pooling.py 86.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16 17
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
18
from ...fluid.data_feeder import check_type, check_variable_and_dtype
19
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
20
from paddle import in_dynamic_mode
21 22 23
from paddle.fluid import core
from paddle.fluid.framework import _in_legacy_dygraph, Variable
from paddle.fluid.framework import in_dygraph_mode, _non_static_mode
24

25 26
__all__ = []

27

28 29 30 31 32
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
33
    if len(x.shape) != dimension:
34 35
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
L
Ligoml 已提交
36 37 38
                dimension, len(x.shape), type(x)
            )
        )
39 40


41
def _check_instance(x, x_name, types=(int, float)):
42 43

    if not isinstance(x, types):
44 45
        raise ValueError(
            "Excepted {} type for {} but received type: {}. ".format(
L
Ligoml 已提交
46 47 48
                types, x_name, type(x)
            )
        )
49 50


D
Double_V 已提交
51 52 53 54
def _check_value_limitation(x, x_name, min_limit=1e-3):
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
L
Ligoml 已提交
55 56 57 58
                "Excepted the input {} to be greater than {} but received x: {}. ".format(
                    x_name, min_limit, x
                )
            )
D
Double_V 已提交
59 60 61 62 63

    for ele in x:
        _check_value(ele, x_name)


64 65 66
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
67
    else:
68
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
69 70


71 72 73 74
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
75 76


77 78 79 80 81
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
L
Ligoml 已提交
82 83
                "Attr(data_format): %s" % str(data_format)
            )
84 85 86 87 88 89
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
L
Ligoml 已提交
90 91
                "Attr(data_format): %s" % str(data_format)
            )
92 93 94 95 96 97
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
L
Ligoml 已提交
98 99
                "Attr(data_format): %s" % str(data_format)
            )
100 101
        else:
            return True if data_format == "NDHWC" else False
102 103


104 105 106 107 108
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
L
Ligoml 已提交
109 110 111 112
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".format(
                    padding
                )
            )
113 114
        if padding == "VALID":
            if ceil_mode != False:
115
                raise ValueError(
116
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
L
Ligoml 已提交
117 118
                    "Received ceil_mode: True."
                )
119 120 121 122 123 124 125 126 127 128 129 130

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
131
                raise ValueError(
132
                    "Non-zero padding({}) in the batch or channel dimensions "
L
Ligoml 已提交
133 134
                    "is not supported.".format(padding)
                )
135
            padding_algorithm = "EXPLICIT"
136
            padding = _exclude_padding_in_batch_and_channel(
L
Ligoml 已提交
137 138
                padding, channel_last
            )
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
154
    else:
155 156 157 158
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

159

160
def _expand_low_nd_padding(padding):
L
Ligoml 已提交
161
    # 1d to 2d fake input
162 163 164 165 166 167
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
L
Ligoml 已提交
168 169 170 171
            "The size of padding's dimmention should be 1 or 2. But got padding={}".format(
                padding
            )
        )
172 173 174
    return padding


L
Ligoml 已提交
175 176 177 178 179 180 181 182 183
def avg_pool1d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    exclusive=True,
    ceil_mode=False,
    name=None,
):
D
Double_V 已提交
184
    """
185 186
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
187 188 189 190

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
191
                          `L` is the length of the feature. The data type is float32 or float64.
192
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
193
            it must contain an integer.
194
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
195 196 197 198 199 200 201 202
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
203
        exclusive (bool): Whether to exclude padding points in average pooling
204
                          mode, default is `True`.
205
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
206
            If it is set to False, the floor function will be used. The default value is False.
207 208 209 210 211 212 213 214
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Examples:
        .. code-block:: python
L
Ligoml 已提交
215

C
Chen Long 已提交
216
            import paddle
217
            import paddle.nn as nn
C
Chen Long 已提交
218

219 220 221 222
            data = paddle.uniform([1, 3, 32], paddle.float32)
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
223 224 225
    """
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
226
    if not in_dynamic_mode():
227
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
228
    _check_input(x, 3)
229
    x = unsqueeze(x, [2])
230
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
231 232 233 234 235 236 237
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
238 239 240
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

241
    channel_last = _channel_last("NCL", 1)
L
Ligoml 已提交
242 243 244
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, channel_last=channel_last, ceil_mode=ceil_mode
    )
245

246 247
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
248

249
    if in_dygraph_mode():
L
Ligoml 已提交
250 251 252 253 254 255 256 257 258 259 260 261 262 263
        output = _C_ops.pool2d(
            x,
            kernel_size,
            stride,
            padding,
            ceil_mode,
            exclusive,
            data_format,
            'avg',
            False,
            False,
            padding_algorithm,
            True,
        )
264 265 266
        return squeeze(output, [2])

    if _in_legacy_dygraph():
L
Ligoml 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
        output = _legacy_C_ops.pool2d(
            x,
            'pooling_type',
            'avg',
            'ksize',
            kernel_size,
            'global_pooling',
            False,
            'strides',
            stride,
            'paddings',
            padding,
            'padding_algorithm',
            padding_algorithm,
            'use_cudnn',
            True,
            'ceil_mode',
            ceil_mode,
            'use_mkldnn',
            False,
            'exclusive',
            exclusive,
            'data_format',
            data_format,
        )
292 293 294 295
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
296
    dtype = helper.input_dtype(input_param_name='x')
297 298
    pool_out = helper.create_variable_for_type_inference(dtype)

L
Ligoml 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": 'avg',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
317 318 319 320

    return squeeze(pool_out, [2])


L
Ligoml 已提交
321 322 323 324 325 326 327 328 329 330 331
def avg_pool2d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    ceil_mode=False,
    exclusive=True,
    divisor_override=None,
    data_format="NCHW",
    name=None,
):
332
    """
333 334
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
335

336
    Args:
337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
357
        exclusive (bool): Whether to exclude padding points in average pooling
358 359 360 361 362
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
363 364 365
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
L
Ligoml 已提交
366

367 368
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
L
Ligoml 已提交
369

370 371
    Examples:
        .. code-block:: python
L
Ligoml 已提交
372

C
Chen Long 已提交
373 374
            import paddle
            import paddle.nn.functional as F
L
Ligoml 已提交
375

C
Chen Long 已提交
376
            # avg pool2d
377
            x = paddle.uniform([1, 3, 32, 32], paddle.float32)
C
Chen Long 已提交
378 379 380 381
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
382
    """
383
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
384 385 386
    if stride is None:
        stride = kernel_size
    else:
387
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
388

D
Double_V 已提交
389 390 391
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

392
    channel_last = _channel_last(data_format, 2)
L
Ligoml 已提交
393 394 395
    padding, padding_algorithm = _update_padding_nd(
        padding, 2, channel_last, ceil_mode=ceil_mode
    )
396

397
    if _non_static_mode():
F
From00 已提交
398
        if in_dygraph_mode():
L
Ligoml 已提交
399 400 401 402 403 404 405 406 407 408 409 410 411 412
            output = _C_ops.pool2d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                exclusive,
                data_format,
                'avg',
                False,
                False,
                padding_algorithm,
                True,
            )
F
From00 已提交
413
        else:
414
            output = _legacy_C_ops.pool2d(
L
Ligoml 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438
                x,
                'pooling_type',
                'avg',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                exclusive,
                'data_format',
                data_format,
            )
439 440 441 442 443
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
444

445
    op_type = 'pool2d'
446
    helper = LayerHelper(op_type, **locals())
447
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
448
    dtype = helper.input_dtype(input_param_name='x')
449 450
    pool_out = helper.create_variable_for_type_inference(dtype)

L
Ligoml 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs={"Out": pool_out},
        attrs={
            "pooling_type": "avg",
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": exclusive,
            "data_format": data_format,
        },
    )
469

470 471 472 473 474
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
475 476


L
Ligoml 已提交
477 478 479 480 481 482 483 484 485 486 487
def avg_pool3d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    ceil_mode=False,
    exclusive=True,
    divisor_override=None,
    data_format="NCDHW",
    name=None,
):
488
    """
489 490
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
491 492

    Args:
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
511
        exclusive (bool): Whether to exclude padding points in average pooling
512 513 514 515 516
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
517
        name(str, optional): For detailed information, please refer
518 519
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
L
Ligoml 已提交
520

521
    Returns:
522
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
523

524 525
    Examples:
        .. code-block:: python
L
Ligoml 已提交
526

527
          import paddle
C
Chen Long 已提交
528

529
          x = paddle.uniform([1, 3, 32, 32, 32], paddle.float32)
530 531 532 533 534 535 536
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
537
    """
538 539 540 541 542
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
543

544
    channel_last = _channel_last(data_format, 3)
L
Ligoml 已提交
545 546 547
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode
    )
548

D
Double_V 已提交
549 550 551
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

552
    if in_dygraph_mode():
L
Ligoml 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566
        pool_out = _C_ops.pool3d(
            x,
            kernel_size,
            stride,
            padding,
            ceil_mode,
            exclusive,
            data_format,
            'avg',
            False,
            False,
            padding_algorithm,
            True,
        )
567 568
    elif _in_legacy_dygraph():
        pool_out = _legacy_C_ops.pool3d(
L
Ligoml 已提交
569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592
            x,
            'pooling_type',
            'avg',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            'global_pooling',
            False,
            'padding_algorithm',
            padding_algorithm,
            'use_cudnn',
            True,
            'ceil_mode',
            ceil_mode,
            'use_mkldnn',
            False,
            'exclusive',
            exclusive,
            'data_format',
            data_format,
        )
593 594 595 596 597 598 599 600
    else:
        op_type = "pool3d"
        helper = LayerHelper(op_type, **locals())
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
        dtype = helper.input_dtype(input_param_name='x')
        pool_out = helper.create_variable_for_type_inference(dtype)
        outputs = {"Out": pool_out}

L
Ligoml 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618
        helper.append_op(
            type=op_type,
            inputs={"X": x},
            outputs=outputs,
            attrs={
                "pooling_type": 'avg',
                "ksize": kernel_size,
                "global_pooling": False,
                "strides": stride,
                "paddings": padding,
                "padding_algorithm": padding_algorithm,
                "use_cudnn": True,
                "ceil_mode": ceil_mode,
                "use_mkldnn": False,
                "exclusive": exclusive,
                "data_format": data_format,
            },
        )
619

620 621 622 623
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
L
Ligoml 已提交
624 625 626 627 628
        return (
            pool_out
            * (kernel_size[0] * kernel_size[1] * kernel_size[2])
            / divisor_override
        )
629 630


L
Ligoml 已提交
631 632 633 634 635 636 637 638 639
def max_pool1d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    return_mask=False,
    ceil_mode=False,
    name=None,
):
640
    """
641 642
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
643 644

    Args:
645 646 647
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
648
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
649
            it must contain an integer.
650
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
651 652 653 654 655 656 657 658
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
659
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
660 661
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
662 663 664 665 666
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
667

668 669 670
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
671
        ShapeError: If the input is not a 3-D tensor.
672
        ShapeError: If the output's shape calculated is not greater than 0.
673

674 675
    Examples:
        .. code-block:: python
676

677 678
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
679

680
          data = paddle.uniform([1, 3, 32], paddle.float32)
681 682
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
683
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
684
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
685
    """
686 687
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
688
    if not in_dynamic_mode():
689
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
690 691 692
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
693 694 695
    if stride is None:
        stride = kernel_size
    else:
696
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
697

L
Ligoml 已提交
698 699 700
    padding, padding_algorithm = _update_padding_nd(
        padding, 1, ceil_mode=ceil_mode
    )
701

702 703
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
704

F
From00 已提交
705 706
    if in_dygraph_mode():
        if return_mask:
L
Ligoml 已提交
707 708 709 710 711 712 713 714
            pool_out = _C_ops.max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False
            )
            return (
                (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
                if return_mask
                else squeeze(pool_out[0], [2])
            )
F
From00 已提交
715
        else:
L
Ligoml 已提交
716 717 718 719 720 721 722 723 724 725 726 727 728 729
            pool_out = _C_ops.pool2d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                True,
                data_format,
                'max',
                False,
                False,
                padding_algorithm,
                True,
            )
F
From00 已提交
730 731 732
            return squeeze(pool_out, [2])

    if _in_legacy_dygraph():
733
        if return_mask:
734
            pool_out = _legacy_C_ops.max_pool2d_with_index(
L
Ligoml 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761
                x,
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'strides',
                stride,
                'paddings',
                padding,
                'padding_algorithm',
                padding_algorithm,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
            return (
                (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
                if return_mask
                else squeeze(pool_out[0], [2])
            )
D
Double_V 已提交
762
        else:
763
            pool_out = _legacy_C_ops.pool2d(
L
Ligoml 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
D
Double_V 已提交
788 789
            return squeeze(pool_out, [2])

790
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
791
    helper = LayerHelper(op_type, **locals())
792
    dtype = helper.input_dtype(input_param_name='x')
793
    pool_out = helper.create_variable_for_type_inference(dtype)
794
    mask = helper.create_variable_for_type_inference('int32')
795 796
    outputs = {"Out": pool_out, "Mask": mask}

L
Ligoml 已提交
797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        },
    )

    return (
        (squeeze(pool_out, [2]), squeeze(mask, [2]))
        if return_mask
        else squeeze(pool_out, [2])
    )
821 822


823
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
L
Ligoml 已提交
824 825 826
    assert output_size is None or isinstance(output_size, (list, tuple)), (
        "Required output_size is None|list|tuple, but received %s" % output_size
    )
827 828 829
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
L
Ligoml 已提交
830 831 832 833 834
        default_size.append(
            (input_size[-len(kernel_size) + d] - 1) * stride[d]
            + kernel_size[d]
            - 2 * padding[d]
        )
835 836

    has_static_var = False
837
    if output_size is None:
838
        return default_size
839 840 841 842 843 844 845 846
    elif utils._contain_var(output_size):
        if not _non_static_mode():
            has_static_var = True
            output_size = utils._convert_to_tensor_list(output_size)
        else:
            for i, var in enumerate(output_size):
                if isinstance(var, Variable):
                    output_size[i] = var.numpy()[0]
847 848 849 850 851 852 853

    if len(output_size) == len(kernel_size) + 2:
        output_size = output_size[2:]
    if len(output_size) != len(kernel_size):
        raise ValueError(
            "output_size should be a sequence containing "
            "{} or {} elements, but it has a length of '{}'".format(
L
Ligoml 已提交
854 855 856
                len(kernel_size), len(kernel_size) + 2, len(output_size)
            )
        )
857 858 859 860 861 862
    if not has_static_var:
        for d in range(len(kernel_size)):
            min_size = default_size[d] - stride[d]
            max_size = default_size[d] + stride[d]
            if not (min_size < output_size[d] < max_size):
                raise ValueError(
L
Ligoml 已提交
863 864 865 866
                    'invalid output_size "{}" (dim {} must be between {} and {})'.format(
                        output_size, d, min_size, max_size
                    )
                )
867 868

    return output_size
869 870


L
Ligoml 已提交
871 872 873 874 875 876 877 878 879 880
def max_unpool1d(
    x,
    indices,
    kernel_size,
    stride=None,
    padding=0,
    data_format="NCL",
    output_size=None,
    name=None,
):
881
    r"""
882
    This API implements max unpooling 1d opereation.
L
Ligoml 已提交
883 884
    `max_unpool1d` accepts the output of `max_pool1d` as input,
    including the indices of the maximum value and calculate the partial inverse.
885 886 887 888
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
L
Ligoml 已提交
889

890 891 892 893 894 895 896 897
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 3-D tensor with
L
Ligoml 已提交
898
                          shape [N, C, L]. The format of input tensor is `"NCL"`,
899 900 901
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling1d which is a 3-D tensor with
L
Ligoml 已提交
902
                          shape [N, C, L]. The format of input tensor is `"NCL"` ,
903 904 905 906 907 908 909
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the featuree. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
910
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
911 912 913 914 915 916 917 918 919 920
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
L
Ligoml 已提交
921
        Tensor: The output tensor of unpooling result.
922 923 924

    Examples:
        .. code-block:: python
L
Ligoml 已提交
925

926 927 928 929 930 931 932 933 934 935 936 937
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            unpool_out = F.max_unpool1d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 3, 16]

    """
    """NCL to NCHW"""
    if data_format not in ["NCL"]:
L
Ligoml 已提交
938 939 940 941
        raise ValueError(
            "Attr(data_format) should be 'NCL'. Received "
            "Attr(data_format): %s." % str(data_format)
        )
942 943 944 945 946 947 948 949 950 951 952 953
    data_format = "NCHW"
    x = unsqueeze(x, [2])
    indices = unsqueeze(indices, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
    padding, padding_algorithm = _update_padding_nd(padding, 1)
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)

L
Ligoml 已提交
954 955 956
    output_size = _unpool_output_size(
        x, kernel_size, stride, padding, output_size
    )
957

X
xiaoting 已提交
958
    if in_dygraph_mode():
L
Ligoml 已提交
959 960 961
        output = _C_ops.unpool(
            x, indices, kernel_size, stride, padding, output_size, data_format
        )
X
xiaoting 已提交
962 963
        return squeeze(output, [2])
    elif in_dynamic_mode():
L
Ligoml 已提交
964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
        output = _legacy_C_ops.unpool(
            x,
            indices,
            'unpooling_type',
            'max',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            "output_size",
            output_size,
            "data_format",
            data_format,
        )
980 981 982 983 984 985 986
        return squeeze(output, [2])

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

L
Ligoml 已提交
987 988 989 990 991 992 993 994 995 996 997 998
    helper.append_op(
        type=op_type,
        inputs={"X": x, "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size,
        },
    )
999 1000 1001
    return squeeze(unpool_out, [2])


L
Ligoml 已提交
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011
def max_unpool2d(
    x,
    indices,
    kernel_size,
    stride=None,
    padding=0,
    data_format="NCHW",
    output_size=None,
    name=None,
):
1012
    r"""
1013
    This API implements max unpooling 2d opereation.
1014
    See more details in :ref:`api_nn_pooling_MaxUnPool2D` .
1015

1016 1017

    Args:
1018
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
L
Ligoml 已提交
1019
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`,
1020
                          where `N` is batch size, `C` is the number of channels,
1021 1022
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
1023
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
L
Ligoml 已提交
1024
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` ,
1025 1026 1027 1028 1029 1030 1031 1032
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
1033
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1034 1035
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
1036 1037 1038
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
1039

1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
L
Ligoml 已提交
1053
            Tensor: The output tensor of unpooling result.
1054 1055 1056 1057

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
L
Ligoml 已提交
1058

1059 1060 1061

        Examples:
            .. code-block:: python
L
Ligoml 已提交
1062

C
Chen Long 已提交
1063 1064
            import paddle
            import paddle.nn.functional as F
1065

1066
            data = paddle.rand(shape=[1,1,6,6])
1067 1068 1069 1070 1071
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

L
Ligoml 已提交
1072
            # specify a different output size than input size
1073
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
L
Ligoml 已提交
1074
            # unpool_out shape: [1, 1, 7, 7]
1075

1076 1077
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1078 1079 1080 1081 1082 1083 1084
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
L
Ligoml 已提交
1085 1086 1087 1088
        raise ValueError(
            "Attr(data_format) should be 'NCHW'. Received "
            "Attr(data_format): %s." % str(data_format)
        )
1089

L
Ligoml 已提交
1090 1091 1092
    output_size = _unpool_output_size(
        x, kernel_size, stride, padding, output_size
    )
1093

X
xiaoting 已提交
1094
    if in_dygraph_mode():
L
Ligoml 已提交
1095 1096 1097
        output = _C_ops.unpool(
            x, indices, kernel_size, stride, padding, output_size, data_format
        )
1098
        return output
X
xiaoting 已提交
1099
    elif in_dynamic_mode():
L
Ligoml 已提交
1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115
        output = _legacy_C_ops.unpool(
            x,
            indices,
            'unpooling_type',
            'max',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            "output_size",
            output_size,
            "data_format",
            data_format,
        )
1116 1117 1118 1119 1120 1121 1122
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

L
Ligoml 已提交
1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134
    helper.append_op(
        type=op_type,
        inputs={"X": x, "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size,
        },
    )
1135 1136 1137
    return unpool_out


L
Ligoml 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147
def max_unpool3d(
    x,
    indices,
    kernel_size,
    stride=None,
    padding=0,
    data_format="NCDHW",
    output_size=None,
    name=None,
):
1148
    r"""
1149
    This API implements max unpooling 3d opereation.
L
Ligoml 已提交
1150 1151
    `max_unpool3d` accepts the output of `max_pool3d` as input,
    including the indices of the maximum value and calculate the partial inverse.
1152 1153 1154 1155
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
L
Ligoml 已提交
1156

1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 5-D tensor with
L
Ligoml 已提交
1171
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"`,
1172
                          where `N` is batch size, `C` is the number of channels, `D` is
L
Ligoml 已提交
1173
                          the depth of the feature, `H` is the height of the feature,
1174 1175
                          and `W` is the width of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling3d which is a 5-D tensor with
L
Ligoml 已提交
1176
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` ,
1177
                          where `N` is batch size, `C` is the number of channels, `D` is
L
Ligoml 已提交
1178
                          the depth of the feature, `H` is the height of the feature,
1179 1180 1181 1182 1183 1184
                          and `W` is the width of the feature. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
L
Ligoml 已提交
1185
        output_size(list|tuple, optional): The target output size. If output_size is not specified,
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
L
Ligoml 已提交
1196
        Tensor: The output tensor of unpooling result.
1197 1198 1199

    Examples:
        .. code-block:: python
L
Ligoml 已提交
1200

1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            unpool_out = F.max_unpool3d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
    padding = utils.convert_to_list(padding, 3, 'padding')

    if data_format not in ["NCDHW"]:
L
Ligoml 已提交
1219 1220 1221 1222
        raise ValueError(
            "Attr(data_format) should be 'NCDHW'. Received "
            "Attr(data_format): %s." % str(data_format)
        )
1223

L
Ligoml 已提交
1224 1225 1226
    output_size = _unpool_output_size(
        x, kernel_size, stride, padding, output_size
    )
1227

X
xiaoting 已提交
1228
    if in_dygraph_mode():
L
Ligoml 已提交
1229 1230 1231
        output = _C_ops.unpool3d(
            x, indices, kernel_size, stride, padding, output_size, data_format
        )
1232
        return output
X
xiaoting 已提交
1233
    elif in_dynamic_mode():
L
Ligoml 已提交
1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
        output = _legacy_C_ops.unpool3d(
            x,
            indices,
            'unpooling_type',
            'max',
            'ksize',
            kernel_size,
            'strides',
            stride,
            'paddings',
            padding,
            "output_size",
            output_size,
            "data_format",
            data_format,
        )
1250 1251 1252 1253 1254 1255 1256
        return output

    op_type = "unpool3d"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

L
Ligoml 已提交
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    helper.append_op(
        type=op_type,
        inputs={"X": x, "Indices": indices},
        outputs={"Out": unpool_out},
        attrs={
            "unpooling_type": "max",
            "ksize": kernel_size,
            "strides": stride,
            "paddings": padding,
            "output_size": output_size,
        },
    )
1269 1270 1271
    return unpool_out


L
Ligoml 已提交
1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
def max_pool2d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    return_mask=False,
    ceil_mode=False,
    data_format="NCHW",
    name=None,
):
W
Wei Shengyu 已提交
1282 1283 1284
    """
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
W
Wei Shengyu 已提交
1285

W
Wei Shengyu 已提交
1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

W
Wei Shengyu 已提交
1316
    Raises:
W
Wei Shengyu 已提交
1317 1318 1319 1320 1321 1322
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
W
Wei Shengyu 已提交
1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333

          import paddle
          import paddle.nn.functional as F

          # max pool2d
          x = paddle.uniform([1, 3, 32, 32], paddle.float32)
          out = F.max_pool2d(x, kernel_size=2, stride=2, padding=0)
          # output.shape [1, 3, 16, 16]
          # for return_mask=True
          out, max_indices = F.max_pool2d(x, kernel_size=2, stride=2, padding=0, return_mask=True)
          # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
W
Wei Shengyu 已提交
1334
    """
W
Wei Shengyu 已提交
1335

1336
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1337 1338 1339 1340 1341 1342 1343 1344
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
L
Ligoml 已提交
1345 1346
            "Attr(data_format): %s." % str(data_format)
        )
1347 1348 1349

    channel_last = True if data_format == "NHWC" else False

L
Ligoml 已提交
1350 1351 1352
    padding, padding_algorithm = _update_padding_nd(
        padding, num_dims=2, channel_last=channel_last, ceil_mode=ceil_mode
    )
1353

1354
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
1355
        raise ValueError(
1356
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
1357 1358
        )

F
From00 已提交
1359 1360
    if in_dygraph_mode():
        if return_mask:
L
Ligoml 已提交
1361 1362 1363
            output = _C_ops.max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False
            )
F
From00 已提交
1364 1365
            return output if return_mask else output[0]
        else:
L
Ligoml 已提交
1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379
            return _C_ops.pool2d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                True,
                data_format,
                'max',
                False,
                False,
                padding_algorithm,
                True,
            )
F
From00 已提交
1380 1381

    if _in_legacy_dygraph():
1382
        if return_mask:
1383
            output = _legacy_C_ops.max_pool2d_with_index(
L
Ligoml 已提交
1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405
                x,
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'strides',
                stride,
                'paddings',
                padding,
                'padding_algorithm',
                padding_algorithm,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
1406
            return output if return_mask else output[0]
D
Double_V 已提交
1407
        else:
1408
            output = _legacy_C_ops.pool2d(
L
Ligoml 已提交
1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
D
Double_V 已提交
1433
            return output
1434

1435
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
1436
    helper = LayerHelper(op_type, **locals())
L
Ligoml 已提交
1437 1438 1439
    check_variable_and_dtype(
        x, 'x', ['float16', 'float32', 'float64'], 'max_pool2d'
    )
1440
    dtype = helper.input_dtype(input_param_name='x')
1441
    pool_out = helper.create_variable_for_type_inference(dtype)
1442
    mask = helper.create_variable_for_type_inference("int32")
1443
    outputs = {"Out": pool_out, "Mask": mask}
1444

L
Ligoml 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": True,
            "data_format": data_format,
        },
    )
1463

1464
    return (pool_out, mask) if return_mask else pool_out
1465 1466


L
Ligoml 已提交
1467 1468 1469 1470 1471 1472 1473 1474 1475 1476
def max_pool3d(
    x,
    kernel_size,
    stride=None,
    padding=0,
    return_mask=False,
    ceil_mode=False,
    data_format="NCDHW",
    name=None,
):
1477
    """
1478 1479
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
W
Wei Shengyu 已提交
1480

1481 1482
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
1483
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
1484
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
1485
            is a tuple or list, it must contain three integers,
1486
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
1487
            Otherwise, the pool kernel size will be the cube of an int.
1488 1489
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
1490
            Otherwise, the pool stride size will be a cube of an int.
1491 1492 1493 1494 1495 1496 1497
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
1498
        ceil_mode (bool): ${ceil_mode_comment}
1499
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
1500 1501 1502 1503 1504 1505
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
L
Ligoml 已提交
1506

1507 1508
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
W
Wei Shengyu 已提交
1509

1510 1511 1512 1513
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
W
Wei Shengyu 已提交
1514

1515 1516
    Examples:
        .. code-block:: python
1517

W
Wei Shengyu 已提交
1518 1519
          import paddle
          import paddle.nn.functional as F
1520

W
Wei Shengyu 已提交
1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535
          # max pool3d
          x = paddle.uniform([1, 3, 32, 32, 32])
          output = F.max_pool3d(x,
                                kernel_size=2,
                                stride=2, padding=0)
          # output.shape [1, 3, 16, 16, 16]
          # for return_mask=True
          x = paddle.uniform([1, 3, 32, 32, 32])
          output, max_indices = paddle.nn.functional.max_pool3d(x,
                                                                kernel_size=2,
                                                                stride=2,
                                                                padding=0,
                                                                return_mask=True)

          # output.shape [1, 3, 16, 16, 16], max_indices.shape [1, 3, 16, 16, 16]
1536
    """
W
Wei Shengyu 已提交
1537

1538 1539 1540 1541 1542 1543
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

1544
    channel_last = _channel_last(data_format, 3)
1545

L
Ligoml 已提交
1546 1547 1548
    padding, padding_algorithm = _update_padding_nd(
        padding, 3, channel_last=channel_last, ceil_mode=ceil_mode
    )
1549

1550
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
1551
        raise ValueError(
1552
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
1553 1554
        )

F
From00 已提交
1555 1556
    if in_dygraph_mode():
        if return_mask:
L
Ligoml 已提交
1557 1558 1559
            output = _C_ops.max_pool3d_with_index(
                x, kernel_size, stride, padding, False, False
            )
F
From00 已提交
1560 1561
            return output if return_mask else output[0]
        else:
L
Ligoml 已提交
1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575
            return _C_ops.pool3d(
                x,
                kernel_size,
                stride,
                padding,
                ceil_mode,
                True,
                data_format,
                'max',
                False,
                False,
                padding_algorithm,
                True,
            )
F
From00 已提交
1576 1577

    if _in_legacy_dygraph():
1578
        if return_mask:
1579
            output = _legacy_C_ops.max_pool3d_with_index(
L
Ligoml 已提交
1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'strides',
                stride,
                'paddings',
                padding,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
1604
            return output if return_mask else output[0]
D
Double_V 已提交
1605
        else:
1606
            output = _legacy_C_ops.pool3d(
L
Ligoml 已提交
1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630
                x,
                'pooling_type',
                'max',
                'ksize',
                kernel_size,
                'global_pooling',
                False,
                'padding_algorithm',
                padding_algorithm,
                'strides',
                stride,
                'paddings',
                padding,
                'use_cudnn',
                True,
                'ceil_mode',
                ceil_mode,
                'use_mkldnn',
                False,
                'exclusive',
                True,
                'data_format',
                data_format,
            )
D
Double_V 已提交
1631
            return output
1632

1633
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
1634
    helper = LayerHelper(op_type, **locals())
1635
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
1636
    dtype = helper.input_dtype(input_param_name='x')
1637
    pool_out = helper.create_variable_for_type_inference(dtype)
1638
    mask = helper.create_variable_for_type_inference('int32')
1639 1640
    outputs = {"Out": pool_out, "Mask": mask}

L
Ligoml 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
    helper.append_op(
        type=op_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": kernel_size,
            "global_pooling": False,
            "strides": stride,
            "paddings": padding,
            "padding_algorithm": padding_algorithm,
            "use_cudnn": True,
            "ceil_mode": ceil_mode,
            "use_mkldnn": False,
            "exclusive": False,
            "data_format": data_format,
        },
    )
1659

1660
    return (pool_out, mask) if return_mask else pool_out
1661 1662


1663
def adaptive_avg_pool1d(x, output_size, name=None):
1664
    """
L
Ligoml 已提交
1665 1666
    Adaptive average pooling 1d operation on :attr:`x` according to :attr:`output_size`.

1667 1668
    Notes:
        See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1669

1670
    Args:
1671 1672 1673
        x (Tensor): The input Tensor of pooling, which is a 3-D tensor with shape :math:`[N, C, L]`, where :math:`N` is batch size, :math:`C` is the number of channels and :math:`L` is the length of the feature. The data type is float32 or float64.
        output_size (int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
L
Ligoml 已提交
1674

1675
    Returns:
1676
        Tensor: The result of 1D adaptive average pooling. Its data type is same as input.
L
Ligoml 已提交
1677

1678 1679
    Examples:
        .. code-block:: python
1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698

            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
            #
            import paddle
            import paddle.nn.functional as F

            data = paddle.uniform([1, 3, 32])
            pool_out = F.adaptive_avg_pool1d(data, output_size=16)
            # pool_out shape: [1, 3, 16])
1699 1700
    """
    pool_type = 'avg'
Z
zhiboniu 已提交
1701
    if not in_dynamic_mode():
L
Ligoml 已提交
1702 1703 1704
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'adaptive_pool2d'
        )
1705
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1706 1707
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1708

1709
    x = unsqueeze(x, [2])
1710
    if in_dygraph_mode():
L
Ligoml 已提交
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724
        pool_out = _C_ops.pool2d(
            x,
            pool_size,
            [1, 1],
            [0, 0],
            False,
            True,
            "NCHW",
            pool_type,
            False,
            True,
            "EXPLICIT",
            False,
        )
1725 1726
        return squeeze(pool_out, [2])
    if _in_legacy_dygraph():
L
Ligoml 已提交
1727 1728 1729
        pool_out = _legacy_C_ops.pool2d(
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True
        )
1730
        return squeeze(pool_out, [2])
1731

1732 1733
    l_type = "pool2d"

1734
    helper = LayerHelper(l_type, **locals())
1735
    dtype = helper.input_dtype(input_param_name='x')
1736 1737
    pool_out = helper.create_variable_for_type_inference(dtype)

1738
    outputs = {"Out": pool_out}
L
Ligoml 已提交
1739 1740 1741 1742 1743 1744 1745 1746 1747 1748
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        },
    )
1749

1750
    return squeeze(pool_out, [2])
1751 1752


1753 1754
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
1755 1756
    Applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
L
Ligoml 已提交
1757

1758 1759 1760 1761 1762 1763 1764
    For avg adaptive pool2d:
    ..  math::
        hstart &= floor(i * H_{in} / H_{out})
        hend &= ceil((i + 1) * H_{in} / H_{out})
        wstart &= floor(j * W_{in} / W_{out})
        wend &= ceil((j + 1) * W_{in} / W_{out})
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
1765 1766 1767

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1768
                          The data type can be float32 or float64.
1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
1780

1781 1782
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1783

1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1801

1802 1803 1804
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1805
            out = paddle.nn.functional.adaptive_avg_pool2d(
1806 1807
                            x = x,
                            output_size=[3, 3])
1808
            # out.shape is [2, 3, 3, 3]
1809
    """
Z
zhiboniu 已提交
1810
    if not in_dynamic_mode():
L
Ligoml 已提交
1811 1812 1813
        check_variable_and_dtype(
            x, 'x', ['float16', 'float32', 'float64'], 'adaptive_avg_pool2d'
        )
1814
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1815 1816 1817 1818

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
L
Ligoml 已提交
1819 1820
            "Attr(data_format): %s." % str(data_format)
        )
1821 1822 1823 1824 1825 1826 1827 1828 1829

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1830
        output_size = list(output_size)
1831
        if output_size[0] is None:
1832
            output_size[0] = in_h
1833
        if output_size[1] is None:
1834 1835
            output_size[1] = in_w

1836 1837 1838 1839 1840 1841 1842 1843 1844
    if _non_static_mode():
        output_size = [
            item.numpy().item(0) if isinstance(item, Variable) else item
            for item in output_size
        ]
    # output_size support Variable in static mode
    elif utils._contain_var(output_size):
        output_size = utils._convert_to_tensor_list(output_size)

F
From00 已提交
1845
    if in_dygraph_mode():
L
Ligoml 已提交
1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859
        return _C_ops.pool2d(
            x,
            output_size,
            [1, 1],
            [0, 0],
            False,
            True,
            data_format,
            'avg',
            False,
            True,
            "EXPLICIT",
            False,
        )
F
From00 已提交
1860 1861

    if _in_legacy_dygraph():
L
Ligoml 已提交
1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874
        return _legacy_C_ops.pool2d(
            x,
            'pooling_type',
            'avg',
            'ksize',
            output_size,
            'global_pooling',
            False,
            'adaptive',
            True,
            'data_format',
            data_format,
        )
1875 1876 1877 1878

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1879
    dtype = helper.input_dtype(input_param_name='x')
1880 1881 1882 1883
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

L
Ligoml 已提交
1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        },
    )
1895 1896 1897 1898 1899 1900

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1901 1902
    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
L
Ligoml 已提交
1903

1904 1905 1906 1907 1908 1909 1910 1911 1912 1913
    For avg adaptive pool3d:
    ..  math::
        dstart &= floor(i * D_{in} / D_{out})
        dend &= ceil((i + 1) * D_{in} / D_{out})
        hstart &= floor(j * H_{in} / H_{out})
        hend &= ceil((j + 1) * H_{in} / H_{out})
        wstart &= floor(k * W_{in} / W_{out})
        wend &= ceil((k + 1) * W_{in} / W_{out})
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
1914 1915 1916

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1917
                          The data type can be float32, float64.
1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
1929

1930 1931
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1932

1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
1952 1953

            input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
1954
            out = paddle.nn.functional.adaptive_avg_pool3d(
1955
                            x = input_data,
1956
                            output_size=[3, 3, 3])
1957
            # out.shape is [2, 3, 3, 3, 3]
1958
    """
Z
zhiboniu 已提交
1959
    if not in_dynamic_mode():
L
Ligoml 已提交
1960 1961 1962
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_avg_pool3d'
        )
1963
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1964 1965 1966 1967

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
L
Ligoml 已提交
1968 1969
            "Attr(data_format): %s." % str(data_format)
        )
1970 1971 1972 1973 1974 1975 1976 1977 1978

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1979
        output_size = list(output_size)
1980
        if output_size[0] is None:
1981
            output_size[0] = in_l
1982
        if output_size[1] is None:
1983
            output_size[1] = in_h
1984
        if output_size[2] is None:
1985 1986
            output_size[2] = in_w

1987
    if in_dygraph_mode():
L
Ligoml 已提交
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
        return _C_ops.pool3d(
            x,
            output_size,
            [1, 1, 1],
            [0, 0, 0],
            False,
            True,
            data_format,
            'avg',
            False,
            True,
            "EXPLICIT",
            False,
        )
2002
    elif _in_legacy_dygraph():
L
Ligoml 已提交
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015
        return _legacy_C_ops.pool3d(
            x,
            'pooling_type',
            'avg',
            'ksize',
            output_size,
            'global_pooling',
            False,
            'adaptive',
            True,
            'data_format',
            data_format,
        )
2016 2017 2018 2019

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
2020
    dtype = helper.input_dtype(input_param_name='x')
2021 2022 2023
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

L
Ligoml 已提交
2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": "avg",
            "ksize": output_size,
            "adaptive": True,
            "data_format": data_format,
        },
    )
2035 2036

    return pool_out
2037 2038


2039
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
2040 2041 2042 2043 2044 2045 2046 2047 2048
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
2049
        output_size (int): The pool kernel size. The value should be an integer.
2050
        return_mask (bool): If true, the index of max pooling point will be returned along
2051 2052 2053 2054 2055 2056 2057 2058
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
2059
            ValueError: 'output_size' should be an integer.
2060 2061
    Examples:
        .. code-block:: python
2062

2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
2077

2078
              data = paddle.uniform([1, 3, 32], paddle.float32)
2079 2080
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
2081
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
2082 2083 2084
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
Z
zhiboniu 已提交
2085
    if not in_dynamic_mode():
L
Ligoml 已提交
2086 2087 2088
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_max_pool1d'
        )
2089 2090
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
2091 2092 2093 2094 2095
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
2096
    if in_dygraph_mode():
L
Ligoml 已提交
2097 2098 2099 2100 2101 2102 2103 2104
        pool_out = _C_ops.max_pool2d_with_index(
            x, pool_size, [1, 1], [0, 0], False, True
        )
        return (
            (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
            if return_mask
            else squeeze(pool_out[0], [2])
        )
2105
    if _in_legacy_dygraph():
L
Ligoml 已提交
2106 2107 2108 2109 2110 2111 2112 2113
        pool_out = _legacy_C_ops.max_pool2d_with_index(
            x, 'pooling_type', pool_type, 'ksize', pool_size, 'adaptive', True
        )
        return (
            (squeeze(pool_out[0], [2]), squeeze(pool_out[1], [2]))
            if return_mask
            else squeeze(pool_out[0], [2])
        )
2114

2115 2116
    l_type = 'max_pool2d_with_index'

2117
    helper = LayerHelper(l_type, **locals())
2118
    dtype = helper.input_dtype(input_param_name='x')
2119 2120
    pool_out = helper.create_variable_for_type_inference(dtype)

2121
    mask = helper.create_variable_for_type_inference('int32')
2122 2123
    outputs = {"Out": pool_out, "Mask": mask}

L
Ligoml 已提交
2124 2125 2126 2127 2128 2129 2130 2131 2132 2133
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": pool_type,
            "ksize": pool_size,
            "adaptive": True,
        },
    )
2134

L
Ligoml 已提交
2135 2136 2137 2138 2139
    return (
        (squeeze(pool_out, [2]), squeeze(mask, [2]))
        if return_mask
        else squeeze(pool_out, [2])
    )
2140 2141


2142
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
2143
    """
L
Ligoml 已提交
2144 2145
    This operation applies a 2D adaptive max pooling on input tensor.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
2146

L
Ligoml 已提交
2147 2148 2149 2150 2151
    Args:
        x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
        return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
2152

L
Ligoml 已提交
2153 2154
    Returns:
        Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
2155

L
Ligoml 已提交
2156 2157
    Examples:
        .. code-block:: python
2158

L
Ligoml 已提交
2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174
          # max adaptive pool2d
          # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
          # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
          # of input data into m*n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(m):
          #         for j in range(n):
          #             hstart = floor(i * H / m)
          #             hend = ceil((i + 1) * H / m)
          #             wstart = floor(i * W / n)
          #             wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
          #
          import paddle
2175

L
Ligoml 已提交
2176 2177 2178 2179 2180
          input_data = paddle.randn(shape=(2, 3, 32, 32))
          out = paddle.nn.functional.adaptive_max_pool2d(
                        x = input_data,
                        output_size=[3, 3])
          # out.shape is [2, 3, 3, 3]
2181
    """
Z
zhiboniu 已提交
2182
    if not in_dynamic_mode():
L
Ligoml 已提交
2183 2184 2185
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_max_pool2d'
        )
2186
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
L
Ligoml 已提交
2187
        # check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
2188 2189 2190 2191 2192 2193
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
2194
        output_size = list(output_size)
2195 2196 2197 2198
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w
2199
    if in_dygraph_mode():
L
Ligoml 已提交
2200 2201 2202
        pool_out = _C_ops.max_pool2d_with_index(
            x, output_size, [1, 1], [0, 0], False, True
        )
2203 2204
        return pool_out if return_mask else pool_out[0]
    if _in_legacy_dygraph():
L
Ligoml 已提交
2205 2206 2207
        pool_out = _legacy_C_ops.max_pool2d_with_index(
            x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True
        )
2208
        return pool_out if return_mask else pool_out[0]
2209 2210 2211 2212

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
2213
    dtype = helper.input_dtype(input_param_name='x')
2214 2215
    pool_out = helper.create_variable_for_type_inference(dtype)

2216
    mask = helper.create_variable_for_type_inference('int32')
2217 2218
    outputs = {"Out": pool_out, "Mask": mask}

L
Ligoml 已提交
2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        },
    )
    # return (pool_out, mask) if return_mask else pool_out
2230 2231 2232
    return pool_out


2233
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
2234
    """
L
Ligoml 已提交
2235 2236
    This operation applies a 3D adaptive max pooling on input tensor.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
2237

L
Ligoml 已提交
2238 2239 2240 2241 2242
    Args:
        x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
        return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
        name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
2243

L
Ligoml 已提交
2244 2245
    Returns:
        Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
2246

L
Ligoml 已提交
2247 2248
    Examples:
        .. code-block:: python
2249

L
Ligoml 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
          # adaptive max pool3d
          # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
          # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
          # of input data into m*n grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(l):
          #         for j in range(m):
          #             for k in range(n):
          #                 dstart = floor(i * D / l)
          #                 dend = ceil((i + 1) * D / l)
          #                 hstart = floor(i * H / m)
          #                 hend = ceil((i + 1) * H / m)
          #                 wstart = floor(i * W / n)
          #                 wend = ceil((i + 1) * W / n)
          #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
          #
          import paddle
2269

L
Ligoml 已提交
2270 2271 2272 2273 2274
          input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
          out = paddle.nn.functional.adaptive_max_pool3d(
                        x = input_data,
                        output_size=[3, 3, 3])
          # out.shape is [2, 3, 3, 3, 3]
2275 2276
    """

Z
zhiboniu 已提交
2277
    if not in_dynamic_mode():
L
Ligoml 已提交
2278 2279 2280
        check_variable_and_dtype(
            x, 'x', ['float32', 'float64'], 'adaptive_max_pool3d'
        )
2281
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
L
Ligoml 已提交
2282
        # check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
2283 2284 2285 2286 2287 2288
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
2289
        output_size = list(output_size)
2290 2291 2292 2293 2294 2295 2296
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
2297
    if in_dynamic_mode():
2298 2299
        if in_dygraph_mode():
            # By default, strides is [1,1,1] and paddings is [0, 0, 0]
L
Ligoml 已提交
2300 2301 2302
            pool_out = _C_ops.max_pool3d_with_index(
                x, output_size, [1, 1, 1], [0, 0, 0], False, True
            )
2303 2304
        elif _in_legacy_dygraph():
            pool_out = _legacy_C_ops.max_pool3d_with_index(
L
Ligoml 已提交
2305 2306
                x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive', True
            )
2307
        return pool_out if return_mask else pool_out[0]
2308 2309 2310 2311

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
2312
    dtype = helper.input_dtype(input_param_name='x')
2313 2314
    pool_out = helper.create_variable_for_type_inference(dtype)

2315
    mask = helper.create_variable_for_type_inference('int32')
2316 2317
    outputs = {"Out": pool_out, "Mask": mask}

L
Ligoml 已提交
2318 2319 2320 2321 2322 2323 2324 2325 2326 2327
    helper.append_op(
        type=l_type,
        inputs={"X": x},
        outputs=outputs,
        attrs={
            "pooling_type": 'max',
            "ksize": output_size,
            "adaptive": True,
        },
    )
2328

2329
    return (pool_out, mask) if return_mask else pool_out