 131 132 133 134 135 136
            logit,
            label,
            self.weight,
            self.reduction,
            self.pos_weight,
            self.name,
        )
137 138 139
        return out


Z
zhiboniu 已提交
140
class CrossEntropyLoss(Layer):
141
    r"""
L
Ligoml 已提交
142 143
    By default, this operator implements the cross entropy loss function with softmax. This function
    combines the calculation of the softmax operation and the cross entropy loss function
144
    to provide a more numerically stable computing.
S
swtkiwi 已提交
145

146
    This operator will calculate the cross entropy loss function without softmax when use_softmax=False.
147

L
Ligoml 已提交
148 149
    By default, this operator will calculate the mean of the result, and you can also affect
    the default behavior by using the reduction parameter. Please refer to the part of
150
    parameters for details.
151

152
    This operator can be used to calculate the softmax cross entropy loss with soft and hard labels.
L
Ligoml 已提交
153
    Where, the hard labels mean the actual label value, 0, 1, 2, etc.  And the soft labels
154
    mean the probability of the actual label, 0.6, 0.8, 0.2, etc.
155

156
    The calculation of this operator includes the following two steps.
157

L
Ligoml 已提交
158
    -  **I.softmax cross entropy**
159

160
        1. Hard label (each sample can only be assigned into one category)
161

162
        1.1. when use_softmax=True
163

164 165
            .. math::
              \\loss_j=-\text{logits}_{label_j}+\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right) , j = 1,...,N
166

167
            where, N is the number of samples and C is the number of categories.
168

169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        1.2. when use_softmax=False

            .. math::
              \\loss_j=-\log\left({P}_{label_j}\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).


        2. Soft label (each sample is assigned to multiple categories with a certain probability, and the probability sum is 1).

        2.1. when use_softmax=True

            .. math::
              \\loss_j=-\sum_{i=0}^{C}\text{label}_i\left(\text{logits}_i-\log\left(\sum_{i=0}^{C}\exp(\text{logits}_i)\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories.

        2.2. when use_softmax=False

            .. math::
              \\loss_j=-\sum_{j=0}^{C}\left({label}_j*\log\left({P}_{label_j}\right)\right) , j = 1,...,N

            where, N is the number of samples and C is the number of categories, P is input(the output of softmax).



L
Ligoml 已提交
195
    -  **II.Weight and reduction processing**
196 197 198 199 200 201 202 203 204 205 206

        1. Weight

            If the ``weight`` parameter is ``None`` , go to the next step directly.

            If the ``weight`` parameter is not ``None`` , the cross entropy of each sample is weighted by weight
            according to soft_label = False or True as follows.

            1.1. Hard labels (soft_label = False)

            .. math::
L
Ligoml 已提交
207
                \\loss_j=loss_j*weight[label_j]
208

209

210 211 212 213 214 215 216
            1.2. Soft labels (soft_label = True)

             .. math::
                \\loss_j=loss_j*\sum_{i}\left(weight[label_i]*logits_i\right)

        2. reduction

L
Ligoml 已提交
217
            2.1 if the ``reduction`` parameter is ``none``
218 219 220

            Return the previous result directly

L
Ligoml 已提交
221
            2.2 if the ``reduction`` parameter is ``sum``
222 223 224 225 226 227

            Return the sum of the previous results

            .. math::
               \\loss=\sum_{j}loss_j

L
Ligoml 已提交
228 229
            2.3 if the ``reduction`` parameter is ``mean`` , it will be processed according to
            the ``weight`` parameter as follows.
230

L
Ligoml 已提交
231
            2.3.1. If the  ``weight``  parameter is ``None``
232 233 234 235 236 237 238 239 240 241 242 243 244

            Return the average value of the previous results

             .. math::
                \\loss=\sum_{j}loss_j/N

            where, N is the number of samples and C is the number of categories.

            2.3.2. If the 'weight' parameter is not 'None', the weighted average value of the previous result will be returned

            1. Hard labels (soft_label = False)

             .. math::
L
Ligoml 已提交
245
                \\loss=\sum_{j}loss_j/\sum_{j}weight[label_j]
246 247 248 249 250

            2. Soft labels (soft_label = True)

             .. math::
                \\loss=\sum_{j}loss_j/\sum_{j}\left(\sum_{i}weight[label_i]\right)
L
Ligoml 已提交
251 252


253
    Parameters:
254 255 256

        - **weight** (Tensor, optional)

L
Ligoml 已提交
257 258
            a manual rescaling weight given to each class.
            If given, has to be a Tensor of size C and the data type is float32, float64.
259 260 261 262 263
            Default is ``'None'`` .

        - **ignore_index** (int64, optional)

            Specifies a target value that is ignored
L
Ligoml 已提交
264 265
            and does not contribute to the loss. A negative value means that no label
            value needs to be ignored. Only valid when soft_label = False.
266 267 268 269 270
            Default is ``-100`` .

        - **reduction** (str, optional)

            Indicate how to average the loss by batch_size,
271 272 273 274 275
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
276

277
        - **soft_label** (bool, optional)
278

L
Ligoml 已提交
279
            Indicate whether label is soft.
280 281
            If soft_label=False, the label is hard.  If soft_label=True, the label is soft.
            Default is ``False``.
282

283 284
        - **axis** (int, optional)

L
Ligoml 已提交
285 286 287
            The index of dimension to perform softmax calculations.
            It should be in range :math:`[-1, rank - 1]`, where :math:`rank` is the number
            of dimensions of input :attr:`input`.
288 289 290 291 292 293 294
            Default is ``-1`` .

        - **use_softmax** (bool, optional)

            Indicate whether compute softmax before cross_entropy.
            Default is ``True``.

Z
zhiboniu 已提交
295
        - **name** (str, optional)
296 297 298 299 300 301 302 303 304 305

            The name of the operator. Default is ``None`` .
            For more information, please refer to :ref:`api_guide_Name` .


    Shape:

        - **input** (Tensor)

            Input tensor, the data type is float32, float64. Shape is
L
Ligoml 已提交
306
        :math:`[N_1, N_2, ..., N_k, C]`, where C is number of classes ,  ``k >= 1`` .
307

L
Ligoml 已提交
308
            Note:
309

L
Ligoml 已提交
310
                1. when use_softmax=True, it expects unscaled logits. This operator should not be used with the
311 312 313
                output of softmax operator, which will produce incorrect results.

                2. when use_softmax=False, it expects the output of softmax operator.
314

315 316 317

        - **label** (Tensor)

L
Ligoml 已提交
318
            1. If soft_label=False, the shape is
319 320 321
            :math:`[N_1, N_2, ..., N_k]` or :math:`[N_1, N_2, ..., N_k, 1]`, k >= 1.
            the data type is int32, int64, float32, float64, where each value is [0, C-1].

L
Ligoml 已提交
322
            2. If soft_label=True, the shape and data type should be same with ``input`` ,
323
            and the sum of the labels for each sample should be 1.
324

325 326 327 328 329 330 331 332 333 334
        - **output** (Tensor)

            Return the softmax cross_entropy loss of ``input`` and ``label``.

            The data type is the same as input.

            If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the dimension of return value is ``1``.

            If :attr:`reduction` is ``'none'``:

L
Ligoml 已提交
335
            1. If soft_label = False, the dimension of return value is the same with ``label`` .
336

L
Ligoml 已提交
337
            2. if soft_label = True, the dimension of return value is :math:`[N_1, N_2, ..., N_k, 1]` .
338

339
    Examples:
340 341

        .. code-block:: python
L
Ligoml 已提交
342

343
            # hard labels
344 345 346 347 348
            import paddle
            paddle.seed(99999)
            N=100
            C=200
            reduction='mean'
L
Ligoml 已提交
349
            input =  paddle.rand([N, C], dtype='float64')
350
            label =  paddle.randint(0, C, shape=[N], dtype='int64')
L
Ligoml 已提交
351 352
            weight = paddle.rand([C], dtype='float64')

353 354 355 356 357 358 359
            cross_entropy_loss = paddle.nn.loss.CrossEntropyLoss(
                weight=weight, reduction=reduction)
            dy_ret = cross_entropy_loss(
                                       input,
                                       label)
            print(dy_ret.numpy()) #[5.41993642]

360
        .. code-block:: python
361 362

            # soft labels
363
            import paddle
364 365 366 367 368 369 370 371 372 373 374 375
            paddle.seed(99999)
            axis = -1
            ignore_index = -100
            N = 4
            C = 3
            shape = [N, C]
            reduction='mean'
            weight = None
            logits = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels = paddle.uniform(shape, dtype='float64', min=0.1, max=1.0)
            labels /= paddle.sum(labels, axis=axis, keepdim=True)
            paddle_loss_mean = paddle.nn.functional.cross_entropy(
L
Ligoml 已提交
376 377 378
                                                                  logits,
                                                                  labels,
                                                                  soft_label=True,
379 380 381 382 383
                                                                  axis=axis,
                                                                  weight=weight,
                                                                  reduction=reduction)
            print(paddle_loss_mean.numpy()) #[1.12908343]

384 385
    """

L
Ligoml 已提交
386 387 388 389 390 391 392 393 394 395
    def __init__(
        self,
        weight=None,
        ignore_index=-100,
        reduction='mean',
        soft_label=False,
        axis=-1,
        use_softmax=True,
        name=None,
    ):
396 397 398
        super(CrossEntropyLoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
399
        self.ignore_index = ignore_index
400 401
        self.soft_label = soft_label
        self.axis = axis
402
        self.use_softmax = use_softmax
403
        self.name = name
404 405

    def forward(self, input, label):
L
Ligoml 已提交
406 407 408 409 410 411 412 413 414 415 416
        ret = paddle.nn.functional.cross_entropy(
            input,
            label,
            weight=self.weight,
            ignore_index=self.ignore_index,
            reduction=self.reduction,
            soft_label=self.soft_label,
            axis=self.axis,
            use_softmax=self.use_softmax,
            name=self.name,
        )
417 418

        return ret
419 420


Z
zhiboniu 已提交
421
class HSigmoidLoss(Layer):
422 423
    """
    Hierarchical Sigmoid Layer.
L
Ligoml 已提交
424

425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458
    The hierarchical sigmoid organizes the classes into a complete binary tree to reduce the computational complexity
    and speed up the model training, especially the training of language model.
    Each leaf node of the complete binary tree represents a class(word) and each non-leaf node acts as a binary classifier.
    For each class(word), there's a unique path from root to itself, hsigmoid calculate the cost for each non-leaf node on
    the path, and sum them to get a total cost.
    Comparing to softmax, the OP can reduce the computational complexity from :math:`O(N)` to :math:`O(logN)`, where :math:`N`
    represents the number of classes or the size of word dict.

    The OP supports default tree and custom tree. For the default tree, you can refer to `Hierarchical Probabilistic Neural
    Network Language Model <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>_`. For the custom
    tree, you need to set :attr:`is_custom` to True, and do the following steps (take the language model as an example):

    1. Using a custom word dict to build a binary tree, each leaf node should be an word in the word dict.
    2. Creating a dict map word_id -> path that from the word to the root node, we call it path_table.
    3. Creating a dict map word_id -> code of path that from the word to the root node, we call it path_code.
       Code means the label of each binary classifier, 1 indicate true, 0 indicate false.
    4. Now, each word should has its path and code along the path, you can pass a batch of path and code related
       to the same batch of inputs.

    Parameters:
        feature_size (int): The number of features.
        num_classes (int): The number of classes or the size of word dict, must be greater than 2.
            If the default tree is used (:attr:`is_custom` is set to False), :attr:`num_classes`
            should not be None. If the custom tree is used (:attr:`is_custom` is set to True),
            :attr:`num_classes` should be the number of non-leaf nodes, which indicates the num of
            classes using by the binary classifier.
        weight_attr (ParamAttr, optional): The parameter attribute for the learnable weights
            of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid will create a
            ParamAttr as param_attr. If the Initializer of the param_attr is not set, the parameter is
            initialized with Xavier. Default is None.
        bias_attr (ParamAttr|bool, optional): The parameter attribute for the bias of hsigmoid. If it
            is set to False, no bias will be added. If it is set to None or one attribute of ParamAttr,
            hsigmoid will create a ParamAttr as bias_attr. If the Initializer of the bias_attr is not
            set, the bias is initialized zero. Default is None.
L
Ligoml 已提交
459
        is_custom (bool, optional): Whether use custom binary tree. If it's True, `path_table` and
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
            `path_code` should be passed to its forward method, otherwise `path_table` and `path_code`
            should not be passed to its forward method. Default is False.
        is_sparse (bool, optional): Whether use sparse updating instead of dense updating, if it's True,
            the gradient of weight and input will be sparse. Default is False.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input (Tensor): The input tensor. The shapes is [N, D], where N is batch size and D is feature size. It's data type should be float32, float64.
        label (Tensor): It's shapes is [N, 1]. It's data type should be int64.
        output (Tensor): The HSigmoid Loss of ``input`` and ``label``. Shape is [N, 1]

    Examples:
        .. code-block:: python

            import paddle
            paddle.set_device('cpu')

L
Linjie Chen 已提交
478 479 480 481 482
            input = paddle.uniform([4, 3])
            # [[0.56194401  -0.22450298  -0.10741806] # random
            #  [0.36136317  0.23556745  0.88748658] # random
            #  [0.18151939  0.80947340  -0.31078976] # random
            #  [0.68886101  -0.14239830  -0.41297770]] # random
483 484 485
            label = paddle.to_tensor([0, 1, 4, 5])
            m = paddle.nn.HSigmoidLoss(3, 5)
            out = m(input, label)
L
Linjie Chen 已提交
486 487 488 489
            # [[2.42524505]
            #  [1.74917245]
            #  [3.14571381]
            #  [2.34564662]]
490 491
    """

L
Ligoml 已提交
492 493 494 495 496 497 498 499 500 501
    def __init__(
        self,
        feature_size,
        num_classes,
        weight_attr=None,
        bias_attr=None,
        is_custom=False,
        is_sparse=False,
        name=None,
    ):
502 503 504
        super(HSigmoidLoss, self).__init__()
        if (num_classes < 2) and (not is_custom):
            raise ValueError(
L
Ligoml 已提交
505 506
                "num_classes must not be less than 2 with default tree"
            )
507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523

        if (not is_custom) and (is_sparse):
            print("Sparse mode should not be used without custom tree")
            is_sparse = False

        self._feature_size = feature_size
        self._num_classes = num_classes
        self._is_custom = is_custom
        self._is_sparse = is_sparse

        self._weight_attr = weight_attr
        self._bias_attr = bias_attr

        self._name = name
        self._dtype = paddle.get_default_dtype()

        remote_prefetch = is_sparse
L
Ligoml 已提交
524 525 526 527
        print(
            "With sparse mode, if your models has only"
            " small parameter prefetch may cause speed down"
        )
528 529

        C = self._num_classes if is_custom else self._num_classes - 1
L
Ligoml 已提交
530 531 532 533 534 535 536 537 538
        self.weight = self.create_parameter(
            [C, self._feature_size],
            attr=self._weight_attr,
            is_bias=False,
            dtype=self._dtype,
        )
        self.bias = self.create_parameter(
            [C, 1], attr=self._bias_attr, is_bias=True, dtype=self._dtype
        )
539 540

    def forward(self, input, label, path_table=None, path_code=None):
L
Ligoml 已提交
541 542 543 544 545 546 547 548 549 550 551
        out = F.hsigmoid_loss(
            input,
            label,
            self._num_classes,
            self.weight,
            self.bias,
            path_table=path_table,
            path_code=path_code,
            is_sparse=self._is_sparse,
            name=self._name,
        )
552 553 554
        return out


Z
zhiboniu 已提交
555
class MSELoss(Layer):
556
    r"""
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    **Mean Square Error Loss**
    Computes the mean square error (squared L2 norm) of given input and label.

    If :attr:`reduction` is set to ``'none'``, loss is calculated as:

    .. math::
        Out = (input - label)^2

    If :attr:`reduction` is set to ``'mean'``, loss is calculated as:

    .. math::
        Out = \operatorname{mean}((input - label)^2)

    If :attr:`reduction` is set to ``'sum'``, loss is calculated as:

    .. math::
        Out = \operatorname{sum}((input - label)^2)

575
    where `input` and `label` are `float32` tensors of same shape.
576 577 578 579

    Parameters:
        reduction (string, optional): The reduction method for the output,
            could be 'none' | 'mean' | 'sum'.
580 581 582
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned.
            If :attr:`size_average` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
583 584
            Default is ``'mean'``.

B
Bai Yifan 已提交
585 586 587 588
    Shape:
        input (Tensor): Input tensor, the data type is float32 or float64
        label (Tensor): Label tensor, the data type is float32 or float64
        output (Tensor): output tensor storing the MSE loss of input and label, the data type is same as input.
589 590 591

    Examples:
        .. code-block:: python
592 593 594 595 596 597 598

            import numpy as np
            import paddle

            input_data = np.array([1.5]).astype("float32")
            label_data = np.array([1.7]).astype("float32")

B
Bai Yifan 已提交
599 600 601 602
            mse_loss = paddle.nn.loss.MSELoss()
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            output = mse_loss(input, label)
603
            print(output)
B
Bai Yifan 已提交
604
            # [0.04000002]
605 606 607 608 609 610 611
    """

    def __init__(self, reduction='mean'):
        super(MSELoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MSELoss' should be 'sum', 'mean' or 'none', "
L
Ligoml 已提交
612 613
                "but received {}.".format(reduction)
            )
614 615 616
        self.reduction = reduction

    def forward(self, input, label):
Z
zhiboniu 已提交
617
        if not in_dynamic_mode():
L
Ligoml 已提交
618 619 620 621 622 623
            fluid.data_feeder.check_variable_and_dtype(
                input, 'input', ['float32', 'float64'], 'MSELoss'
            )
            fluid.data_feeder.check_variable_and_dtype(
                label, 'label', ['float32', 'float64'], 'MSELoss'
            )
624

625
        if in_dygraph_mode():
626
            square_out = paddle._C_ops.square(paddle.subtract(input, label))
627 628
        else:
            square_out = paddle.square(paddle.subtract(input, label))
629 630 631 632 633 634 635 636 637 638
        if self.reduction == 'none':
            return square_out

        reduce_op = 'reduce_mean'
        if self.reduction == 'sum':
            reduce_op = 'reduce_sum'

        return getattr(fluid.layers, reduce_op)(square_out)


Z
zhiboniu 已提交
639
class L1Loss(Layer):
640
    r"""
L
Leo Chen 已提交
641
    This interface is used to construct a callable object of the ``L1Loss`` class.
642
    The L1Loss layer calculates the L1 Loss of ``input`` and ``label`` as follows.
643

644
     If `reduction` set to ``'none'``, the loss is:
L
Leo Chen 已提交
645 646

    .. math::
647
        Out = \lvert input - label\rvert
648

649
    If `reduction` set to ``'mean'``, the loss is:
650

L
Leo Chen 已提交
651
    .. math::
652
        Out = MEAN(\lvert input - label\rvert)
653

654
    If `reduction` set to ``'sum'``, the loss is:
655

L
Leo Chen 已提交
656
    .. math::
657
        Out = SUM(\lvert input - label\rvert)
L
Leo Chen 已提交
658

659

L
Leo Chen 已提交
660
    Parameters:
661
        reduction (str, optional): Indicate the reduction to apply to the loss,
L
Leo Chen 已提交
662
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
663 664 665
            If `reduction` is ``'none'``, the unreduced loss is returned;
            If `reduction` is ``'mean'``, the reduced mean loss is returned.
            If `reduction` is ``'sum'``, the reduced sum loss is returned.
L
Leo Chen 已提交
666
            Default is ``'mean'``.
667 668 669
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shape:
670 671
        input (Tensor): The input tensor. The shapes is [N, *], where N is batch size and `*` means any number of additional dimensions. It's data type should be float32, float64, int32, int64.
        label (Tensor): label. The shapes is [N, *], same shape as ``input`` . It's data type should be float32, float64, int32, int64.
672
        output (Tensor): The L1 Loss of ``input`` and ``label``.
673 674
            If `reduction` is ``'none'``, the shape of output loss is [N, *], the same as ``input`` .
            If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].
675

L
Leo Chen 已提交
676 677
    Examples:
        .. code-block:: python
L
Ligoml 已提交
678

L
Leo Chen 已提交
679
            import paddle
680
            import numpy as np
681

682 683 684 685
            input_data = np.array([[1.5, 0.8], [0.2, 1.3]]).astype("float32")
            label_data = np.array([[1.7, 1], [0.4, 0.5]]).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
686

C
Chen Long 已提交
687
            l1_loss = paddle.nn.L1Loss()
688
            output = l1_loss(input, label)
689
            print(output.numpy())
690 691
            # [0.35]

C
Chen Long 已提交
692
            l1_loss = paddle.nn.L1Loss(reduction='sum')
693
            output = l1_loss(input, label)
694
            print(output.numpy())
695 696
            # [1.4]

C
Chen Long 已提交
697
            l1_loss = paddle.nn.L1Loss(reduction='none')
698
            output = l1_loss(input, label)
C
Chen Long 已提交
699
            print(output)
700
            # [[0.20000005 0.19999999]
701
            # [0.2        0.79999995]]
L
Leo Chen 已提交
702 703
    """

704
    def __init__(self, reduction='mean', name=None):
L
Leo Chen 已提交
705 706 707
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in L1Loss should be 'sum', 'mean' or 'none', but "
L
Ligoml 已提交
708 709
                "received %s, which is not allowed." % reduction
            )
L
Leo Chen 已提交
710 711
        super(L1Loss, self).__init__()
        self.reduction = reduction
712
        self.name = name
L
Leo Chen 已提交
713

714
    def forward(self, input, label):
L
Ligoml 已提交
715 716 717
        return paddle.nn.functional.l1_loss(
            input, label, self.reduction, name=self.name
        )
C
ceci3 已提交
718 719


Z
zhiboniu 已提交
720
class BCELoss(Layer):
C
ceci3 已提交
721
    """
C
ceci3 已提交
722
    This interface is used to construct a callable object of the ``BCELoss`` class.
723 724
    The BCELoss layer measures the binary_cross_entropy loss between input predictions ``input``
    and target labels ``label`` . The binary_cross_entropy loss can be described as:
C
ceci3 已提交
725

C
ceci3 已提交
726
    If :attr:`weight` is set, the loss is:
C
ceci3 已提交
727 728

    .. math::
C
ceci3 已提交
729
        Out = -1 * weight * (label * log(input) + (1 - label) * log(1 - input))
730

C
ceci3 已提交
731
    If :attr:`weight` is None, the loss is:
C
ceci3 已提交
732 733

    .. math::
C
ceci3 已提交
734 735
        Out = -1 * (label * log(input) + (1 - label) * log(1 - input))

736
    If :attr:`reduction` set to ``'none'``, the interface will return the original loss `Out`.
C
ceci3 已提交
737

C
ceci3 已提交
738
    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:
C
ceci3 已提交
739

C
ceci3 已提交
740 741
    .. math::
        Out = MEAN(Out)
742

C
ceci3 已提交
743
    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:
C
ceci3 已提交
744

C
ceci3 已提交
745 746
    .. math::
        Out = SUM(Out)
C
ceci3 已提交
747

748
    Note that the input predictions ``input`` always be the output of sigmoid, and the target labels ``label``
C
ceci3 已提交
749 750
    should be numbers between 0 and 1.

C
ceci3 已提交
751
    Parameters:
752 753
        weight (Tensor, optional): A manual rescaling weight given to the loss of each
            batch element. If given, has to be a Tensor of size nbatch and the data type
C
ceci3 已提交
754
            is float32, float64. Default is ``'None'``.
755
        reduction (str, optional): Indicate how to average the loss by batch_size,
C
ceci3 已提交
756
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
C
ceci3 已提交
757
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
758
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
C
ceci3 已提交
759
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
C
ceci3 已提交
760
            Default is ``'mean'``.
761 762 763 764
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
Z
Zhong Hui 已提交
765
        input (Tensor): 2-D tensor with shape: [N, *], N is batch_size, `*` means
766 767 768 769 770 771 772
            number of additional dimensions. The input ``input`` should always
            be the output of sigmod.  Available dtype is float32, float64.
        label (Tensor): 2-D tensor with the same shape as ``input``. The target
            labels which values should be numbers between 0 and 1. Available
            dtype is float32, float64.
        output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is scalar.
C
ceci3 已提交
773

774
    Returns:
C
ceci3 已提交
775 776
        A callable object of BCELoss.

C
ceci3 已提交
777 778
    Examples:
        .. code-block:: python
C
ceci3 已提交
779

C
ceci3 已提交
780 781 782 783
            import numpy as np
            import paddle
            input_data = np.array([0.5, 0.6, 0.7]).astype("float32")
            label_data = np.array([1.0, 0.0, 1.0]).astype("float32")
784

Z
Zhong Hui 已提交
785 786
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
C
Chen Long 已提交
787
            bce_loss = paddle.nn.BCELoss()
788
            output = bce_loss(input, label)
C
Chen Long 已提交
789
            print(output)  # [0.65537095]
790

C
ceci3 已提交
791 792
    """

793
    def __init__(self, weight=None, reduction='mean', name=None):
C
ceci3 已提交
794 795 796
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in bce_loss should be 'sum', 'mean' or 'none', but "
L
Ligoml 已提交
797 798
                "received %s, which is not allowed." % reduction
            )
C
ceci3 已提交
799 800 801 802

        super(BCELoss, self).__init__()
        self.weight = weight
        self.reduction = reduction
803
        self.name = name
C
ceci3 已提交
804 805

    def forward(self, input, label):
L
Ligoml 已提交
806 807 808
        out = paddle.nn.functional.binary_cross_entropy(
            input, label, self.weight, self.reduction, self.name
        )
809
        return out
810 811


Z
zhiboniu 已提交
812
class NLLLoss(Layer):
813
    r"""
S
swtkiwi 已提交
814

815
    This class accepts input and target label and returns negative log likelihood
816
    cross error. It is useful to train a classification problem with C classes.
817

818
    The input for the loss is expected to contain log-probabilities of
819
    each classes. It has to be a Tensor of size either (batch_size, C) or
820 821 822 823
    (batch_size, C, d1, d2, ..., dK) with K >= 1 for the K-dimensional case.
    The label for the loss should be a class index in the range [0, C-1]
    where C is the number of classes. If ignore_index is specified, the
    specified target value does not contribute to the input gradient.
824

825 826 827
    If the optional argument `weight` is provided, it should be a 1D Tensor
    assigning weight to each of the classed. This is particularly useful
    when you have an unbalanced training set.
828

829 830 831 832
    The loss is calculated as follows.
    The unreduced (i.e. with :attr:`reduction` set to ``'none'``) loss can be described as:

    .. math::
833 834

        \ell(x, y) = L = \{l_1,\dots,l_N\}^\top, \quad
835
        l_n = - w_{y_n} x_{n,y_n}, \quad
836
        w_{c} = \text{weight}[c] \cdot \mathbb{1}\{c \not= \text{ignore_index}\},
837 838 839 840 841

    where :math:`N` is the batch size. If :attr:`reduction` is not ``'none'``
    (default ``'mean'``), then

    .. math::
842 843 844 845 846 847 848 849 850 851

        \ell(x, y) =
        \left\{
            \begin{array}{lcl}
            \sum_{n=1}^N \frac{1}{\sum_{n=1}^N w_{y_n}} l_n, &
            \text{if  reduction} = \text{'mean';}\\
            \sum_{n=1}^N l_n,  &
            \text{if  reduction} = \text{'sum'.}
            \end{array}
        \right.
852 853

    Parameters:
854 855
        weight (Tensor, optional): Weight tensor, a manual rescaling weight given
            to each class. If given, it has to be a 1D Tensor whose size is `[C, ]`. Otherwise,
856
            it treated as if having all ones. the data type is
857
            float32, float64, Default is ``'None'``.
858
        ignore_index (int, optional): Specifies a target value that is ignored
859
            and does not contribute to the input gradient.
860
        reduction (str, optional): Indicate how to average the loss,
861
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
862 863 864
            If `reduction` is ``'mean'``, the reduced mean loss is returned;
            if `reduction` is ``'sum'``, the reduced sum loss is returned;
            if `reduction` is ``'none'``, no reduction will be apllied.
865
            Default is ``'mean'``.
866
         name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
867

868
    Shape:
869
        - input (Tensor): Input tensor, the shape is :math:`[N, C]`, `C` is the number of classes.
870 871
            But in K-dimension situation, the shape is :math:`[N, C, d_1, d_2, ..., d_K]`.
            The data type is float32, float64.
872
        - label (Tensor): Label tensor, the shape is :math:`[N,]` or :math:`[N, d_1, d_2, ..., d_K]`.
873
            The data type is int64.
874
        - output (Tensor): the `negative log likelihood loss` between input `x` and `label`.
875 876
            If `reduction` is `'none'`, the shape is `[N, *]`.
            If `reduction` is `'sum'` or `'mean'`, the shape is `[1]`.
877 878 879 880

    Examples:
        .. code-block:: python

881
                import paddle
882

883
                nll_loss = paddle.nn.loss.NLLLoss()
884
                log_softmax = paddle.nn.LogSoftmax(axis=1)
885

886 887 888 889 890
                input = paddle.to_tensor([[0.88103855, 0.9908683 , 0.6226845 ],
                                          [0.53331435, 0.07999352, 0.8549948 ],
                                          [0.25879037, 0.39530203, 0.698465  ],
                                          [0.73427284, 0.63575995, 0.18827209],
                                          [0.05689114, 0.0862954 , 0.6325046 ]], "float32")
891
                log_out = log_softmax(input)
892
                label = paddle.to_tensor([0, 2, 1, 1, 0], "int64")
893
                result = nll_loss(log_out, label)
894
                print(result) # Tensor(shape=[1], dtype=float32, place=CPUPlace, stop_gradient=True, [1.07202101])
895

896
    """
897

L
Ligoml 已提交
898 899 900
    def __init__(
        self, weight=None, ignore_index=-100, reduction='mean', name=None
    ):
901
        if reduction not in ['sum', 'mean', 'none']:
902
            raise ValueError(
903
                "The value of 'reduction' in nll_loss should be 'sum', 'mean' or "
L
Ligoml 已提交
904 905
                "'none', but received %s, which is not allowed." % reduction
            )
906 907 908 909 910
        super(NLLLoss, self).__init__()
        self._weight = weight
        self._ignore_index = ignore_index
        self._reduction = reduction
        self._name = name
911

912
    def forward(self, input, label):
L
Ligoml 已提交
913 914 915 916 917 918 919 920
        return F.nll_loss(
            input,
            label,
            weight=self._weight,
            ignore_index=self._ignore_index,
            reduction=self._reduction,
            name=self._name,
        )
921 922


Z
zhiboniu 已提交
923
class KLDivLoss(Layer):
924
    r"""
925 926 927 928 929 930 931 932 933
    This interface calculates the Kullback-Leibler divergence loss
    between Input(X) and Input(Target). Notes that Input(X) is the
    log-probability and Input(Target) is the probability.

    KL divergence loss is calculated as follows:

    $$l(x, y) = y * (\log(y) - x)$$

    Parameters:
L
LielinJiang 已提交
934 935 936 937 938 939 940
        reduction (Tensor): Indicate how to average the loss,
             the candicates are ``'none'`` | ``'batchmean'`` | ``'mean'`` | ``'sum'``.
             If `reduction` is ``'mean'``, the reduced mean loss is returned;
             If `reduction` is ``'batchmean'``, the sum loss divided by batch size is returned;
             if `reduction` is ``'sum'``, the reduced sum loss is returned;
             if `reduction` is ``'none'``, no reduction will be apllied.
             Default is ``'mean'``.
941 942

    Shape:
943 944 945 946 947 948

        - input (Tensor): (N, *), where * means, any number of additional dimensions.

        - label (Tensor): (N, *), same shape as input.

        - output (Tensor): tensor with shape: [1] by default.
949 950 951 952 953 954 955 956


    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            import paddle.nn as nn
957

958 959 960 961
            shape = (5, 20)
            x = np.random.uniform(-10, 10, shape).astype('float32')
            target = np.random.uniform(-10, 10, shape).astype('float32')

L
LielinJiang 已提交
962
            # 'batchmean' reduction, loss shape will be [1]
963
            kldiv_criterion = nn.KLDivLoss(reduction='batchmean')
964 965
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
L
LielinJiang 已提交
966
            # shape=[1]
967

968 969
            # 'mean' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='mean')
970 971
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
972 973 974 975
            # shape=[1]

            # 'sum' reduction, loss shape will be [1]
            kldiv_criterion = nn.KLDivLoss(reduction='sum')
976 977
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
978 979 980 981
            # shape=[1]

            # 'none' reduction, loss shape is same with X shape
            kldiv_criterion = nn.KLDivLoss(reduction='none')
982 983
            pred_loss = kldiv_criterion(paddle.to_tensor(x),
                                        paddle.to_tensor(target))
984 985 986 987 988 989 990 991
            # shape=[5, 20]
    """

    def __init__(self, reduction='mean'):
        super(KLDivLoss, self).__init__()
        self.reduction = reduction

    def forward(self, input, label):
L
LielinJiang 已提交
992
        out = F.kl_div(input, label, self.reduction)
993 994 995
        return out


Z
zhiboniu 已提交
996
class MarginRankingLoss(Layer):
997
    r"""
998 999

    This interface is used to construct a callable object of the ``MarginRankingLoss`` class.
1000
    The MarginRankingLoss layer calculates the margin rank loss between the input, other and label
1001 1002
    , use the math function as follows.

1003
    .. math::
1004
        margin\_rank\_loss = max(0, -label * (input - other) + margin)
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022

    If :attr:`reduction` set to ``'mean'``, the reduced mean loss is:

    .. math::
        Out = MEAN(margin\_rank\_loss)

    If :attr:`reduction` set to ``'sum'``, the reduced sum loss is:

    .. math::
        Out = SUM(margin\_rank\_loss)

    If :attr:`reduction` set to ``'none'``, just return the origin ``margin_rank_loss``.

    Parameters:
        margin (float, optional): The margin value to add, default value is 0;
        reduction (str, optional): Indicate the reduction to apply to the loss, the candicates are ``'none'``, ``'mean'``, ``'sum'``.If :attr:`reduction` is ``'none'``, the unreduced loss is returned; If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned. If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned. Default is ``'mean'``.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

1023
    Shape:
L
Ligoml 已提交
1024

N
Noel 已提交
1025 1026
        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

1027
        other: N-D Tensor, `other` have the same shape and dtype as `input`.
N
Noel 已提交
1028

1029
        label: N-D Tensor, label have the same shape and dtype as `input`.
N
Noel 已提交
1030

1031
        output: If :attr:`reduction` is ``'mean'`` or ``'sum'`` , the out shape is :math:`[1]`, otherwise the shape is the same as `input` .The same dtype as input tensor.
1032 1033 1034 1035 1036 1037 1038 1039

    Returns:
        A callable object of MarginRankingLoss.

    Examples:

        .. code-block:: python

1040 1041
            import paddle

C
Chen Long 已提交
1042 1043
            input = paddle.to_tensor([[1, 2], [3, 4]], dtype="float32")
            other = paddle.to_tensor([[2, 1], [2, 4]], dtype="float32")
Z
Zhong Hui 已提交
1044
            label = paddle.to_tensor([[1, -1], [-1, -1]], dtype="float32")
1045
            margin_rank_loss = paddle.nn.MarginRankingLoss()
1046
            loss = margin_rank_loss(input, other, label)
1047 1048 1049

            print(loss)
            # [0.75]
1050 1051 1052 1053 1054
    """

    def __init__(self, margin=0.0, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
1055
                "The value of 'reduction' in MarginRankingLoss should be 'sum', 'mean' or 'none', but "
L
Ligoml 已提交
1056 1057
                "received %s, which is not allowed." % reduction
            )
1058 1059 1060 1061 1062
        super(MarginRankingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

1063
    def forward(self, input, other, label):
L
Ligoml 已提交
1064 1065 1066
        out = paddle.nn.functional.margin_ranking_loss(
            input, other, label, self.margin, self.reduction, self.name
        )
1067
        return out
1068 1069


Z
zhiboniu 已提交
1070
class CTCLoss(Layer):
1071 1072
    """

1073 1074 1075
    An operator integrating the open source Warp-CTC library (https://github.com/baidu-research/warp-ctc)
    to compute Connectionist Temporal Classification (CTC) loss.
    It can be aliased as softmax with CTC, since a native softmax activation
1076 1077 1078 1079 1080 1081 1082
    is interated to the Warp-CTC library to normalize values for each row of the input tensor.

    Parameters:
        blank (int, optional): The blank label index of Connectionist Temporal Classification (CTC) loss, which is in the half-opened interval [0, num_classes + 1). The data type must be int32. Default is 0.
        reduction (string, optional): Indicate how to average the loss, the candicates are ``'none'`` | ``'mean'`` | ``'sum'``. If :attr:`reduction` is ``'mean'``, the output loss will be divided by the label_lengths, and then return the mean of quotient; If :attr:`reduction` is ``'sum'``, return the sum of loss; If :attr:`reduction` is ``'none'``, no reduction will be applied. Default is ``'mean'``.

    Shape:
1083
        log_probs (Tensor): The unscaled probability sequence with padding, which is a 3-D Tensor. The tensor shape is [max_logit_length, batch_size, num_classes + 1], where max_logit_length is the longest length of input logit sequence. The data type should be float32 or float64.
1084 1085 1086
        labels (Tensor): The ground truth sequence with padding, which must be a 3-D Tensor. The tensor shape is [batch_size, max_label_length], where max_label_length is the longest length of label sequence. The data type must be int32.
        input_lengths (Tensor): The length for each input sequence, it should have shape [batch_size] and dtype int64.
        label_lengths (Tensor): The length for each label sequence, it should have shape [batch_size] and dtype int64.
1087
        norm_by_times (bool, default false) – Whether to normalize the gradients by the number of time-step, which is also the sequence’s length. There is no need to normalize the gradients if reduction mode is 'mean'.
1088 1089 1090

    Returns:
        Tensor, The Connectionist Temporal Classification (CTC) loss between ``log_probs`` and  ``labels``. If attr:`reduction` is ``'none'``, the shape of loss is [batch_size], otherwise, the shape of loss is [1]. Data type is the same as ``log_probs``.
1091

1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    Examples:

        .. code-block:: python

            # declarative mode
            import numpy as np
            import paddle

            # length of the longest logit sequence
            max_seq_length = 4
            #length of the longest label sequence
            max_label_length = 3
            # number of logit sequences
            batch_size = 2
            # class num
            class_num = 3

            np.random.seed(1)
            log_probs = np.array([[[4.17021990e-01, 7.20324516e-01, 1.14374816e-04],
                                    [3.02332580e-01, 1.46755889e-01, 9.23385918e-02]],

                                    [[1.86260208e-01, 3.45560730e-01, 3.96767467e-01],
                                    [5.38816750e-01, 4.19194520e-01, 6.85219526e-01]],

                                    [[2.04452246e-01, 8.78117442e-01, 2.73875929e-02],
                                    [6.70467496e-01, 4.17304814e-01, 5.58689833e-01]],

                                    [[1.40386939e-01, 1.98101491e-01, 8.00744593e-01],
                                    [9.68261600e-01, 3.13424170e-01, 6.92322612e-01]],

                                    [[8.76389146e-01, 8.94606650e-01, 8.50442126e-02],
                                    [3.90547849e-02, 1.69830427e-01, 8.78142476e-01]]]).astype("float32")
            labels = np.array([[1, 2, 2],
                            [1, 2, 2]]).astype("int32")
            input_lengths = np.array([5, 5]).astype("int64")
            label_lengths = np.array([3, 3]).astype("int64")

1129 1130 1131 1132
            log_probs = paddle.to_tensor(log_probs)
            labels = paddle.to_tensor(labels)
            input_lengths = paddle.to_tensor(input_lengths)
            label_lengths = paddle.to_tensor(label_lengths)
1133

1134 1135
            loss = paddle.nn.CTCLoss(blank=0, reduction='none')(log_probs, labels,
                input_lengths,
1136
                label_lengths)
1137
            print(loss)  #[3.9179852 2.9076521]
1138

1139 1140
            loss = paddle.nn.CTCLoss(blank=0, reduction='mean')(log_probs, labels,
                input_lengths,
1141
                label_lengths)
1142
            print(loss)  #[1.1376063]
1143 1144 1145 1146 1147 1148 1149
    """

    def __init__(self, blank=0, reduction='mean'):
        super(CTCLoss, self).__init__()
        self.blank = blank
        self.reduction = reduction

L
Ligoml 已提交
1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
    def forward(
        self,
        log_probs,
        labels,
        input_lengths,
        label_lengths,
        norm_by_times=False,
    ):
        return paddle.nn.functional.ctc_loss(
            log_probs,
            labels,
            input_lengths,
            label_lengths,
            self.blank,
            self.reduction,
            norm_by_times=norm_by_times,
        )
1167 1168


Z
zhiboniu 已提交
1169
class SmoothL1Loss(Layer):
1170
    r"""
1171 1172 1173 1174 1175 1176 1177
    This operator calculates smooth_l1_loss. Creates a criterion that uses a squared
    term if the absolute element-wise error falls below 1 and an L1 term otherwise.
    In some cases it can prevent exploding gradients and it is more robust and less
    sensitivity to outliers. Also known as the Huber loss:

    .. math::

1178
         loss(x,y) = \frac{1}{n}\sum_{i}z_i
1179 1180 1181 1182 1183

    where z_i is given by:

    .. math::

1184 1185
        \mathop{z_i} = \left\{\begin{array}{rcl}
        0.5(x_i - y_i)^2 & & {if |x_i - y_i| < delta} \\
1186
        delta * |x_i - y_i| - 0.5 * delta^2 & & {otherwise}
1187
        \end{array} \right.
1188 1189 1190 1191 1192 1193 1194 1195

    Parameters:
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the reduced sum loss is returned.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned.
            Default is ``'mean'``.
1196
        delta (float, optional): Specifies the hyperparameter delta to be used.
1197 1198 1199 1200 1201 1202 1203 1204
            The value determines how large the errors need to be to use L1. Errors
            smaller than delta are minimized with L2. Parameter is ignored for
            negative/zero values. Default = 1.0
        name (str, optional): Name for the operation (optional, default is
            None). For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:

1205 1206 1207 1208 1209 1210
        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), 
        where C is number of classes, and if shape is more than 2D, 
        this is (N, C, D1, D2,..., Dk), k >= 1.

        label (Tensor): Label tensor, the data type is float32 or float64. 
        The shape of label is the same as the shape of input.
1211

1212 1213
    Returns:
        Tensor, The tensor storing the smooth_l1_loss of input and label.
1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np
            input_data = np.random.rand(3,3).astype("float32")
            label_data = np.random.rand(3,3).astype("float32")
            input = paddle.to_tensor(input_data)
            label = paddle.to_tensor(label_data)
            loss = paddle.nn.SmoothL1Loss()
            output = loss(input, label)
G
Guanghua Yu 已提交
1226
            print(output)
1227 1228 1229 1230 1231 1232 1233 1234 1235
    """

    def __init__(self, reduction='mean', delta=1.0, name=None):
        super(SmoothL1Loss, self).__init__()
        self.reduction = reduction
        self.delta = delta
        self.name = name

    def forward(self, input, label):
L
Ligoml 已提交
1236 1237 1238 1239 1240 1241 1242
        return F.smooth_l1_loss(
            input,
            label,
            reduction=self.reduction,
            delta=self.delta,
            name=self.name,
        )
1243 1244


Y
yangguohao 已提交
1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309
class MultiLabelSoftMarginLoss(Layer):
    r"""Creates a criterion that optimizes a multi-class multi-classification
        hinge loss (margin-based loss) between input :math:`x` (a 2D mini-batch `Tensor`)
        and output :math:`y` (which is a 2D `Tensor` of target class indices).
        For each sample in the mini-batch:

        .. math::
            \text{loss}(x, y) = \sum_{ij}\frac{\max(0, 1 - (x[y[j]] - x[i]))}{\text{x.size}(0)}

        where :math:`x \in \left\{0, \; \cdots , \; \text{x.size}(0) - 1\right\}`, \
        :math:`y \in \left\{0, \; \cdots , \; \text{y.size}(0) - 1\right\}`, \
        :math:`0 \leq y[j] \leq \text{x.size}(0)-1`, \
        and :math:`i \neq y[j]` for all :math:`i` and :math:`j`.
        :math:`y` and :math:`x` must have the same size.

        Parameters:
	        weight (Tensor,optional): a manual rescaling weight given to each class.
                    If given, has to be a Tensor of size C and the data type is float32, float64.
                    Default is ``'None'`` .
            reduction (str, optional): Indicate how to average the loss by batch_size,
                    the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                    If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                    If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                    If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                    Default: ``'mean'``
            name (str, optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.

        Call parameters:
            input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.
            label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.

        Shape:
            input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means number of classes, available dtype is float32, float64. The sum operationoperates over all the elements.
            label: N-D Tensor, same shape as the input.
            output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

        Returns:
            A callable object of MultiLabelSoftMarginLoss.

        Examples:
            .. code-block:: python

                import paddle
                import paddle.nn as nn

                input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
                label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

                multi_label_soft_margin_loss = nn.MultiLabelSoftMarginLoss(reduction='none')
                loss = multi_label_soft_margin_loss(input, label)
                print(loss)
                # Tensor([3.49625897, 0.71111226, 0.43989015])

                multi_label_soft_margin_loss = nn.MultiLabelSoftMarginLoss(reduction='mean')
                loss = multi_label_soft_margin_loss(input, label)
                print(loss)
                # Tensor([1.54908717])
        """

    def __init__(self, weight=None, reduction="mean", name=None):
        super(MultiLabelSoftMarginLoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "'reduction' in 'MultiLabelSoftMarginloss' should be 'sum', 'mean' or 'none', "
L
Ligoml 已提交
1310 1311
                "but received {}.".format(reduction)
            )
Y
yangguohao 已提交
1312 1313 1314 1315 1316
        self.weight = weight
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
L
Ligoml 已提交
1317 1318 1319 1320 1321 1322 1323
        return F.multi_label_soft_margin_loss(
            input,
            label,
            weight=self.weight,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1324 1325


1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
class HingeEmbeddingLoss(Layer):
    r"""
    This operator calculates hinge_embedding_loss. Measures the loss given an input tensor :math:`x` and a labels tensor :math:`y`(containing 1 or -1).
    This is usually used for measuring whether two inputs are similar or dissimilar, e.g. using the L1 pairwise distance as :math:`x`,
    and is typically used for learning nonlinear embeddings or semi-supervised learning.

    The loss function for :math:`n`-th sample in the mini-batch is

    .. math::
        l_n = \begin{cases}
            x_n, & \text{if}\; y_n = 1,\\
            \max \{0, \Delta - x_n\}, & \text{if}\; y_n = -1,
        \end{cases}

    and the total loss functions is

    .. math::
        \ell(x, y) = \begin{cases}
            \operatorname{mean}(L), & \text{if reduction} = \text{'mean';}\\
            \operatorname{sum}(L),  & \text{if reduction} = \text{'sum'.}
        \end{cases}

    where :math:`L = \{l_1,\dots,l_N\}^\top`.

    Parameters:

        margin (float, optional): Specifies the hyperparameter margin to be used.
            The value determines how large the input need to be to calculate in
            hinge_embedding_loss. When label is -1, Input smaller than margin are minimized with hinge_embedding_loss.
            Default = 1.0
        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:

        input (Tensor): Input tensor, the data type is float32 or float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1.

        label (Tensor): Label tensor containing 1 or -1, the data type is float32 or float64. The shape of label is the same as the shape of input.

    Shape:

        input: N-D Tensor, the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64. The sum operationoperates over all the elements.

        label: N-D Tensor, same shape as the input.

        output: scalar. If :attr:`reduction` is ``'none'``, then same shape as the input.

    Returns:

        Tensor, The tensor variable storing the hinge_embedding_loss of input and label.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.nn as nn

            input = paddle.to_tensor([[1, -2, 3], [0, -1, 2], [1, 0, 1]], dtype=paddle.float32)
            # label elements in {1., -1.}
            label = paddle.to_tensor([[-1, 1, -1], [1, 1, 1], [1, -1, 1]], dtype=paddle.float32)

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='none')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([[0., -2., 0.],
            #         [0., -1., 2.],
            #         [1., 1., 1.]])

            hinge_embedding_loss = nn.HingeEmbeddingLoss(margin=1.0, reduction='mean')
            loss = hinge_embedding_loss(input, label)
            print(loss)
            # Tensor([0.22222222])
    """

    def __init__(self, margin=1.0, reduction="mean", name=None):
        super(HingeEmbeddingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
L
Ligoml 已提交
1413 1414 1415 1416 1417 1418 1419
        return F.hinge_embedding_loss(
            input,
            label,
            reduction=self.reduction,
            margin=self.margin,
            name=self.name,
        )
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492


class CosineEmbeddingLoss(Layer):
    r"""
    This interface is used to construct a callable object of the ``CosineEmbeddingLoss`` class.
    The CosineEmbeddingLoss layer measures the cosine_embedding loss between input predictions ``input1``, ``input2``
    and target labels ``label`` with values 1 or 0. This is used for measuring whether two inputs are similar or
    dissimilar and is typically used for learning nonlinear embeddings or semi-supervised learning.
    The cosine embedding loss can be described as:

    If label = 1, then the loss value can be calculated as follow:

    .. math::
        Out = 1 - cos(input1, input2)

    If label = -1, then the loss value can be calculated as follow:

    .. math::
        Out = max(0, cos(input1, input2)) - margin

    The operator cos can be described as follow:
     .. math::
        cos(x1, x2) = \frac{x1 \cdot{} x2}{\Vert x1 \Vert_2 * \Vert x2 \Vert_2}

    Parameters:
        margin (float, optional): Should be a number from :math:`-1` to :math:`1`,
            :math:`0` to :math:`0.5` is suggested. If :attr:`margin` is missing, the
            default value is :math:`0`.
        reduction (string, optional): Specifies the reduction to apply to the output:
            ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
            ``'mean'``: the sum of the output will be divided by the number of
            elements in the output, ``'sum'``: the output will be summed.
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.

    Shape:
        input1 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        input2 (Tensor): tensor with shape: [N, M] or [M], 'N' means batch size, 'M' means the length of input array.
                         Available dtypes are float32, float64.
        label (Tensor): tensor with shape: [N] or [1]. The target labels values should be -1 or 1.
                         Available dtypes are int32, int64, float32, float64.
        output (Tensor): Tensor, the cosine embedding Loss of Tensor ``input1`` ``input2`` and ``label``.
                         If `reduction` is ``'none'``, the shape of output loss is [N], the same as ``input`` .
                         If `reduction` is ``'mean'`` or ``'sum'``, the shape of output loss is [1].

    Examples:
        .. code-block:: python

            import paddle

            input1 = paddle.to_tensor([[1.6, 1.2, -0.5], [3.2, 2.6, -5.8]], 'float32')
            input2 = paddle.to_tensor([[0.5, 0.5, -1.8], [2.3, -1.4, 1.1]], 'float32')
            label = paddle.to_tensor([1, -1], 'int64')

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='mean')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.21155193]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='sum')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387]

            cosine_embedding_loss = paddle.nn.CosineEmbeddingLoss(margin=0.5, reduction='none')
            output = cosine_embedding_loss(input1, input2, label)
            print(output) # [0.42310387, 0.        ]

    """

    def __init__(self, margin=0, reduction='mean', name=None):
        if margin > 1 or margin < -1:
            raise ValueError(
                "The value of 'margin' should be in the interval of [-1, 1], but received %f, which is not allowed."
L
Ligoml 已提交
1493 1494
                % margin
            )
1495 1496 1497
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' should be 'sum', 'mean' or "
L
Ligoml 已提交
1498 1499
                "'none', but received %s, which is not allowed." % reduction
            )
1500 1501 1502 1503 1504 1505
        super(CosineEmbeddingLoss, self).__init__()
        self.margin = margin
        self.reduction = reduction
        self.name = name

    def forward(self, input1, input2, label):
L
Ligoml 已提交
1506 1507 1508 1509 1510 1511 1512 1513
        return F.cosine_embedding_loss(
            input1,
            input2,
            label,
            margin=self.margin,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530


class TripletMarginWithDistanceLoss(Layer):
    r"""
    Creates a criterion that measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, D)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}

    where the default `distance_function`
L
Ligoml 已提交
1531

Y
yangguohao 已提交
1532
    .. math::
L
Ligoml 已提交
1533 1534 1535
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_2

    or user can define their own distance function. `margin` is a nonnegative margin representing the minimum difference
Y
yangguohao 已提交
1536 1537 1538 1539 1540
    between the positive and negative distances that is required for the loss to be 0. If `swap` is true, it will compare distance of (input, negative) with
    distance of (negative, positive) and change it to the smaller one. For more details see http://www.bmva.org/bmvc/2016/papers/paper119/paper119.pdf.

    Parameters:
        distance_function (Callable, Optional): Quantifies the distance between two tensors. if not specified, 2 norm functions will be used.
L
Ligoml 已提交
1541

Y
yangguohao 已提交
1542 1543 1544 1545
        margin (float, Optional):Default: :math:`1`.A nonnegative margin representing the minimum difference
                between the positive and negative distances required for the loss to be 0. Larger
                margins penalize cases where the negative examples are not distant enough from the
                anchors, relative to the positives.
L
Ligoml 已提交
1546

Y
yangguohao 已提交
1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
        swap (bool, Optional):The distance swap changes the negative distance to the swap distance (distance between positive samples
                and negative samples) if swap distance smaller than negative distance. Default: ``False``.

        reduction (str, Optional):Indicate how to average the loss by batch_size.
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``
        name (str, optional): Name for the operation (optional, default is None).
            For more information, please refer to :ref:`api_guide_Name`.
L
Ligoml 已提交
1558

Y
yangguohao 已提交
1559 1560
    Shapes:
        input (Tensor):Input tensor, the data type is float32 or float64.
L
Ligoml 已提交
1561
        the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.
Y
yangguohao 已提交
1562 1563

        positive (Tensor):Positive tensor, the data type is float32 or float64.
L
Ligoml 已提交
1564
        The shape of label is the same as the shape of input.
Y
yangguohao 已提交
1565 1566

        negative (Tensor):Negative tensor, the data type is float32 or float64.
L
Ligoml 已提交
1567 1568 1569
        The shape of label is the same as the shape of input.

            output(Tensor): The tensor variable storing the triplet_margin_with_distance_loss of input and positive and negative.
Y
yangguohao 已提交
1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594

    Return:
        A callable object of TripletMarginWithDistanceLoss

    Examples:
        .. code-block:: python

            import paddle
            from paddle.nn import TripletMarginWithDistanceLoss

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            triplet_margin_with_distance_loss = TripletMarginWithDistanceLoss(reduction='none')
            loss = triplet_margin_with_distance_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])

            triplet_margin_with_distance_loss = TripletMarginWithDistanceLoss(reduction='mean')
            loss = triplet_margin_with_distance_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.19165580])

    """

L
Ligoml 已提交
1595 1596 1597 1598 1599 1600 1601 1602
    def __init__(
        self,
        distance_function=None,
        margin=1.0,
        swap=False,
        reduction: str = 'mean',
        name=None,
    ):
Y
yangguohao 已提交
1603 1604 1605 1606 1607
        super(TripletMarginWithDistanceLoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in TripletMarginWithDistanceLoss "
                "should be 'sum', 'mean' or 'none', but "
L
Ligoml 已提交
1608 1609
                "received %s, which is not allowed." % reduction
            )
Y
yangguohao 已提交
1610 1611 1612 1613 1614 1615 1616
        self.margin = margin
        self.swap = swap
        self.reduction = reduction
        self.distance_function = distance_function
        self.name = name

    def forward(self, input, positive, negative):
L
Ligoml 已提交
1617 1618 1619 1620 1621 1622 1623 1624 1625
        return F.triplet_margin_with_distance_loss(
            input,
            positive,
            negative,
            margin=self.margin,
            swap=self.swap,
            reduction=self.reduction,
            name=self.name,
        )
Y
yangguohao 已提交
1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694


class TripletMarginLoss(Layer):
    r"""
    Creates a criterion that measures the triplet loss given an input
    tensors :math:`x1`, :math:`x2`, :math:`x3` and a margin with a value greater than :math:`0`.
    This is used for measuring a relative similarity between samples. A triplet
    is composed by `input`, `positive` and `negative` (i.e., `input`, `positive examples` and `negative
    examples` respectively). The shapes of all input tensors should be
    :math:`(N, *)`.

    The loss function for each sample in the mini-batch is:

    .. math::
        L(input, pos, neg) = \max \{d(input_i, pos_i) - d(input_i, neg_i) + {\rm margin}, 0\}


    where

    .. math::
        d(x_i, y_i) = \left\lVert {\bf x}_i - {\bf y}_i \right\rVert_p

    Parameters:
        margin (float, Optional):Default: :math:`1`.

        p (int, Optional):The norm degree for pairwise distance. Default: :math:`2`.

        epsilon (float, Optional):Add small value to avoid division by zero,
            default value is 1e-6.

        swap (bool, Optional):The distance swap change the negative distance to the distance between
            positive sample and negative sample. For more details, see `Learning shallow convolutional feature descriptors with triplet losses`.
            Default: ``False``.

        reduction (str, Optional):Indicate how to average the loss by batch_size.
                the candicates are ``'none'`` | ``'mean'`` | ``'sum'``.
                If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
                If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
                If :attr:`reduction` is ``'sum'``, the summed loss is returned.
                Default: ``'mean'``

        name (str,Optional): Name for the operation (optional, default is None).
                For more information, please refer to :ref:`api_guide_Name`.

    Call Parameters:
        input (Tensor):Input tensor, the data type is float32 or float64.
        the shape is [N, \*], N is batch size and `\*` means any number of additional dimensions, available dtype is float32, float64.

        positive (Tensor):Positive tensor, the data type is float32 or float64.
        The shape of label is the same as the shape of input.

        negative (Tensor):Negative tensor, the data type is float32 or float64.
        The shape of label is the same as the shape of input.

    Returns:
        Tensor. The tensor variable storing the triplet_margin_loss of input and positive and negative.

    Examples:
        .. code-block:: python

            import paddle

            input = paddle.to_tensor([[1, 5, 3], [0, 3, 2], [1, 4, 1]], dtype=paddle.float32)
            positive= paddle.to_tensor([[5, 1, 2], [3, 2, 1], [3, -1, 1]], dtype=paddle.float32)
            negative = paddle.to_tensor([[2, 1, -3], [1, 1, -1], [4, -2, 1]], dtype=paddle.float32)
            triplet_margin_loss = paddle.nn.TripletMarginLoss(reduction='none')
            loss = triplet_margin_loss(input, positive, negative)
            print(loss)
            # Tensor([0.        , 0.57496738, 0.        ])
L
Ligoml 已提交
1695

Y
yangguohao 已提交
1696 1697 1698 1699 1700 1701 1702
            triplet_margin_loss = paddle.nn.TripletMarginLoss(margin=1.0, swap=True, reduction='mean', )
            loss = triplet_margin_loss(input, positive, negative,)
            print(loss)
            # Tensor([0.19165580])

    """

L
Ligoml 已提交
1703 1704 1705 1706 1707 1708 1709 1710 1711
    def __init__(
        self,
        margin=1.0,
        p=2.0,
        epsilon=1e-6,
        swap=False,
        reduction='mean',
        name=None,
    ):
Y
yangguohao 已提交
1712 1713 1714 1715
        super(TripletMarginLoss, self).__init__()
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in TripletMarginLoss should be 'sum', 'mean' or 'none', but "
L
Ligoml 已提交
1716 1717
                "received %s, which is not allowed." % reduction
            )
Y
yangguohao 已提交
1718 1719 1720 1721 1722 1723 1724 1725
        self.margin = margin
        self.p = p
        self.epsilon = epsilon
        self.swap = swap
        self.reduction = reduction
        self.name = name

    def forward(self, input, positive, negative):
L
Ligoml 已提交
1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736
        return F.triplet_margin_loss(
            input,
            positive,
            negative,
            margin=self.margin,
            p=self.p,
            epsilon=self.epsilon,
            swap=self.swap,
            reduction=self.reduction,
            name=self.name,
        )
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797


class SoftMarginLoss(Layer):
    r"""
    Creates a criterion that measures a two-class soft margin loss between input predictions ``input``
    and target labels ``label`` . It can be described as:

    .. math::
        Out = log(1 + exp((-label * input)))

    Parameters:

        reduction (str, optional): Indicate how to average the loss by batch_size,
            the candidates are ``'none'`` | ``'mean'`` | ``'sum'``.
            If :attr:`reduction` is ``'none'``, the unreduced loss is returned;
            If :attr:`reduction` is ``'mean'``, the reduced mean loss is returned;
            If :attr:`reduction` is ``'sum'``, the summed loss is returned.
            Default is ``'mean'``.

        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Shapes:

        Input (Tensor): The input tensor with shape: [N, *],
        N is batch_size, `*` means any number of additional dimensions. The ``input`` ranges from -inf to inf
        Available dtype is float32, float64.

        Label (Tensor): The target labels tensor with the same shape as
        ``input``. The target labels which values should be numbers -1 or 1.
        Available dtype is int32, int64, float32, float64.

        Output (Tensor): If ``reduction`` is ``'none'``, the shape of output is
            same as ``input`` , else the shape of output is [1].

    Returns:
        A callable object of SoftMarginLoss.

    Examples:
        .. code-block:: python

            import paddle
            import numpy as np

            input = paddle.to_tensor([[0.5, 0.6, 0.7],[0.3, 0.5, 0.2]], 'float32')
            label = paddle.to_tensor([[1.0, -1.0, 1.0],[-1.0, 1.0, 1.0]], 'float32')
            soft_margin_loss = paddle.nn.SoftMarginLoss()
            output = soft_margin_loss(input, label)

            input_np = np.random.uniform(0.1, 0.8, size=(5, 5)).astype(np.float64)
            label_np = np.random.randint(0, 2, size=(5, 5)).astype(np.int64)
            label_np[label_np==0]=-1
            input = paddle.to_tensor(input_np)
            label = paddle.to_tensor(label_np)
            soft_margin_loss = paddle.nn.SoftMarginLoss(reduction='none')
            output = soft_margin_loss(input, label)
    """

    def __init__(self, reduction='mean', name=None):
        if reduction not in ['sum', 'mean', 'none']:
            raise ValueError(
                "The value of 'reduction' in SoftMarginLoss should be 'sum', 'mean' or 'none', but "
L
Ligoml 已提交
1798 1799
                "received %s, which is not allowed." % reduction
            )
1800 1801 1802 1803 1804 1805

        super(SoftMarginLoss, self).__init__()
        self.reduction = reduction
        self.name = name

    def forward(self, input, label):
L
Ligoml 已提交
1806 1807 1808
        out = paddle.nn.functional.soft_margin_loss(
            input, label, self.reduction, self.name
        )
1809
        return out