pooling.py 86.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# TODO: define pooling functions
16 17
from ...fluid.layers import utils, LayerHelper
from ...tensor.manipulation import unsqueeze, squeeze
18
from ...fluid.data_feeder import check_type, check_variable_and_dtype
19
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
20
from paddle import in_dynamic_mode
21 22 23
from paddle.fluid import core
from paddle.fluid.framework import _in_legacy_dygraph, Variable
from paddle.fluid.framework import in_dygraph_mode, _non_static_mode
24

25 26
__all__ = []

27

28 29 30 31 32
def _is_list_or_tuple(input):
    return isinstance(input, (list, tuple))


def _check_input(x, dimension):
33
    if len(x.shape) != dimension:
34 35 36
        raise ValueError(
            "Excepted Input X is {}-D tensor, but received {}-D {}".format(
                dimension, len(x.shape), type(x)))
37 38


39
def _check_instance(x, x_name, types=(int, float)):
40 41

    if not isinstance(x, types):
42 43 44
        raise ValueError(
            "Excepted {} type for {} but received type: {}. ".format(
                types, x_name, type(x)))
45 46


D
Double_V 已提交
47
def _check_value_limitation(x, x_name, min_limit=1e-3):
48

D
Double_V 已提交
49 50 51
    def _check_value(x, x_name, min_limit=1e-3):
        if isinstance(x, int) and min_limit is not None and x < min_limit:
            raise ValueError(
52 53
                "Excepted the input {} to be greater than {} but received x: {}. "
                .format(x_name, min_limit, x))
D
Double_V 已提交
54 55 56 57 58

    for ele in x:
        _check_value(ele, x_name)


59 60 61
def _zero_padding_in_batch_and_channel(padding, channel_last):
    if channel_last:
        return list(padding[0]) == [0, 0] and list(padding[-1]) == [0, 0]
62
    else:
63
        return list(padding[0]) == [0, 0] and list(padding[1]) == [0, 0]
64 65


66 67 68 69
def _exclude_padding_in_batch_and_channel(padding, channel_last):
    padding_ = padding[1:-1] if channel_last else padding[2:]
    padding_ = [elem for pad_a_dim in padding_ for elem in pad_a_dim]
    return padding_
70 71


72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
def _channel_last(data_format, num_dims):
    if num_dims == 1:
        if data_format not in ['NCL', 'NLC']:
            raise ValueError(
                "Attr(data_format) should be 'NCL' or 'NLC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NLC" else False
    if num_dims == 2:
        if data_format not in ['NCHW', 'NHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NHWC" else False
    if num_dims == 3:
        if data_format not in ['NCDHW', 'NDHWC']:
            raise ValueError(
                "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
                "Attr(data_format): %s" % str(data_format))
        else:
            return True if data_format == "NDHWC" else False
94 95


96 97 98 99 100 101 102 103 104
def _update_padding_nd(padding, num_dims, channel_last=False, ceil_mode=False):
    if isinstance(padding, str):
        padding = padding.upper()
        if padding not in ["SAME", "VALID"]:
            raise ValueError(
                "Unknown padding: '{}'. It can only be 'SAME' or 'VALID'.".
                format(padding))
        if padding == "VALID":
            if ceil_mode != False:
105
                raise ValueError(
106 107 108 109 110 111 112 113 114 115 116 117 118 119
                    "When Attr(padding) is \"VALID\", Attr(ceil_mode) must be False. "
                    "Received ceil_mode: True.")

            padding_algorithm = "VALID"
            padding = [0] * num_dims
        else:
            padding_algorithm = "SAME"
            padding = [0] * num_dims
    elif _is_list_or_tuple(padding):
        # for padding like
        # [(pad_before, pad_after), (pad_before, pad_after), ...]
        # padding for batch_dim and channel_dim included
        if len(padding) == 2 + num_dims and _is_list_or_tuple(padding[0]):
            if not _zero_padding_in_batch_and_channel(padding, channel_last):
120
                raise ValueError(
121 122 123
                    "Non-zero padding({}) in the batch or channel dimensions "
                    "is not supported.".format(padding))
            padding_algorithm = "EXPLICIT"
124 125
            padding = _exclude_padding_in_batch_and_channel(
                padding, channel_last)
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_before, pad_after, pad_before, pad_after, ...]
        elif len(padding) == 2 * num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, 2 * num_dims, 'padding')
            if utils._is_symmetric_padding(padding, num_dims):
                padding = padding[0::2]
        # for padding like [pad_d1, pad_d2, ...]
        elif len(padding) == num_dims and isinstance(padding[0], int):
            padding_algorithm = "EXPLICIT"
            padding = utils.convert_to_list(padding, num_dims, 'padding')
        else:
            raise ValueError("Invalid padding: {}".format(padding))
    # for integer padding
141
    else:
142 143 144 145
        padding_algorithm = "EXPLICIT"
        padding = utils.convert_to_list(padding, num_dims, 'padding')
    return padding, padding_algorithm

146

147 148 149 150 151 152 153 154
def _expand_low_nd_padding(padding):
    #1d to 2d fake input
    if len(padding) == 2:
        padding = [0] * 2 + padding
    elif len(padding) == 1:
        padding = [0] + padding
    else:
        raise ValueError(
155 156
            "The size of padding's dimmention should be 1 or 2. But got padding={}"
            .format(padding))
157 158 159 160 161 162 163
    return padding


def avg_pool1d(x,
               kernel_size,
               stride=None,
               padding=0,
164
               exclusive=True,
165 166
               ceil_mode=False,
               name=None):
D
Double_V 已提交
167
    """
168 169
    This API implements average pooling 1d operation,
    See more details in :ref:`api_nn_pooling_AvgPool1d` .
170 171 172 173

    Args:
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L]. where `N` is batch size, `C` is the number of channels,
174
                          `L` is the length of the feature. The data type is float32 or float64.
175
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
176
            it must contain an integer.
177
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
178 179 180 181 182 183 184 185
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
186
        exclusive (bool): Whether to exclude padding points in average pooling
187
                          mode, default is `True`.
188
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
189
            If it is set to False, the floor function will be used. The default value is False.
190 191 192 193 194 195 196 197
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

    Examples:
        .. code-block:: python
C
Chen Long 已提交
198 199
          
            import paddle
200
            import paddle.nn as nn
C
Chen Long 已提交
201

202 203 204 205
            data = paddle.uniform([1, 3, 32], paddle.float32)
            AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
            pool_out = AvgPool1D(data)
            # pool_out shape: [1, 3, 16]
206 207 208
    """
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
209
    if not in_dynamic_mode():
210
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool1d')
211
    _check_input(x, 3)
212
    x = unsqueeze(x, [2])
213
    kernel_size = utils.convert_to_list(kernel_size, 1, 'kernel_size')
214 215 216 217 218 219 220
    kernel_size = [1] + kernel_size
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 1, 'pool_stride')
        stride = [1] + stride

D
Double_V 已提交
221 222 223
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

224
    channel_last = _channel_last("NCL", 1)
225 226 227 228
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
229

230 231
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
232

Z
zhiboniu 已提交
233
    if in_dynamic_mode():
234 235 236 237 238 239 240
        output = _legacy_C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize',
                                      kernel_size, 'global_pooling', False,
                                      'strides', stride, 'paddings', padding,
                                      'padding_algorithm', padding_algorithm,
                                      'use_cudnn', True, 'ceil_mode', ceil_mode,
                                      'use_mkldnn', False, 'exclusive',
                                      exclusive, 'data_format', data_format)
241 242 243 244
        return squeeze(output, [2])

    op_type = 'pool2d'
    helper = LayerHelper(op_type, **locals())
245
    dtype = helper.input_dtype(input_param_name='x')
246 247
    pool_out = helper.create_variable_for_type_inference(dtype)

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": 'avg',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
264 265 266 267

    return squeeze(pool_out, [2])


268
def avg_pool2d(x,
269 270 271 272
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
273
               exclusive=True,
274 275
               divisor_override=None,
               data_format="NCHW",
276 277
               name=None):
    """
278 279
    This API implements average pooling 2d operation.
    See more details in :ref:`api_nn_pooling_AvgPool2d` .
D
Double_V 已提交
280

281
    Args:
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If it is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The stride size. If it is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
302
        exclusive (bool): Whether to exclude padding points in average pooling
303 304 305 306 307
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
308 309 310
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
311
    
312 313
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
314
    
315 316
    Examples:
        .. code-block:: python
C
Chen Long 已提交
317 318 319 320 321
          
            import paddle
            import paddle.nn.functional as F
            
            # avg pool2d
322
            x = paddle.uniform([1, 3, 32, 32], paddle.float32)
C
Chen Long 已提交
323 324 325 326
            out = F.avg_pool2d(x,
                            kernel_size=2,
                            stride=2, padding=0)
            # out.shape [1, 3, 16, 16]
327
    """
328
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
329 330 331
    if stride is None:
        stride = kernel_size
    else:
332
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
333

D
Double_V 已提交
334 335 336
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

337
    channel_last = _channel_last(data_format, 2)
338 339 340 341
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    2,
                                                    channel_last,
                                                    ceil_mode=ceil_mode)
342

F
From00 已提交
343 344
    if in_dygraph_mode() or _in_legacy_dygraph():
        if in_dygraph_mode():
345 346 347
            output = _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                   exclusive, data_format, 'avg', False, False,
                                   padding_algorithm)
F
From00 已提交
348
        else:
349 350 351 352 353 354
            output = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'avg', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive',
                exclusive, 'data_format', data_format)
355 356 357 358 359
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1]) / divisor_override
360

361
    op_type = 'pool2d'
362
    helper = LayerHelper(op_type, **locals())
363
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'avg_pool2d')
364
    dtype = helper.input_dtype(input_param_name='x')
365 366
    pool_out = helper.create_variable_for_type_inference(dtype)

367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs={"Out": pool_out},
                     attrs={
                         "pooling_type": "avg",
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
383

384 385 386 387 388
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1]) / divisor_override
389 390


391 392 393 394 395
def avg_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
               ceil_mode=False,
396
               exclusive=True,
397 398 399
               divisor_override=None,
               data_format="NCDHW",
               name=None):
400
    """
401 402
    This API implements average pooling 3d operation.
    See more details in :ref:`api_nn_pooling_AvgPool3d` .
403 404

    Args:
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
                          shape [N, C, D, H, W], where `N` represents the batch size, `C` represents
                          the number of channels, `D`, `H` and `W` represent the depth, height and width of the feature respectively.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
423
        exclusive (bool): Whether to exclude padding points in average pooling
424 425 426 427 428
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
429
        name(str, optional): For detailed information, please refer
430 431
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
432
    
433
    Returns:
434
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
435

436 437
    Examples:
        .. code-block:: python
C
Chen Long 已提交
438
          
439
          import paddle
C
Chen Long 已提交
440

441
          x = paddle.uniform([1, 3, 32, 32, 32], paddle.float32)
442 443 444 445 446 447 448
          # avg pool3d
          out = paddle.nn.functional.avg_pool3d(
                                            x,
                                            kernel_size = 2,
                                            stride = 2,
                                            padding=0)
          # out.shape: [1, 3, 16, 16, 16]
449
    """
450 451 452 453 454
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
455

456
    channel_last = _channel_last(data_format, 3)
457 458 459 460
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
461

D
Double_V 已提交
462 463 464
    _check_value_limitation(kernel_size, "kernel_size", min_limit=1e-3)
    _check_value_limitation(stride, "stride", min_limit=1e-3)

F
From00 已提交
465 466
    if in_dygraph_mode() or _in_legacy_dygraph():
        if in_dygraph_mode():
467 468 469
            output = _C_ops.pool3d(x, kernel_size, stride, padding, ceil_mode,
                                   exclusive, data_format, 'avg', False, False,
                                   padding_algorithm)
F
From00 已提交
470
        if _in_legacy_dygraph():
471 472 473 474 475 476
            output = _legacy_C_ops.pool3d(
                x, 'pooling_type', 'avg', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive',
                exclusive, 'data_format', data_format)
477 478 479 480 481 482
        if divisor_override is None:
            return output
        else:
            _check_instance(divisor_override, "divisor_override")
            return output * (kernel_size[0] * kernel_size[1] *
                             kernel_size[2]) / divisor_override
483

484 485
    op_type = "pool3d"
    helper = LayerHelper(op_type, **locals())
486
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
487
    dtype = helper.input_dtype(input_param_name='x')
488 489
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}
490

491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'avg',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": exclusive,
                         "data_format": data_format,
                     })
507

508 509 510 511 512 513
    if divisor_override is None:
        return pool_out
    else:
        _check_instance(divisor_override, "divisor_override")
        return pool_out * (kernel_size[0] * kernel_size[1] *
                           kernel_size[2]) / divisor_override
514 515


516
def max_pool1d(x,
517 518 519
               kernel_size,
               stride=None,
               padding=0,
520
               return_mask=False,
521 522 523
               ceil_mode=False,
               name=None):
    """
524 525
    This API implements max pooling 1d opereation.
    See more details in :ref:`api_nn_pooling_MaxPool1d` .
526 527

    Args:
528 529 530
        x (Tensor): The input tensor of pooling operator which is a 3-D tensor with
                          shape [N, C, L], where `N` is batch size, `C` is the number of channels,
                          `L` is the length of the feature. The data type if float32 or float64.
531
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
532
            it must contain an integer.
533
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
534 535 536 537 538 539 540 541
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
542
        return_mask (bool): Whether return the max indices along with the outputs. default is `False`.
543 544
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
545 546 547 548 549
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
550

551 552 553
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
554
        ShapeError: If the input is not a 3-D tensor.
555
        ShapeError: If the output's shape calculated is not greater than 0.
556

557 558
    Examples:
        .. code-block:: python
559

560 561
          import paddle
          import paddle.nn.functional as F
C
Chen Long 已提交
562

563
          data = paddle.uniform([1, 3, 32], paddle.float32)
564 565
          pool_out = F.max_pool1d(data, kernel_size=2, stride=2, padding=0)
          # pool_out shape: [1, 3, 16]
566
          pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
567
          # pool_out shape: [1, 3, 16],  indices shape: [1, 3, 16]
568
    """
569 570
    """NCL to NCHW"""
    data_format = "NCHW"
Z
zhiboniu 已提交
571
    if not in_dynamic_mode():
572
        check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool1d')
573 574 575
    _check_input(x, 3)
    x = unsqueeze(x, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
576 577 578
    if stride is None:
        stride = kernel_size
    else:
579
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
580

581 582 583
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    1,
                                                    ceil_mode=ceil_mode)
584

585 586
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)
587

F
From00 已提交
588 589
    if in_dygraph_mode():
        if return_mask:
590 591
            pool_out = _C_ops.max_pool2d_with_index(x, kernel_size, stride,
                                                    padding, False, False)
F
From00 已提交
592
            return (squeeze(pool_out[0], [2]),
593 594
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
F
From00 已提交
595
        else:
596 597 598
            pool_out = _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                     True, data_format, 'max', False, False,
                                     padding_algorithm)
F
From00 已提交
599 600 601
            return squeeze(pool_out, [2])

    if _in_legacy_dygraph():
602
        if return_mask:
603
            pool_out = _legacy_C_ops.max_pool2d_with_index(
D
Double_V 已提交
604 605 606 607 608
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
609
            return (squeeze(pool_out[0], [2]),
610 611
                    squeeze(pool_out[1], [2])) if return_mask else squeeze(
                        pool_out[0], [2])
D
Double_V 已提交
612
        else:
613 614 615 616 617 618
            pool_out = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
619 620
            return squeeze(pool_out, [2])

621
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
622
    helper = LayerHelper(op_type, **locals())
623
    dtype = helper.input_dtype(input_param_name='x')
624
    pool_out = helper.create_variable_for_type_inference(dtype)
625
    mask = helper.create_variable_for_type_inference('int32')
626 627
    outputs = {"Out": pool_out, "Mask": mask}

628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
644

645
    return (squeeze(pool_out, [2]),
646
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
647 648


649 650 651 652
def _unpool_output_size(x, kernel_size, stride, padding, output_size):
    input_size = x.shape
    default_size = []
    for d in range(len(kernel_size)):
653 654
        default_size.append((input_size[-len(kernel_size) + d] - 1) *
                            stride[d] + kernel_size[d] - 2 * padding[d])
655 656

    has_static_var = False
657 658
    if output_size is None:
        ret = default_size
659 660 661 662 663 664 665 666 667
    elif utils._contain_var(output_size):
        if not _non_static_mode():
            has_static_var = True
            output_size = utils._convert_to_tensor_list(output_size)
        else:
            for i, var in enumerate(output_size):
                if isinstance(var, Variable):
                    output_size[i] = var.numpy()[0]
        ret = output_size
668 669 670 671 672 673 674
    else:
        if len(output_size) == len(kernel_size) + 2:
            output_size = output_size[2:]
        if len(output_size) != len(kernel_size):
            raise ValueError(
                "output_size should be a sequence containing "
                "{} or {} elements, but it has a length of '{}'".format(
675 676
                    len(kernel_size),
                    len(kernel_size) + 2, len(output_size)))
677 678 679 680 681 682 683 684
        if not has_static_var:
            for d in range(len(kernel_size)):
                min_size = default_size[d] - stride[d]
                max_size = default_size[d] + stride[d]
                if not (min_size < output_size[d] < max_size):
                    raise ValueError(
                        'invalid output_size "{}" (dim {} must be between {} and {})'
                        .format(output_size, d, min_size, max_size))
685 686 687 688 689

        ret = output_size
    return ret


690 691 692 693 694 695 696 697
def max_unpool1d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCL",
                 output_size=None,
                 name=None):
698
    r"""
699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
    This API implements max unpooling 1d opereation.
    `max_unpool1d` accepts the output of `max_pool1d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, L_{in})`
    - Output: :math:`(N, C, L_{out})`, where
    
    .. math::
        L_{out} = (L_{in} - 1) * stride - 2 * padding + kernel\_size

    or as given by :attr:`output_size` in the call operator.


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"`, 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling1d which is a 3-D tensor with
                          shape [N, C, L]. The format of input tensor is `"NCL"` , 
                          where `N` is batch size, `C` is the number of channels, `L` is
                          the length of the featuree. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCL"`. When it is `"NCL"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_length]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 3, 16])
            pool_out, indices = F.max_pool1d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 3, 8],  indices shape: [1, 3, 8]
            unpool_out = F.max_unpool1d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 3, 16]

    """
    """NCL to NCHW"""
    if data_format not in ["NCL"]:
        raise ValueError("Attr(data_format) should be 'NCL'. Received "
                         "Attr(data_format): %s." % str(data_format))
    data_format = "NCHW"
    x = unsqueeze(x, [2])
    indices = unsqueeze(indices, [2])
    kernel_size = [1] + utils.convert_to_list(kernel_size, 1, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = [1] + utils.convert_to_list(stride, 1, 'pool_stride')
    padding, padding_algorithm = _update_padding_nd(padding, 1)
    # use 2d to implenment 1d should expand padding in advance.
    padding = _expand_low_nd_padding(padding)

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
772
    if in_dygraph_mode():
773 774
        output = _C_ops.unpool(x, indices, kernel_size, stride, padding,
                               output_size, data_format)
X
xiaoting 已提交
775 776
        return squeeze(output, [2])
    elif in_dynamic_mode():
777 778 779 780
        output = _legacy_C_ops.unpool(x, indices, 'unpooling_type', 'max',
                                      'ksize', kernel_size, 'strides', stride,
                                      'paddings', padding, "output_size",
                                      output_size, "data_format", data_format)
781 782 783 784 785 786 787
        return squeeze(output, [2])

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

788 789 790 791 792 793 794 795 796 797 798 799 800
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
801 802 803
    return squeeze(unpool_out, [2])


804 805 806 807 808 809 810 811
def max_unpool2d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCHW",
                 output_size=None,
                 name=None):
812
    r"""
813
    This API implements max unpooling 2d opereation.
814
    See more details in :ref:`api_nn_pooling_MaxUnPool2D` .
815

816 817

    Args:
818 819 820
        x (Tensor): The input tensor of unpooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"`, 
                          where `N` is batch size, `C` is the number of channels,
821 822
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
823 824 825 826 827 828 829 830 831 832 833 834 835
        indices (Tensor): The indices given out by maxpooling2d which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` , 
                          where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, padding).
836 837 838
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
839

840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862

        - Input: :math:`(N, C, H_{in}, W_{in})`
        - Output: :math:`(N, C, H_{out}, W_{out})`, where

          .. math::
            H_{out} = (H_{in} - 1) \times \text{stride[0]} - 2 \times \text{padding[0]} + \text{kernel\_size[0]}

          .. math::
            W_{out} = (W_{in} - 1) \times \text{stride[1]} - 2 \times \text{padding[1]} + \text{kernel\_size[1]}

          or as given by :attr:`output_size` in the call operator

        Returns:
            Tensor: The output tensor of unpooling result. 

        Raises:
            ValueError: If the input is not a 4-D tensor.
            ValueError: If indeces shape is not equal input shape.
            

        Examples:
            .. code-block:: python
          
C
Chen Long 已提交
863 864
            import paddle
            import paddle.nn.functional as F
865

866
            data = paddle.rand(shape=[1,1,6,6])
867 868 869 870 871 872 873 874 875
            pool_out, indices = F.max_pool2d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 3, 3],  indices shape: [1, 1, 3, 3]
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 6, 6]

            # specify a different output size than input size 
            unpool_out = F.max_unpool2d(pool_out, indices, kernel_size=2, padding=0, output_size=[7,7])
            # unpool_out shape: [1, 1, 7, 7] 

876 877
    """
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
878 879 880 881 882 883 884 885 886 887 888 889 890
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')
    padding = utils.convert_to_list(padding, 2, 'padding')

    if data_format not in ["NCHW"]:
        raise ValueError("Attr(data_format) should be 'NCHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
891
    if in_dygraph_mode():
892 893
        output = _C_ops.unpool(x, indices, kernel_size, stride, padding,
                               output_size, data_format)
894
        return output
X
xiaoting 已提交
895
    elif in_dynamic_mode():
896 897 898 899
        output = _legacy_C_ops.unpool(x, indices, 'unpooling_type', 'max',
                                      'ksize', kernel_size, 'strides', stride,
                                      'paddings', padding, "output_size",
                                      output_size, "data_format", data_format)
900 901 902 903 904 905 906
        return output

    op_type = "unpool"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

907 908 909 910 911 912 913 914 915 916 917 918 919
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
920 921 922
    return unpool_out


923 924 925 926 927 928 929 930
def max_unpool3d(x,
                 indices,
                 kernel_size,
                 stride=None,
                 padding=0,
                 data_format="NCDHW",
                 output_size=None,
                 name=None):
931
    r"""
932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007
    This API implements max unpooling 3d opereation.
    `max_unpool3d` accepts the output of `max_pool3d` as input, 
    including the indices of the maximum value and calculate the partial inverse. 
    All non-maximum values ​​are set to zero.

    - Input: :math:`(N, C, D_{in}, H_{in}, W_{in})`
    - Output: :math:`(N, C, D_{out}, H_{out}, W_{out})`, where
    
    .. math::
        D_{out} = (D_{in} - 1) * stride[0] - 2 * padding[0] + kernel\_size[0]

    .. math::
        H_{out} = (H_{in} - 1) * stride[1] - 2 * padding[1] + kernel\_size[1]

    .. math::
        W_{out} = (W_{in} - 1) * stride[2] - 2 * padding[2] + kernel\_size[2]

    or as given by :attr:`output_size` in the call operator


    Args:
        x (Tensor): The input tensor of unpooling operator which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"`, 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        indices (Tensor): The indices given out by maxpooling3d which is a 5-D tensor with
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` , 
                          where `N` is batch size, `C` is the number of channels, `D` is
                          the depth of the feature, `H` is the height of the feature, 
                          and `W` is the width of the feature. The data type is float32 or float64.
        kernel_size (int|list|tuple): The unpool kernel size. If unpool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The unpool stride size. If unpool stride size is a tuple or list,
            it must contain an integer.
        padding (int | tuple): Padding that was added to the input.
        output_size(list|tuple, optional): The target output size. If output_size is not specified, 
                           the actual output shape will be automatically calculated by (input_shape,
                           kernel_size, stride, padding).
        data_format (string): The data format of the input and output data.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        Tensor: The output tensor of unpooling result. 

    Examples:
        .. code-block:: python
        
            import paddle
            import paddle.nn.functional as F

            data = paddle.rand(shape=[1, 1, 4, 4, 6])
            pool_out, indices = F.max_pool3d(data, kernel_size=2, stride=2, padding=0, return_mask=True)
            # pool_out shape: [1, 1, 2, 2, 3],  indices shape: [1, 1, 2, 2, 3]
            unpool_out = F.max_unpool3d(pool_out, indices, kernel_size=2, padding=0)
            # unpool_out shape: [1, 1, 4, 4, 6]

    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')
    padding = utils.convert_to_list(padding, 3, 'padding')

    if data_format not in ["NCDHW"]:
        raise ValueError("Attr(data_format) should be 'NCDHW'. Received "
                         "Attr(data_format): %s." % str(data_format))

    output_size = _unpool_output_size(x, kernel_size, stride, padding,
                                      output_size)

X
xiaoting 已提交
1008
    if in_dygraph_mode():
1009 1010
        output = _C_ops.unpool3d(x, indices, kernel_size, stride, padding,
                                 output_size, data_format)
1011
        return output
X
xiaoting 已提交
1012
    elif in_dynamic_mode():
1013 1014 1015 1016
        output = _legacy_C_ops.unpool3d(x, indices, 'unpooling_type', 'max',
                                        'ksize', kernel_size, 'strides', stride,
                                        'paddings', padding, "output_size",
                                        output_size, "data_format", data_format)
1017 1018 1019 1020 1021 1022 1023
        return output

    op_type = "unpool3d"
    helper = LayerHelper(op_type, **locals())
    dtype = helper.input_dtype(input_param_name="x")
    unpool_out = helper.create_variable_for_type_inference(dtype)

1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036
    helper.append_op(type=op_type,
                     inputs={
                         "X": x,
                         "Indices": indices
                     },
                     outputs={"Out": unpool_out},
                     attrs={
                         "unpooling_type": "max",
                         "ksize": kernel_size,
                         "strides": stride,
                         "paddings": padding,
                         "output_size": output_size
                     })
1037 1038 1039
    return unpool_out


1040 1041 1042 1043 1044 1045 1046 1047
def max_pool2d(x,
               kernel_size,
               stride=None,
               padding=0,
               return_mask=False,
               ceil_mode=False,
               data_format="NCHW",
               name=None):
W
Wei Shengyu 已提交
1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
    """
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool2d` .
    Args:
        x (Tensor): The input tensor of pooling operator which is a 4-D tensor with
                          shape [N, C, H, W]. The format of input tensor is `"NCHW"` or
                          `"NHWC"`, where `N` is batch size, `C` is the number of channels,
                          `H` is the height of the feature, and `W` is the width of the
                          feature. The data type if float32 or float64.
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (stride_Height, stride_Width).
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
        return_mask (bool): Whether to return the max indices along with the outputs. Default False, only support `"NCHW"` data format
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NHWC"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.

   Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.

    Examples:
        .. code-block:: python
            import paddle
            import paddle.nn.functional as F
            import numpy as np

            # max pool2d
            x = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
            out = F.max_pool2d(x,
                                  kernel_size=2,
                                  stride=2, padding=0)
            # output.shape [1, 3, 16, 16]
            # for return_mask=True
            out, max_indices = F.max_pool2d(x,
                                               kernel_size=2,
                                               stride=2,
                                               padding=0,
                                               return_mask=True)
            # out.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
    """
1106
    kernel_size = utils.convert_to_list(kernel_size, 2, 'pool_size')
1107 1108 1109 1110 1111 1112 1113 1114 1115
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 2, 'pool_stride')

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))
1116 1117 1118

    channel_last = True if data_format == "NHWC" else False

1119 1120 1121 1122
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    num_dims=2,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1123

1124
    if data_format == "NHWC" and return_mask:
D
Double_V 已提交
1125
        raise ValueError(
1126
            "When setting return_mask to true, data_format must be set to NCHW in API:max_pool2d"
D
Double_V 已提交
1127 1128
        )

F
From00 已提交
1129 1130
    if in_dygraph_mode():
        if return_mask:
1131 1132
            output = _C_ops.max_pool2d_with_index(x, kernel_size, stride,
                                                  padding, False, False)
F
From00 已提交
1133 1134
            return output if return_mask else output[0]
        else:
1135 1136 1137
            return _C_ops.pool2d(x, kernel_size, stride, padding, ceil_mode,
                                 True, data_format, 'max', False, False,
                                 padding_algorithm)
F
From00 已提交
1138 1139

    if _in_legacy_dygraph():
1140
        if return_mask:
1141
            output = _legacy_C_ops.max_pool2d_with_index(
D
Double_V 已提交
1142 1143 1144 1145 1146
                x, 'ksize', kernel_size, 'global_pooling', False, 'strides',
                stride, 'paddings', padding, 'padding_algorithm',
                padding_algorithm, 'use_cudnn', True, 'ceil_mode', ceil_mode,
                'use_mkldnn', False, 'exclusive', True, 'data_format',
                data_format)
1147
            return output if return_mask else output[0]
D
Double_V 已提交
1148
        else:
1149 1150 1151 1152 1153 1154
            output = _legacy_C_ops.pool2d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
1155
            return output
1156

1157
    op_type = 'max_pool2d_with_index' if return_mask else "pool2d"
1158
    helper = LayerHelper(op_type, **locals())
1159 1160
    check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                             'max_pool2d')
1161
    dtype = helper.input_dtype(input_param_name='x')
1162
    pool_out = helper.create_variable_for_type_inference(dtype)
1163
    mask = helper.create_variable_for_type_inference("int32")
1164
    outputs = {"Out": pool_out, "Mask": mask}
1165

1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": True,
                         "data_format": data_format,
                     })
1182

1183
    return (pool_out, mask) if return_mask else pool_out
1184 1185 1186 1187 1188 1189


def max_pool3d(x,
               kernel_size,
               stride=None,
               padding=0,
1190
               return_mask=False,
1191 1192 1193 1194
               ceil_mode=False,
               data_format="NCDHW",
               name=None):
    """
1195 1196
    This API implements max pooling 2d operation.
    See more details in :ref:`api_nn_pooling_MaxPool3d` .
1197 1198
    Args:
        x (Tensor): The input tensor of pooling operator, which is a 5-D tensor with
D
Double_V 已提交
1199
                          shape [N, C, D, H, W]. The format of input tensor is `"NCDHW"` or `"NDHWC"`, where N represents batch size, C represents the number of channels, D, H and W represent the depth, height and width of the feature respectively.
1200
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
1201
            is a tuple or list, it must contain three integers,
1202
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
1203
            Otherwise, the pool kernel size will be the cube of an int.
1204 1205
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
1206
            Otherwise, the pool stride size will be a cube of an int.
1207 1208 1209 1210 1211 1212 1213
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
1214
        ceil_mode (bool): ${ceil_mode_comment}
1215
        return_mask (bool): Whether to return the max indices along with the outputs. Default False. Only support "NDCHW" data_format.
1216 1217 1218 1219 1220 1221
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
C
Chen Long 已提交
1222
    
1223 1224
    Returns:
        Tensor: The output tensor of pooling result. The data type is same as input tensor.
C
Chen Long 已提交
1225
    
1226 1227 1228 1229
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
C
Chen Long 已提交
1230
    
1231 1232
    Examples:
        .. code-block:: python
1233

C
Chen Long 已提交
1234 1235
            import paddle
            import paddle.nn.functional as F
1236

C
Chen Long 已提交
1237
            # max pool3d
1238 1239
            x = paddle.uniform([1, 3, 32, 32, 32])
            output = F.max_pool3d(x,
C
Chen Long 已提交
1240 1241
                                  kernel_size=2,
                                  stride=2, padding=0)
1242
            # output.shape [1, 3, 16, 16, 16]
C
Chen Long 已提交
1243
            # for return_mask=True
1244
            x = paddle.uniform([1, 3, 32, 32, 32])
C
Chen Long 已提交
1245 1246 1247 1248 1249
            output, max_indices = paddle.nn.functional.max_pool3d(x,
                                          kernel_size = 2,
                                          stride = 2,
                                          padding=0,
                                          return_mask=True)
1250
            # output.shape [1, 3, 16, 16, 16], max_indices.shape [1, 3, 16, 16, 16]
1251 1252 1253 1254 1255 1256 1257
    """
    kernel_size = utils.convert_to_list(kernel_size, 3, 'pool_size')
    if stride is None:
        stride = kernel_size
    else:
        stride = utils.convert_to_list(stride, 3, 'pool_stride')

1258
    channel_last = _channel_last(data_format, 3)
1259

1260 1261 1262 1263
    padding, padding_algorithm = _update_padding_nd(padding,
                                                    3,
                                                    channel_last=channel_last,
                                                    ceil_mode=ceil_mode)
1264

1265
    if data_format == "NDHWC" and return_mask:
D
Double_V 已提交
1266
        raise ValueError(
1267
            "When setting return_mask to true, data_format must be set to NCDHW in API:max_pool3d"
D
Double_V 已提交
1268 1269
        )

F
From00 已提交
1270 1271
    if in_dygraph_mode():
        if return_mask:
1272 1273
            output = _C_ops.max_pool3d_with_index(x, kernel_size, stride,
                                                  padding, False, False)
F
From00 已提交
1274 1275
            return output if return_mask else output[0]
        else:
1276 1277 1278
            return _C_ops.pool3d(x, kernel_size, stride, padding, ceil_mode,
                                 True, data_format, 'max', False, False,
                                 padding_algorithm)
F
From00 已提交
1279 1280

    if _in_legacy_dygraph():
1281
        if return_mask:
1282
            output = _legacy_C_ops.max_pool3d_with_index(
D
Double_V 已提交
1283 1284 1285 1286 1287
                x, 'pooling_type', 'max', 'ksize', kernel_size, 'strides',
                stride, 'paddings', padding, 'global_pooling', False,
                'padding_algorithm', padding_algorithm, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
1288
            return output if return_mask else output[0]
D
Double_V 已提交
1289
        else:
1290 1291 1292 1293 1294 1295
            output = _legacy_C_ops.pool3d(
                x, 'pooling_type', 'max', 'ksize', kernel_size,
                'global_pooling', False, 'padding_algorithm', padding_algorithm,
                'strides', stride, 'paddings', padding, 'use_cudnn', True,
                'ceil_mode', ceil_mode, 'use_mkldnn', False, 'exclusive', True,
                'data_format', data_format)
D
Double_V 已提交
1296
            return output
1297

1298
    op_type = "max_pool3d_with_index" if return_mask else "pool3d"
1299
    helper = LayerHelper(op_type, **locals())
1300
    check_variable_and_dtype(x, 'x', ['float32', 'float64'], 'max_pool3d')
1301
    dtype = helper.input_dtype(input_param_name='x')
1302
    pool_out = helper.create_variable_for_type_inference(dtype)
1303
    mask = helper.create_variable_for_type_inference('int32')
1304 1305
    outputs = {"Out": pool_out, "Mask": mask}

1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321
    helper.append_op(type=op_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": kernel_size,
                         "global_pooling": False,
                         "strides": stride,
                         "paddings": padding,
                         "padding_algorithm": padding_algorithm,
                         "use_cudnn": True,
                         "ceil_mode": ceil_mode,
                         "use_mkldnn": False,
                         "exclusive": False,
                         "data_format": data_format,
                     })
1322

1323
    return (pool_out, mask) if return_mask else pool_out
1324 1325


1326
def adaptive_avg_pool1d(x, output_size, name=None):
1327
    """
1328 1329 1330 1331
    Adaptive average pooling 1d operation on :attr:`x` according to :attr:`output_size`. 
    
    Notes:
        See more details in :ref:`api_nn_pooling_AdaptiveAvgPool1d` .
D
Double_V 已提交
1332

1333
    Args:
1334 1335 1336
        x (Tensor): The input Tensor of pooling, which is a 3-D tensor with shape :math:`[N, C, L]`, where :math:`N` is batch size, :math:`C` is the number of channels and :math:`L` is the length of the feature. The data type is float32 or float64.
        output_size (int): The target output size. Its data type must be int.
        name (str, optional): For details, please refer to :ref:`api_guide_Name`. Generally, no setting is required. Default: None.
1337
    
1338
    Returns:
1339
        Tensor: The result of 1D adaptive average pooling. Its data type is same as input.
1340
    
1341 1342
    Examples:
        .. code-block:: python
1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361

            # average adaptive pool1d
            # suppose input data in shape of [N, C, L], `output_size` is m or [m],
            # output shape is [N, C, m], adaptive pool divide L dimension
            # of input data into m grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         lstart = floor(i * L / m)
            #         lend = ceil((i + 1) * L / m)
            #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
            #
            import paddle
            import paddle.nn.functional as F

            data = paddle.uniform([1, 3, 32])
            pool_out = F.adaptive_avg_pool1d(data, output_size=16)
            # pool_out shape: [1, 3, 16])
1362 1363
    """
    pool_type = 'avg'
Z
zhiboniu 已提交
1364
    if not in_dynamic_mode():
1365 1366 1367
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
                                 'adaptive_pool2d')
        check_type(output_size, 'pool_size', (int), 'adaptive_pool1d')
1368 1369
    _check_input(x, 3)
    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')
1370

1371
    x = unsqueeze(x, [2])
Z
zhiboniu 已提交
1372
    if in_dynamic_mode():
1373 1374
        pool_out = _legacy_C_ops.pool2d(x, 'pooling_type', pool_type, 'ksize',
                                        pool_size, 'adaptive', True)
1375
        return squeeze(pool_out, [2])
1376

1377 1378
    l_type = "pool2d"

1379
    helper = LayerHelper(l_type, **locals())
1380
    dtype = helper.input_dtype(input_param_name='x')
1381 1382
    pool_out = helper.create_variable_for_type_inference(dtype)

1383
    outputs = {"Out": pool_out}
1384 1385 1386 1387 1388 1389 1390 1391
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1392

1393
    return squeeze(pool_out, [2])
1394 1395


1396 1397
def adaptive_avg_pool2d(x, output_size, data_format='NCHW', name=None):
    """
1398 1399 1400 1401 1402 1403 1404 1405 1406 1407
    Applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
    
    For avg adaptive pool2d:
    ..  math::
        hstart &= floor(i * H_{in} / H_{out})
        hend &= ceil((i + 1) * H_{in} / H_{out})
        wstart &= floor(j * W_{in} / W_{out})
        wend &= ceil((j + 1) * W_{in} / W_{out})
        Output(i ,j) &= \frac{\sum Input[hstart:hend, wstart:wend]}{(hend - hstart) * (wend - wstart)}
1408 1409 1410

    Args:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor.
1411
                          The data type can be float32 or float64.
1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool2d result. The data type is same as input tensor.
1423

1424 1425
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1426

1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443
            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
1444

1445 1446 1447
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
1448
            out = paddle.nn.functional.adaptive_avg_pool2d(
1449 1450
                            x = x,
                            output_size=[3, 3])
1451
            # out.shape is [2, 3, 3, 3]
1452
    """
Z
zhiboniu 已提交
1453
    if not in_dynamic_mode():
1454
        check_variable_and_dtype(x, 'x', ['float16', 'float32', 'float64'],
1455
                                 'adaptive_avg_pool2d')
1456
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool2d')
1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470

    if data_format not in ["NCHW", "NHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCHW' or 'NHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCHW":
        in_h, in_w = x.shape[2:4]
    else:
        in_h, in_w = x.shape[1:3]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1471
        output_size = list(output_size)
1472 1473 1474 1475 1476
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w

F
From00 已提交
1477
    if in_dygraph_mode():
1478 1479 1480
        return _C_ops.pool2d_gpudnn_unused(x, output_size, [1, 1], [0, 0],
                                           False, True, data_format, 'avg',
                                           False, True, "EXPLICIT")
F
From00 已提交
1481 1482

    if _in_legacy_dygraph():
1483 1484 1485 1486
        return _legacy_C_ops.pool2d(x, 'pooling_type', 'avg', 'ksize',
                                    output_size, 'global_pooling', False,
                                    'adaptive', True, 'data_format',
                                    data_format)
1487 1488 1489 1490

    l_type = 'pool2d'

    helper = LayerHelper(l_type, **locals())
1491
    dtype = helper.input_dtype(input_param_name='x')
1492 1493 1494 1495
    pool_out = helper.create_variable_for_type_inference(dtype)

    outputs = {"Out": pool_out}

1496 1497 1498 1499 1500 1501 1502 1503 1504
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1505 1506 1507 1508 1509 1510

    return pool_out


def adaptive_avg_pool3d(x, output_size, data_format='NCDHW', name=None):
    """
1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.
    
    For avg adaptive pool3d:
    ..  math::
        dstart &= floor(i * D_{in} / D_{out})
        dend &= ceil((i + 1) * D_{in} / D_{out})
        hstart &= floor(j * H_{in} / H_{out})
        hend &= ceil((j + 1) * H_{in} / H_{out})
        wstart &= floor(k * W_{in} / W_{out})
        wend &= ceil((k + 1) * W_{in} / W_{out})
        Output(i ,j, k) &= \frac{\sum Input[dstart:dend, hstart:hend, wstart:wend]}
            {(dend - dstart) * (hend - hstart) * (wend - wstart)}
1524 1525 1526

    Args:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor.
1527
                          The data type can be float32, float64.
1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        Tensor: The output tensor of avg adaptive pool3d result. The data type is same as input tensor.
1539

1540 1541
    Examples:
        .. code-block:: python
B
Bai Yifan 已提交
1542

1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561
            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
1562 1563

            input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
1564
            out = paddle.nn.functional.adaptive_avg_pool3d(
1565
                            x = input_data,
1566
                            output_size=[3, 3, 3])
1567
            # out.shape is [2, 3, 3, 3, 3]
1568
    """
Z
zhiboniu 已提交
1569
    if not in_dynamic_mode():
1570 1571
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_avg_pool3d')
1572
        check_type(data_format, 'data_format', str, 'adaptive_avg_pool3d')
1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586

    if data_format not in ["NCDHW", "NDHWC"]:
        raise ValueError(
            "Attr(data_format) should be 'NCDHW' or 'NDHWC'. Received "
            "Attr(data_format): %s." % str(data_format))

    if data_format == "NCDHW":
        in_l, in_h, in_w = x.shape[2:5]
    else:
        in_l, in_h, in_w = x.shape[1:4]

    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1587
        output_size = list(output_size)
1588 1589 1590 1591 1592 1593 1594
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
1595
    if in_dynamic_mode():
1596 1597 1598 1599
        return _legacy_C_ops.pool3d(x, 'pooling_type', 'avg', 'ksize',
                                    output_size, 'global_pooling', False,
                                    'adaptive', True, 'data_format',
                                    data_format)
1600 1601 1602 1603

    l_type = 'pool3d'

    helper = LayerHelper(l_type, **locals())
1604
    dtype = helper.input_dtype(input_param_name='x')
1605 1606 1607
    pool_out = helper.create_variable_for_type_inference(dtype)
    outputs = {"Out": pool_out}

1608 1609 1610 1611 1612 1613 1614 1615 1616
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": "avg",
                         "ksize": output_size,
                         "adaptive": True,
                         "data_format": data_format,
                     })
1617 1618

    return pool_out
1619 1620


1621
def adaptive_max_pool1d(x, output_size, return_mask=False, name=None):
1622 1623 1624 1625 1626 1627 1628 1629 1630
    """
    This API implements adaptive max pooling 1d operation.
    See more details in :ref:`api_nn_pooling_AdaptiveMaxPool1d` .

    Args:
        x (Tensor): The input tensor of pooling operator, which is a 3-D tensor
                              with shape [N, C, L].  The format of input tensor is NCL,
                              where N is batch size, C is the number of channels, L is the
                              length of the feature. The data type is float32 or float64.
1631
        output_size (int): The pool kernel size. The value should be an integer.
1632
        return_mask (bool): If true, the index of max pooling point will be returned along
1633 1634 1635 1636 1637 1638 1639 1640
                with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                                 to :ref:`api_guide_Name`. Usually name is no need to set and
                                 None by default.
    Returns:
            Tensor: The output tensor of adaptive pooling result. The data type is same
                      as input tensor.
    Raises:
1641
            ValueError: 'output_size' should be an integer.
1642 1643
    Examples:
        .. code-block:: python
1644

1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658
              # max adaptive pool1d
              # suppose input data in shape of [N, C, L], `output_size` is m or [m],
              # output shape is [N, C, m], adaptive pool divide L dimension
              # of input data into m grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         lstart = floor(i * L / m)
              #         lend = ceil((i + 1) * L / m)
              #         output[:, :, i] = max(input[:, :, lstart: lend])
              #
              import paddle
              import paddle.nn.functional as F
1659

1660
              data = paddle.uniform([1, 3, 32], paddle.float32)
1661 1662
              pool_out = F.adaptive_max_pool1d(data, output_size=16)
              # pool_out shape: [1, 3, 16])
1663
              pool_out, indices = F.adaptive_max_pool1d(data, output_size=16, return_mask=True)
1664 1665 1666
              # pool_out shape: [1, 3, 16] indices  shape: [1, 3, 16]
    """
    pool_type = 'max'
Z
zhiboniu 已提交
1667
    if not in_dynamic_mode():
1668 1669 1670 1671
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool1d')
        check_type(output_size, 'pool_size', int, 'adaptive_max_pool1d')
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool1d')
1672 1673 1674 1675 1676
    _check_input(x, 3)

    pool_size = [1] + utils.convert_to_list(output_size, 1, 'pool_size')

    x = unsqueeze(x, [2])
1677
    if in_dygraph_mode():
1678 1679
        pool_out = _C_ops.max_pool2d_with_index(x, pool_size, [1, 1], [0, 0],
                                                False, True)
1680 1681 1682
        return (squeeze(pool_out[0], [2]), squeeze(
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
    if _in_legacy_dygraph():
1683 1684 1685 1686
        pool_out = _legacy_C_ops.max_pool2d_with_index(x, 'pooling_type',
                                                       pool_type, 'ksize',
                                                       pool_size, 'adaptive',
                                                       True)
1687
        return (squeeze(pool_out[0], [2]), squeeze(
1688
            pool_out[1], [2])) if return_mask else squeeze(pool_out[0], [2])
1689

1690 1691
    l_type = 'max_pool2d_with_index'

1692
    helper = LayerHelper(l_type, **locals())
1693
    dtype = helper.input_dtype(input_param_name='x')
1694 1695
    pool_out = helper.create_variable_for_type_inference(dtype)

1696
    mask = helper.create_variable_for_type_inference('int32')
1697 1698
    outputs = {"Out": pool_out, "Mask": mask}

1699 1700 1701 1702 1703 1704 1705 1706
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": pool_type,
                         "ksize": pool_size,
                         "adaptive": True,
                     })
1707 1708

    return (squeeze(pool_out, [2]),
1709
            squeeze(mask, [2])) if return_mask else squeeze(pool_out, [2])
1710 1711


1712
def adaptive_max_pool2d(x, output_size, return_mask=False, name=None):
1713 1714 1715
    """
        This operation applies a 2D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool2d` .
1716

1717 1718 1719
        Args:
            x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float16, float32, float64, int32 or int64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two elements, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
1720
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1721
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1722

1723 1724
        Returns:
            Tensor: The output tensor of adaptive max pool2d result. The data type is same as input tensor.
1725

1726 1727
        Examples:
            .. code-block:: python
1728

1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744
              # max adaptive pool2d
              # suppose input data in the shape of [N, C, H, W], `output_size` is [m, n]
              # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(m):
              #         for j in range(n):
              #             hstart = floor(i * H / m)
              #             hend = ceil((i + 1) * H / m)
              #             wstart = floor(i * W / n)
              #             wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
              #
              import paddle
1745

1746
              input_data = paddle.randn(shape=(2, 3, 32, 32))
1747
              out = paddle.nn.functional.adaptive_max_pool2d(
1748
                            x = input_data,
1749 1750 1751
                            output_size=[3, 3])
              # out.shape is [2, 3, 3, 3]
    """
Z
zhiboniu 已提交
1752
    if not in_dynamic_mode():
1753 1754
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool2d')
1755 1756
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool2d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool2d')
1757 1758 1759 1760 1761 1762
    _check_input(x, 4)

    in_h, in_w = x.shape[2:4]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 2, 'output_size')
    else:
1763
        output_size = list(output_size)
1764 1765 1766 1767
        if output_size[0] == None:
            output_size[0] = in_h
        if output_size[1] == None:
            output_size[1] = in_w
1768
    if in_dygraph_mode():
1769 1770
        pool_out = _C_ops.max_pool2d_with_index(x, output_size, [1, 1], [0, 0],
                                                False, True)
1771 1772
        return pool_out if return_mask else pool_out[0]
    if _in_legacy_dygraph():
1773 1774 1775
        pool_out = _legacy_C_ops.max_pool2d_with_index(x, 'pooling_type', 'max',
                                                       'ksize', output_size,
                                                       'adaptive', True)
1776
        return pool_out if return_mask else pool_out[0]
1777 1778 1779 1780

    l_type = 'max_pool2d_with_index'

    helper = LayerHelper(l_type, **locals())
1781
    dtype = helper.input_dtype(input_param_name='x')
1782 1783
    pool_out = helper.create_variable_for_type_inference(dtype)

1784
    mask = helper.create_variable_for_type_inference('int32')
1785 1786
    outputs = {"Out": pool_out, "Mask": mask}

1787 1788 1789 1790 1791 1792 1793 1794
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1795
    #return (pool_out, mask) if return_mask else pool_out
1796 1797 1798
    return pool_out


1799
def adaptive_max_pool3d(x, output_size, return_mask=False, name=None):
1800 1801 1802
    """
        This operation applies a 3D adaptive max pooling on input tensor.
        See more details in :ref:`api_nn_pooling_AdaptiveMaxPool3d` .
1803

1804 1805 1806
        Args:
            x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
            output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1807
            return_mask (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
1808
            name(str, optional): For detailed information, please refer to :ref:`api_guide_Name`. Usually name is no need to set and None by default.
1809

1810 1811
        Returns:
            Tensor: The output tensor of adaptive max pool3d result. The data type is same as input tensor.
1812

1813 1814
        Examples:
            .. code-block:: python
1815

1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834
              # adaptive max pool3d
              # suppose input data in the shape of [N, C, D, H, W], `output_size` is [l, m, n]
              # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
              # of input data into m*n grids averagely and performs poolings in each
              # grid to get output.
              # adaptive max pool performs calculations as follow:
              #
              #     for i in range(l):
              #         for j in range(m):
              #             for k in range(n):
              #                 dstart = floor(i * D / l)
              #                 dend = ceil((i + 1) * D / l)
              #                 hstart = floor(i * H / m)
              #                 hend = ceil((i + 1) * H / m)
              #                 wstart = floor(i * W / n)
              #                 wend = ceil((i + 1) * W / n)
              #             output[:, :, i, j, k] = max(input[:, :, dstart: dend, hstart: hend, wstart: wend])
              #
              import paddle
1835

1836
              input_data = paddle.randn(shape=(2, 3, 8, 32, 32))
1837
              out = paddle.nn.functional.adaptive_max_pool3d(
1838
                            x = input_data,
1839 1840 1841 1842
                            output_size=[3, 3, 3])
              # out.shape is [2, 3, 3, 3, 3]
    """

Z
zhiboniu 已提交
1843
    if not in_dynamic_mode():
1844 1845
        check_variable_and_dtype(x, 'x', ['float32', 'float64'],
                                 'adaptive_max_pool3d')
1846 1847
        check_type(return_mask, 'return_mask', bool, 'adaptive_max_pool3d')
        #check_type(output_size, 'pool_size', (int), 'adaptive_max_pool3d')
1848 1849 1850 1851 1852 1853
    _check_input(x, 5)

    in_l, in_h, in_w = x.shape[2:5]
    if isinstance(output_size, int):
        output_size = utils.convert_to_list(output_size, 3, 'output_size')
    else:
1854
        output_size = list(output_size)
1855 1856 1857 1858 1859 1860 1861
        if output_size[0] == None:
            output_size[0] = in_l
        if output_size[1] == None:
            output_size[1] = in_h
        if output_size[2] == None:
            output_size[2] = in_w

Z
zhiboniu 已提交
1862
    if in_dynamic_mode():
1863 1864 1865 1866 1867 1868 1869 1870
        if in_dygraph_mode():
            # By default, strides is [1,1,1] and paddings is [0, 0, 0]
            pool_out = _C_ops.max_pool3d_with_index(x, output_size, [1, 1, 1],
                                                    [0, 0, 0], False, True)
        elif _in_legacy_dygraph():
            pool_out = _legacy_C_ops.max_pool3d_with_index(
                x, 'pooling_type', 'max', 'ksize', output_size, 'adaptive',
                True)
1871
        return pool_out if return_mask else pool_out[0]
1872 1873 1874 1875

    l_type = 'max_pool3d_with_index'

    helper = LayerHelper(l_type, **locals())
1876
    dtype = helper.input_dtype(input_param_name='x')
1877 1878
    pool_out = helper.create_variable_for_type_inference(dtype)

1879
    mask = helper.create_variable_for_type_inference('int32')
1880 1881
    outputs = {"Out": pool_out, "Mask": mask}

1882 1883 1884 1885 1886 1887 1888 1889
    helper.append_op(type=l_type,
                     inputs={"X": x},
                     outputs=outputs,
                     attrs={
                         "pooling_type": 'max',
                         "ksize": output_size,
                         "adaptive": True,
                     })
1890

1891
    return (pool_out, mask) if return_mask else pool_out