pooling.py 86.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16 17
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
18
from ...fluid.data_feeder import check_type, check_variable_and_dtype
W
wanghuancoder 已提交
19
from paddle import _C_ops
Z
zhiboniu 已提交
20
from paddle import in_dynamic_mode
F
From00 已提交
21 22
from paddle.fluid.framework import _in_legacy_dygraph
from paddle.fluid.framework import in_dygraph_mode
23

24 25
__all__ = []

26

27 28 29 30 31
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
32
    if len(x.shape) != dimension:
33 34 35
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
36 37


38
def _check_instance(x, x_name, types=(int, float)):
39 40

    if not isinstance(x, types):
41 42 43
        raise ValueError(
            "Excepted {} type for {} but received type: {}. ".format(
                types, x_name, type(x)))
44 45


D
Double_V 已提交
46
def _check_value_limitation(x, x_name, min_limit=1e-3):
47

D
Double_V 已提交
48 49 50
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
51 52
                "Excepted the input {} to be greater than {} but received x: {}. "
                .format(x_name, min_limit, x))
D
Double_V 已提交
53 54 55 56 57

    for ele in x:
        _check_value(ele, x_name)


58 59 60
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
61
    else:
62
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
63 64


65 66 67 68
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
69 70


71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
93 94


95 96 97 98 99 100 101 102 103
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
104
                raise ValueError(
105 106 107 108 109 110 111 112 113 114 115 116 117 118
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
119
                raise ValueError(
120 121 122
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
123 124
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
140
    else:
141 142 143 144
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

145

146 147 148 149 150 151 152 153
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
154 155
            "The size of padding's dimmention should be 1 or 2. But got padding={}"
            .format(padding))
156 157 158 159 160 161 162
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
163
               exclusive=True,
164 165
               ceil_mode=False,
               name=None):
D
Double_V 已提交
166
    """
167 168
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
169 170 171 172

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
173
                          `L` is the length of the feature. The data type is float32 or float64.
174
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
175
            it must contain an integer.
176
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
177 178 179 180 181 182 183 184
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
185
        exclusive (bool): Whether to exclude padding points in average pooling
186
                          mode, default is `True`.
187
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
188
            If it is set to False, the floor function will be used. The default value is False.
189 190 191 192 193 194 195 196 197
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
198 199
        ValueError: If `padding` is a list or tuple but its length is greater than 1.
        ShapeError: If the input is not a 3-D tensor.
200 201 202 203
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
204 205 206 207 208 209 210 211
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
            out = F.avg_pool1d(data, kernel_size=2, stride=2, padding=0)
            # out shape: [1, 3, 16]
212 213 214
    """
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
215
    if not in_dynamic_mode():
216
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
217
    _check_input(x, 3)
218
    x = unsqueeze(x, [2])
219
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
220 221 222 223 224 225 226
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
227 228 229
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

230
    channel_last = _channel_last("NCL", 1)
231 232 233 234
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
235

236 237
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
238

Z
zhiboniu 已提交
239
    if in_dynamic_mode():
240 241 242 243 244 245 246
        output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', kernel_size,
                               'global_pooling', False, 'strides', stride,
                               'paddings', padding, 'padding_algorithm',
                               padding_algorithm, 'use_cudnn', True,
                               'ceil_mode', ceil_mode, 'use_mkldnn', False,
                               'exclusive', exclusive, 'data_format',
                               data_format)
247 248 249 250
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
251
    dtype = helper.input_dtype(input_param_name='x')
252 253
    pool_out = helper.create_variable_for_type_inference(dtype)

254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": 'avg',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
270 271 272 273

    return squeeze(pool_out, [2])


274
def avg_pool2d(x,
275 276 277 278
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
279
               exclusive=True,
280 281
               divisor_override=None,
               data_format="NCHW",
282 283
               name=None):
    """
284 285
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
286

287
    Args:
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
308
        exclusive (bool): Whether to exclude padding points in average pooling
309 310 311 312 313
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
314 315 316
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
317
    
318 319
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
320
    
321 322 323 324
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
325
    
326 327
    Examples:
        .. code-block:: python
C
Chen Long 已提交
328 329 330 331 332 333 334 335 336 337 338
          
            import paddle
            import paddle.nn.functional as F
            import numpy as np
            
            # avg pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
339
    """
340
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
341 342 343
    if stride is None:
        stride = kernel_size
    else:
344
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
345

D
Double_V 已提交
346 347 348
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

349
    channel_last = _channel_last(data_format, 2)
350 351 352 353
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    2,
                                                    channel_last,
                                                    ceil_mode=ceil_mode)
354

F
From00 已提交
355 356
    if in_dygraph_mode() or _in_legacy_dygraph():
        if in_dygraph_mode():
357 358 359 360
            output = _C_ops.final_state_pool2d(x, kernel_size, stride, padding,
                                               ceil_mode, exclusive,
                                               data_format, 'avg', False, False,
                                               padding_algorithm)
F
From00 已提交
361
        else:
362 363 364 365 366 367 368
            output = _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize',
                                   kernel_size, 'global_pooling', False,
                                   'padding_algorithm', padding_algorithm,
                                   'strides', stride, 'paddings', padding,
                                   'use_cudnn', True, 'ceil_mode', ceil_mode,
                                   'use_mkldnn', False, 'exclusive', exclusive,
                                   'data_format', data_format)
369 370 371 372 373
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
374

375
    op_type = 'pool2d'
376
    helper = LayerHelper(op_type, **locals())
377
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
378
    dtype = helper.input_dtype(input_param_name='x')
379 380
    pool_out = helper.create_variable_for_type_inference(dtype)

381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": "avg",
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
397

398 399 400 401 402
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
403 404


405 406 407 408 409
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
410
               exclusive=True,
411 412 413
               divisor_override=None,
               data_format="NCDHW",
               name=None):
414
    """
415 416
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
417 418

    Args:
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
437
        exclusive (bool): Whether to exclude padding points in average pooling
438 439 440 441 442
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
443
        name(str, optional): For detailed information, please refer
444 445
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
446
    
447
    Returns:
448
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
449
    
450
    Raises:
451 452 453
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
454
    
455 456
    Examples:
        .. code-block:: python
C
Chen Long 已提交
457
          
458
          import paddle
C
Chen Long 已提交
459 460
          import numpy as np

461 462 463 464 465 466 467 468
          x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32, 32]).astype(np.float32))
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
469
    """
470 471 472 473 474
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
475

476
    channel_last = _channel_last(data_format, 3)
477 478 479 480
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
481

D
Double_V 已提交
482 483 484
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

F
From00 已提交
485 486
    if in_dygraph_mode() or _in_legacy_dygraph():
        if in_dygraph_mode():
487 488 489 490
            output = _C_ops.final_state_pool3d(x, kernel_size, stride, padding,
                                               ceil_mode, exclusive,
                                               data_format, 'avg', False, False,
                                               padding_algorithm)
F
From00 已提交
491
        if _in_legacy_dygraph():
492 493 494 495 496 497 498
            output = _C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize',
                                   kernel_size, 'strides', stride, 'paddings',
                                   padding, 'global_pooling', False,
                                   'padding_algorithm', padding_algorithm,
                                   'use_cudnn', True, 'ceil_mode', ceil_mode,
                                   'use_mkldnn', False, 'exclusive', exclusive,
                                   'data_format', data_format)
499 500 501 502 503 504
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
505

506 507
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
508
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
509
    dtype = helper.input_dtype(input_param_name='x')
510 511
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
512

513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'avg',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
529

530 531 532 533 534 535
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
536 537


538
def max_pool1d(x,
539 540 541
               kernel_size,
               stride=None,
               padding=0,
542
               return_mask=False,
543 544 545
               ceil_mode=False,
               name=None):
    """
546 547
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
548 549

    Args:
550 551 552
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
553
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
554
            it must contain an integer.
555
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
556 557 558 559 560 561 562 563
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
564
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
565 566
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
567 568 569 570 571
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
572

573 574 575
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
576
        ShapeError: If the input is not a 3-D tensor.
577
        ShapeError: If the output's shape calculated is not greater than 0.
578

579 580
    Examples:
        .. code-block:: python
581

582 583
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
584 585
          import numpy as np

586 587 588
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
589
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
590
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
591
    """
592 593
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
594
    if not in_dynamic_mode():
595
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
596 597 598
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
599 600 601
    if stride is None:
        stride = kernel_size
    else:
602
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
603

604 605 606
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    ceil_mode=ceil_mode)
607

608 609
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
610

F
From00 已提交
611 612 613 614 615
    if in_dygraph_mode():
        if return_mask:
            pool_out = _C_ops.final_state_max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False)
            return (squeeze(pool_out[0], [2]),
616 617
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
F
From00 已提交
618
        else:
619 620 621 622
            pool_out = _C_ops.final_state_pool2d(x, kernel_size, stride,
                                                 padding, ceil_mode, True,
                                                 data_format, 'max', False,
                                                 False, padding_algorithm)
F
From00 已提交
623 624 625
            return squeeze(pool_out, [2])

    if _in_legacy_dygraph():
626
        if return_mask:
W
wanghuancoder 已提交
627
            pool_out = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
628 629 630 631 632
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
633
            return (squeeze(pool_out[0], [2]),
634 635
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
D
Double_V 已提交
636
        else:
637 638 639 640 641 642 643
            pool_out = _C_ops.pool2d(x, 'pooling_type', 'max', 'ksize',
                                     kernel_size, 'global_pooling', False,
                                     'padding_algorithm', padding_algorithm,
                                     'strides', stride, 'paddings', padding,
                                     'use_cudnn', True, 'ceil_mode', ceil_mode,
                                     'use_mkldnn', False, 'exclusive', True,
                                     'data_format', data_format)
D
Double_V 已提交
644 645
            return squeeze(pool_out, [2])

646
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
647
    helper = LayerHelper(op_type, **locals())
648
    dtype = helper.input_dtype(input_param_name='x')
649
    pool_out = helper.create_variable_for_type_inference(dtype)
650
    mask = helper.create_variable_for_type_inference('int32')
651 652
    outputs = {"Out": pool_out, "Mask": mask}

653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
669

670
    return (squeeze(pool_out, [2]),
671
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
672 673


674 675 676 677
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
678 679
        default_size.append((input_size[-len(kernel_size) + d] - 1) *
                            stride[d] + kernel_size[d] - 2 * padding[d])
680 681 682 683 684 685 686 687 688
    if output_size is None:
        ret = default_size
    else:
        if len(output_size) == len(kernel_size) + 2:
            output_size = output_size[2:]
        if len(output_size) != len(kernel_size):
            raise ValueError(
                "output_size should be a sequence containing "
                "{} or {} elements, but it has a length of '{}'".format(
689 690
                    len(kernel_size),
                    len(kernel_size) + 2, len(output_size)))
691 692 693 694 695
        for d in range(len(kernel_size)):
            min_size = default_size[d] - stride[d]
            max_size = default_size[d] + stride[d]
            if not (min_size < output_size[d] < max_size):
                raise ValueError(
696 697
                    'invalid output_size "{}" (dim {} must be between {} and {})'
                    .format(output_size, d, min_size, max_size))
698 699 700 701 702

        ret = output_size
    return ret


703 704 705 706 707 708 709 710
def max_unpool1d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCL",
                 output_size=None,
                 name=None):
711
    r"""
712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    This API implements max unpooling 1d opereation.
    `max_unpool1d` accepts the output of `max_pool1d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
    
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"`, 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling1d which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"` , 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the featuree. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            unpool_out = F.max_unpool1d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 3, 16]

    """
    """NCL to NCHW"""
    if data_format not in ["NCL"]:
        raise ValueError("Attr(data_format) should be 'NCL'. Received "
                         "Attr(data_format): %s." % str(data_format))
    data_format = "NCHW"
    x = unsqueeze(x, [2])
    indices = unsqueeze(indices, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
    padding, padding_algorithm = _update_padding_nd(padding, 1)
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
785 786 787 788 789
    if in_dygraph_mode():
        output = _C_ops.final_state_unpool(x, indices, kernel_size, stride,
                                           padding, output_size, data_format)
        return squeeze(output, [2])
    elif in_dynamic_mode():
790 791 792 793 794 795 796 797 798 799 800
        output = _C_ops.unpool(x, indices, 'unpooling_type', 'max', 'ksize',
                               kernel_size, 'strides', stride, 'paddings',
                               padding, "output_size", output_size,
                               "data_format", data_format)
        return squeeze(output, [2])

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

801 802 803 804 805 806 807 808 809 810 811 812 813
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
814 815 816
    return squeeze(unpool_out, [2])


817 818 819 820 821 822 823 824
def max_unpool2d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCHW",
                 output_size=None,
                 name=None):
825
    r"""
826
    This API implements max unpooling 2d opereation.
827
    See more details in :ref:`api_nn_pooling_MaxUnPool2D` .
828

829 830

    Args:
831 832 833
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`, 
                          where `N` is batch size, `C` is the number of channels,
834 835
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
836 837 838 839 840 841 842 843 844 845 846 847 848
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` , 
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
849 850 851
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
852

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
            Tensor: The output tensor of unpooling result. 

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
            

        Examples:
            .. code-block:: python
          
C
Chen Long 已提交
876 877
            import paddle
            import paddle.nn.functional as F
878

879
            data = paddle.rand(shape=[1,1,6,6])
880 881 882 883 884 885 886 887 888
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

            # specify a different output size than input size 
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
            # unpool_out shape: [1, 1, 7, 7] 

889 890
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
891 892 893 894 895 896 897 898 899 900 901 902 903
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
        raise ValueError("Attr(data_format) should be 'NCHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
904 905 906 907 908
    if in_dygraph_mode():
        output = _C_ops.final_state_unpool(x, indices, kernel_size, stride,
                                           padding, output_size, data_format)

    elif in_dynamic_mode():
909 910 911 912 913 914 915 916 917 918 919
        output = _C_ops.unpool(x, indices, 'unpooling_type', 'max', 'ksize',
                               kernel_size, 'strides', stride, 'paddings',
                               padding, "output_size", output_size,
                               "data_format", data_format)
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

920 921 922 923 924 925 926 927 928 929 930 931 932
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
933 934 935
    return unpool_out


936 937 938 939 940 941 942 943
def max_unpool3d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCDHW",
                 output_size=None,
                 name=None):
944
    r"""
945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
    This API implements max unpooling 3d opereation.
    `max_unpool3d` accepts the output of `max_pool3d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
    
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"`, 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling3d which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` , 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            unpool_out = F.max_unpool3d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
    padding = utils.convert_to_list(padding, 3, 'padding')

    if data_format not in ["NCDHW"]:
        raise ValueError("Attr(data_format) should be 'NCDHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
1021 1022 1023 1024
    if in_dygraph_mode():
        output = _C_ops.final_state_unpool3d(x, indices, kernel_size, stride,
                                             padding, output_size, data_format)
    elif in_dynamic_mode():
1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
        output = _C_ops.unpool3d(x, indices, 'unpooling_type', 'max', 'ksize',
                                 kernel_size, 'strides', stride, 'paddings',
                                 padding, "output_size", output_size,
                                 "data_format", data_format)
        return output

    op_type = "unpool3d"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
1049 1050 1051
    return unpool_out


1052 1053 1054 1055 1056 1057 1058 1059
def max_pool2d(x,
               kernel_size,
               stride=None,
               padding=0,
               return_mask=False,
               ceil_mode=False,
               data_format="NCHW",
               name=None):
W
Wei Shengyu 已提交
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117
    """
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

   Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            # max pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            # output.shape [1, 3, 16, 16]
            # for return_mask=True
            out, max_indices = F.max_pool2d(x,
                                               kernel_size=2,
                                               stride=2,
                                               padding=0,
                                               return_mask=True)
            # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
    """
1118
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1119 1120 1121 1122 1123 1124 1125 1126 1127
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
1128 1129 1130

    channel_last = True if data_format == "NHWC" else False

1131 1132 1133 1134
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    num_dims=2,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1135

1136
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
1137
        raise ValueError(
1138
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
1139 1140
        )

F
From00 已提交
1141 1142 1143 1144 1145 1146
    if in_dygraph_mode():
        if return_mask:
            output = _C_ops.final_state_max_pool2d_with_index(
                x, kernel_size, stride, padding, False, False)
            return output if return_mask else output[0]
        else:
1147 1148 1149 1150
            return _C_ops.final_state_pool2d(x, kernel_size, stride, padding,
                                             ceil_mode, True, data_format,
                                             'max', False, False,
                                             padding_algorithm)
F
From00 已提交
1151 1152

    if _in_legacy_dygraph():
1153
        if return_mask:
W
wanghuancoder 已提交
1154
            output = _C_ops.max_pool2d_with_index(
D
Double_V 已提交
1155 1156 1157 1158 1159
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
1160
            return output if return_mask else output[0]
D
Double_V 已提交
1161
        else:
1162 1163 1164 1165 1166 1167 1168
            output = _C_ops.pool2d(x, 'pooling_type', 'max', 'ksize',
                                   kernel_size, 'global_pooling', False,
                                   'padding_algorithm', padding_algorithm,
                                   'strides', stride, 'paddings', padding,
                                   'use_cudnn', True, 'ceil_mode', ceil_mode,
                                   'use_mkldnn', False, 'exclusive', True,
                                   'data_format', data_format)
D
Double_V 已提交
1169
            return output
1170

1171
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
1172
    helper = LayerHelper(op_type, **locals())
1173 1174
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
1175
    dtype = helper.input_dtype(input_param_name='x')
1176
    pool_out = helper.create_variable_for_type_inference(dtype)
1177
    mask = helper.create_variable_for_type_inference("int32")
1178
    outputs = {"Out": pool_out, "Mask": mask}
1179

1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
1196

1197
    return (pool_out, mask) if return_mask else pool_out
1198 1199 1200 1201 1202 1203


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
1204
               return_mask=False,
1205 1206 1207 1208
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
1209 1210
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
1211 1212
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
1213
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
1214
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
1215
            is a tuple or list, it must contain three integers,
1216
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
1217
            Otherwise, the pool kernel size will be the cube of an int.
1218 1219
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
1220
            Otherwise, the pool stride size will be a cube of an int.
1221 1222 1223 1224 1225 1226 1227
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
1228
        ceil_mode (bool): ${ceil_mode_comment}
1229
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
1230 1231 1232 1233 1234 1235
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
1236
    
1237 1238
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
1239
    
1240 1241 1242 1243
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
1244
    
1245 1246
    Examples:
        .. code-block:: python
1247

C
Chen Long 已提交
1248 1249
            import paddle
            import paddle.nn.functional as F
1250

C
Chen Long 已提交
1251
            # max pool3d
1252 1253
            x = paddle.uniform([1, 3, 32, 32, 32])
            output = F.max_pool3d(x,
C
Chen Long 已提交
1254 1255
                                  kernel_size=2,
                                  stride=2, padding=0)
1256
            # output.shape [1, 3, 16, 16, 16]
C
Chen Long 已提交
1257
            # for return_mask=True
1258
            x = paddle.uniform([1, 3, 32, 32, 32])
C
Chen Long 已提交
1259 1260 1261 1262 1263
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
1264
            # output.shape [1, 3, 16, 16, 16], max_indices.shape [1, 3, 16, 16, 16]
1265 1266 1267 1268 1269 1270 1271
    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

1272
    channel_last = _channel_last(data_format, 3)
1273

1274 1275 1276 1277
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1278

1279
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
1280
        raise ValueError(
1281
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
1282 1283
        )

F
From00 已提交
1284 1285 1286 1287 1288 1289
    if in_dygraph_mode():
        if return_mask:
            output = _C_ops.final_state_max_pool3d_with_index(
                x, kernel_size, stride, padding, False, False)
            return output if return_mask else output[0]
        else:
1290 1291 1292 1293
            return _C_ops.final_state_pool3d(x, kernel_size, stride, padding,
                                             ceil_mode, True, data_format,
                                             'max', False, False,
                                             padding_algorithm)
F
From00 已提交
1294 1295

    if _in_legacy_dygraph():
1296
        if return_mask:
W
wanghuancoder 已提交
1297
            output = _C_ops.max_pool3d_with_index(
D
Double_V 已提交
1298 1299 1300 1301 1302
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
1303
            return output if return_mask else output[0]
D
Double_V 已提交
1304
        else:
1305 1306 1307 1308 1309 1310 1311
            output = _C_ops.pool3d(x, 'pooling_type', 'max', 'ksize',
                                   kernel_size, 'global_pooling', False,
                                   'padding_algorithm', padding_algorithm,
                                   'strides', stride, 'paddings', padding,
                                   'use_cudnn', True, 'ceil_mode', ceil_mode,
                                   'use_mkldnn', False, 'exclusive', True,
                                   'data_format', data_format)
D
Double_V 已提交
1312
            return output
1313

1314
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
1315
    helper = LayerHelper(op_type, **locals())
1316
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
1317
    dtype = helper.input_dtype(input_param_name='x')
1318
    pool_out = helper.create_variable_for_type_inference(dtype)
1319
    mask = helper.create_variable_for_type_inference('int32')
1320 1321
    outputs = {"Out": pool_out, "Mask": mask}

1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": False,
                         "data_format": data_format,
                     })
1338

1339
    return (pool_out, mask) if return_mask else pool_out
1340 1341


1342
def adaptive_avg_pool1d(x, output_size, name=None):
1343
    """
1344 1345 1346 1347
    Adaptive average pooling 1d operation on :attr:`x` according to :attr:`output_size`. 
    
    Notes:
        See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1348

1349
    Args:
1350 1351 1352
        x (Tensor): The input Tensor of pooling, which is a 3-D tensor with shape :math:`[N, C, L]`, where :math:`N` is batch size, :math:`C` is the number of channels and :math:`L` is the length of the feature. The data type is float32 or float64.
        output_size (int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1353
    Returns:
1354
        Tensor: The result of 1D adaptive average pooling. Its data type is same as input.
1355 1356
    Examples:
        .. code-block:: python
1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375

            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
            #
            import paddle
            import paddle.nn.functional as F

            data = paddle.uniform([1, 3, 32])
            pool_out = F.adaptive_avg_pool1d(data, output_size=16)
            # pool_out shape: [1, 3, 16])
1376 1377
    """
    pool_type = 'avg'
Z
zhiboniu 已提交
1378
    if not in_dynamic_mode():
1379 1380 1381
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'adaptive_pool2d')
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1382 1383
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1384

1385
    x = unsqueeze(x, [2])
Z
zhiboniu 已提交
1386
    if in_dynamic_mode():
W
wanghuancoder 已提交
1387 1388
        pool_out = _C_ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                 pool_size, 'adaptive', True)
1389
        return squeeze(pool_out, [2])
1390

1391 1392
    l_type = "pool2d"

1393
    helper = LayerHelper(l_type, **locals())
1394
    dtype = helper.input_dtype(input_param_name='x')
1395 1396
    pool_out = helper.create_variable_for_type_inference(dtype)

1397
    outputs = {"Out": pool_out}
1398 1399 1400 1401 1402 1403 1404 1405
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1406

1407
    return squeeze(pool_out, [2])
1408 1409


1410 1411
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
1412 1413
    This API implements adaptive average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool2d` .
1414 1415 1416

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1417
                          The data type can be float32 or float64.
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCHW" or "NHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1433

1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1451

1452 1453 1454
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1455
            out = paddle.nn.functional.adaptive_avg_pool2d(
1456 1457
                            x = x,
                            output_size=[3, 3])
1458
            # out.shape is [2, 3, 3, 3]
1459
    """
Z
zhiboniu 已提交
1460
    if not in_dynamic_mode():
1461
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1462
                                 'adaptive_avg_pool2d')
1463
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1478
        output_size = list(output_size)
1479 1480 1481 1482 1483
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

F
From00 已提交
1484
    if in_dygraph_mode():
1485 1486 1487 1488
        return _C_ops.final_state_pool2d_gpudnn_unused(x, output_size, [1, 1],
                                                       [0, 0], False, True,
                                                       data_format, 'avg',
                                                       False, True, "EXPLICIT")
F
From00 已提交
1489 1490 1491 1492 1493

    if _in_legacy_dygraph():
        return _C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize', output_size,
                             'global_pooling', False, 'adaptive', True,
                             'data_format', data_format)
1494 1495 1496 1497

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1498
    dtype = helper.input_dtype(input_param_name='x')
1499 1500 1501 1502
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

1503 1504 1505 1506 1507 1508 1509 1510 1511
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1512 1513 1514 1515 1516 1517

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1518 1519
    This API implements adaptive average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveAvgPool3d` .
1520 1521 1522

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1523
                          The data type can be float32, float64.
1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
    Raises:
        ValueError: If `data_format` is not "NCDHW" or "NDHWC".
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1539

1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
1563
            out = paddle.nn.functional.adaptive_avg_pool3d(
1564 1565
                            x = x,
                            output_size=[3, 3, 3])
1566
            # out.shape is [2, 3, 3, 3, 3]
1567
    """
Z
zhiboniu 已提交
1568
    if not in_dynamic_mode():
1569 1570
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1571
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1586
        output_size = list(output_size)
1587 1588 1589 1590 1591 1592 1593
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
1594
    if in_dynamic_mode():
F
From00 已提交
1595 1596 1597
        return _C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize', output_size,
                             'global_pooling', False, 'adaptive', True,
                             'data_format', data_format)
1598 1599 1600 1601

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1602
    dtype = helper.input_dtype(input_param_name='x')
1603 1604 1605
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

1606 1607 1608 1609 1610 1611 1612 1613 1614
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1615 1616

    return pool_out
1617 1618


1619
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1620 1621 1622 1623 1624 1625 1626 1627 1628
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1629
        output_size (int): The pool kernel size. The value should be an integer.
1630
        return_mask (bool): If true, the index of max pooling point will be returned along
1631 1632 1633 1634 1635 1636 1637 1638
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1639
            ValueError: 'output_size' should be an integer.
1640 1641
    Examples:
        .. code-block:: python
1642

1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
C
Chen Long 已提交
1657
              import numpy as np
1658

1659 1660 1661
              data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1662
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1663 1664 1665
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
Z
zhiboniu 已提交
1666
    if not in_dynamic_mode():
1667 1668 1669 1670
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool1d')
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1671 1672 1673 1674 1675
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
1676 1677 1678 1679 1680 1681
    if in_dygraph_mode():
        pool_out = _C_ops.final_state_max_pool2d_with_index(
            x, pool_size, [1, 1], [0, 0], False, True)
        return (squeeze(pool_out[0], [2]), squeeze(
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
    if _in_legacy_dygraph():
1682 1683 1684
        pool_out = _C_ops.max_pool2d_with_index(x, 'pooling_type', pool_type,
                                                'ksize', pool_size, 'adaptive',
                                                True)
1685
        return (squeeze(pool_out[0], [2]), squeeze(
1686
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1687

1688 1689
    l_type = 'max_pool2d_with_index'

1690
    helper = LayerHelper(l_type, **locals())
1691
    dtype = helper.input_dtype(input_param_name='x')
1692 1693
    pool_out = helper.create_variable_for_type_inference(dtype)

1694
    mask = helper.create_variable_for_type_inference('int32')
1695 1696
    outputs = {"Out": pool_out, "Mask": mask}

1697 1698 1699 1700 1701 1702 1703 1704
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1705 1706

    return (squeeze(pool_out, [2]),
1707
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1708 1709


1710
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1711 1712 1713
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1714

1715 1716 1717
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1718
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1719
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1720

1721 1722
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1723

1724 1725
        Examples:
            .. code-block:: python
1726

1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1744

1745 1746 1747 1748 1749 1750 1751 1752
              input_data = np.random.rand(2, 3, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool2d(
                            x = x,
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
Z
zhiboniu 已提交
1753
    if not in_dynamic_mode():
1754 1755
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
1756 1757
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1758 1759 1760 1761 1762 1763
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1764
        output_size = list(output_size)
1765 1766 1767 1768
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w
1769 1770 1771 1772 1773
    if in_dygraph_mode():
        pool_out = _C_ops.final_state_max_pool2d_with_index(
            x, output_size, [1, 1], [0, 0], False, True)
        return pool_out if return_mask else pool_out[0]
    if _in_legacy_dygraph():
1774 1775 1776
        pool_out = _C_ops.max_pool2d_with_index(x, 'pooling_type', 'max',
                                                'ksize', output_size,
                                                'adaptive', True)
1777
        return pool_out if return_mask else pool_out[0]
1778 1779 1780 1781

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1782
    dtype = helper.input_dtype(input_param_name='x')
1783 1784
    pool_out = helper.create_variable_for_type_inference(dtype)

1785
    mask = helper.create_variable_for_type_inference('int32')
1786 1787
    outputs = {"Out": pool_out, "Mask": mask}

1788 1789 1790 1791 1792 1793 1794 1795
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1796
    #return (pool_out, mask) if return_mask else pool_out
1797 1798 1799
    return pool_out


1800
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1801 1802 1803
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1804

1805 1806 1807
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1808
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1809
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1810

1811 1812
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1813

1814 1815
        Examples:
            .. code-block:: python
1816

1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
              import numpy as np
1837

1838 1839 1840 1841 1842 1843 1844 1845 1846
              input_data = np.random.rand(2, 3, 8, 32, 32)
              x = paddle.to_tensor(input_data)
              # x.shape is [2, 3, 8, 32, 32]
              out = paddle.nn.functional.adaptive_max_pool3d(
                            x = x,
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

Z
zhiboniu 已提交
1847
    if not in_dynamic_mode():
1848 1849
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
1850 1851
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1852 1853 1854 1855 1856 1857
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1858
        output_size = list(output_size)
1859 1860 1861 1862 1863 1864 1865
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
1866
    if in_dynamic_mode():
1867 1868 1869
        pool_out = _C_ops.max_pool3d_with_index(x, 'pooling_type', 'max',
                                                'ksize', output_size,
                                                'adaptive', True)
1870
        return pool_out if return_mask else pool_out[0]
1871 1872 1873 1874

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1875
    dtype = helper.input_dtype(input_param_name='x')
1876 1877
    pool_out = helper.create_variable_for_type_inference(dtype)

1878
    mask = helper.create_variable_for_type_inference('int32')
1879 1880
    outputs = {"Out": pool_out, "Mask": mask}

1881 1882 1883 1884 1885 1886 1887 1888
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1889

1890
    return (pool_out, mask) if return_mask else pool_out