io.py 60.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import six
import pickle
import numpy as np

22
import paddle
23 24 25 26
from paddle import compat as cpt
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid import backward
27
from paddle.fluid import unique_name
28 29
from paddle.fluid.dygraph import layers
from paddle.fluid.layers import nn
30
from paddle.fluid.layers.utils import _hash_with_id
31
from paddle.fluid.dygraph.base import switch_to_static_graph
J
Jiabin Yang 已提交
32
from paddle.fluid.framework import _non_static_mode
33 34 35 36 37 38 39 40
from paddle.fluid.executor import (
    _is_enable_standalone_executor,
    _is_dy2st_enable_standalone_executor,
)
from paddle.fluid.dygraph.dygraph_to_static.partial_program import (
    add_build_strategy_for,
    LazyInitialized,
)
41
from paddle import _C_ops, _legacy_C_ops
42 43 44

__all__ = ['TranslatedLayer']

45 46 47
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
48
INFER_PROPERTY_SUFFIX = '.meta'
49

50 51 52
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
53 54 55 56 57 58 59 60 61


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
62 63 64
        raise ValueError(
            "Unsupported program version: %d\n" % program_desc._version()
        )
65 66 67 68 69

    return program_desc


def _is_persistable(var_desc):
70 71 72 73 74 75
    if (
        var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var_desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var_desc.type() == core.VarDesc.VarType.READER
        or var_desc.type() == core.VarDesc.VarType.RAW
    ):
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
    for block_idx in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(block_idx)
        for op_idx in six.moves.range(block.op_size()):
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
    for block_idx in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(block_idx)
        for op_idx in six.moves.range(block.op_size()):
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


132
@switch_to_static_graph
133 134 135
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
136
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
137
    """
138
    suffix = LOADED_VAR_SUFFIX
139
    name = cpt.to_text(name)
140 141
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
142 143


144 145 146
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
147 148 149


def _append_loaded_suffix_to_var(program_desc):
150
    suffix_varname_dict = dict()
151 152 153 154
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
155
        suffix_varname_dict[new_name] = old_name
156 157 158
        var_desc.set_name(new_name)
        for block_idx in six.moves.range(program_desc.num_blocks()):
            block = program_desc.block(block_idx)
C
Chen Weihang 已提交
159
            block._rename_var(cpt.to_bytes(old_name), cpt.to_bytes(new_name))
160 161 162 163
            for op_idx in six.moves.range(block.op_size()):
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
164
    return suffix_varname_dict
165 166


167 168 169 170 171 172 173 174 175 176 177 178 179 180
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
    new_old_dict = dict()
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
181
def _rename_var_program_desc(program_desc, include=None, exclude=None):
182
    """
183 184 185 186 187 188 189 190
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
191 192 193 194 195

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
196 197 198 199 200

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
201 202 203 204
    """
    dict_rename_var_old_new = dict()
    dict_rename_var_new_old = dict()
    old_names = []
205
    # Store all old names
206 207 208 209
    for b_idx in six.moves.range(program_desc.num_blocks()):
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
210 211 212 213

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
214 215 216 217
    for b_idx in six.moves.range(program_desc.num_blocks()):
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
218 219
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
220 221 222 223 224
            should_rename = (
                (include is None or name_old in include)
                and (exclude is None or name_old not in exclude)
                and not is_double_grad_var
            )
W
WeiXin 已提交
225
            if should_rename:
226 227 228 229
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
230 231 232
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
233 234 235 236 237 238
                        temp_name
                    )
                    if (
                        name_new
                        not in old_names[:var_idx] + old_names[var_idx + 1 :]
                    ):
W
WeiXin 已提交
239 240 241
                        break
            else:
                name_new = name_old
242
            if name_old != name_new:
243 244 245
                cur_block._rename_var(
                    cpt.to_bytes(name_old), cpt.to_bytes(name_new)
                )
246 247 248 249 250 251 252 253 254 255 256 257 258 259
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
            for b_idx in six.moves.range(program_desc.num_blocks()):
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
260 261
                            name_old, dict_rename_var_old_new[name_old]
                        )
262 263 264
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
265 266
                var_name
            ]
267
            dict_rename_var_new_old[
268 269
                double_grad_rename_dict[var_name]
            ] = var_name
270 271

    # Rename on program desc
272 273 274 275 276 277
    for b_idx in six.moves.range(program_desc.num_blocks()):
        cur_block = program_desc.block(b_idx)
        for op_idx in six.moves.range(cur_block.op_size()):
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
278 279 280 281
                    if (
                        input_arg_name
                        != dict_rename_var_old_new[input_arg_name]
                    ):
282 283
                        op._rename_input(
                            input_arg_name,
284 285
                            dict_rename_var_old_new[input_arg_name],
                        )
286 287 288
                        if cur_block.has_var(cpt.to_bytes(input_arg_name)):
                            cur_block._rename_var(
                                cpt.to_bytes(input_arg_name),
289
                                cpt.to_bytes(
290 291 292
                                    dict_rename_var_old_new[input_arg_name]
                                ),
                            )
293 294
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
295 296 297 298
                    if (
                        output_arg_name
                        != dict_rename_var_old_new[output_arg_name]
                    ):
299 300
                        op._rename_output(
                            output_arg_name,
301 302
                            dict_rename_var_old_new[output_arg_name],
                        )
303 304 305
                        if cur_block.has_var(cpt.to_bytes(output_arg_name)):
                            cur_block._rename_var(
                                cpt.to_bytes(output_arg_name),
306
                                cpt.to_bytes(
307 308 309
                                    dict_rename_var_old_new[output_arg_name]
                                ),
                            )
310 311 312 313
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
        framework.Block(prog, i)
        for i in six.moves.range(prog.desc.num_blocks())
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        for j in six.moves.range(block.op_size()):
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


class _ProgramHolder(object):
    """
    Holds the execution information of a Program.

340 341
    _ProgramHolder is the execution unit of TranslatedLayer,
    if TranslatedLayer contains multiple _ProgramHolder,
342 343 344 345 346 347 348 349
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
        super(_ProgramHolder, self).__init__()

350
        # input, output, persistable, double_grads var info
351
        self._input_descs = []
352
        self._output_descs = []
353
        self._double_grad_descs = []
354
        self._persistable_names = []
355 356 357 358

        # execution scope
        self._inner_scope = core.Scope()

359 360
        # append suffix var name dict
        self._suffix_varname_dict = None
361 362 363 364
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
365 366
            self._infer_program_desc
        )
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        start_op_index = self._infer_program_desc.block(0).op_size() + 2 * len(
387 388
            self._output_descs
        )
389
        end_op_index = whole_program.desc.block(0).op_size()
390 391 392 393
        if start_op_index < end_op_index:
            return add_build_strategy_for(
                whole_program, start_op_index, end_op_index
            )
394 395 396 397 398 399 400
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

401 402 403 404 405 406 407 408
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

409 410 411 412 413 414 415 416
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

417
    @property
418 419
    def input_descs(self):
        return self._input_descs
420 421

    @property
422
    def output_descs(self):
423 424 425 426 427 428
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

429 430 431 432
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

433 434 435 436 437
    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
W
WeiXin 已提交
438 439
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
440
        rename_new_old_dict, _ = _rename_var_program_desc(
441 442
            program_desc, list_persistable_var
        )
443 444 445 446 447 448 449 450 451 452
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
        for i in six.moves.range(root_block.op_size()):
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
                feed_var_name = cpt.to_bytes(op.input('X')[0])
                root_block._remove_var(feed_var_name)
453
                self._input_descs.append(
454 455
                    root_block.find_var(cpt.to_bytes(op.output('Out')[0]))
                )
456
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
457 458
                'save_infer_model/scale_'
            ):
459 460 461 462
                ops_to_remove.append(i)
                out_var_name = cpt.to_bytes(op.output('Out')[0])
                root_block._remove_var(out_var_name)
                self._output_descs.append(
463 464
                    root_block.find_var(cpt.to_bytes(op.input('X')[0]))
                )
465 466 467 468 469 470 471
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
                fetch_var_name = cpt.to_bytes(op.output('Out')[0])
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
472 473
                        root_block.find_var(cpt.to_bytes(op.input('X')[0]))
                    )
474 475 476 477 478 479 480
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

481 482 483 484 485 486
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

487
        # 2. Input processing, reverse feed vars
488
        self._input_descs.reverse()
489 490 491 492

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
493 494 495 496 497
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
498
        # use, multiple outputs may be associated with multiple branches.
499 500 501 502
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
503 504 505 506 507
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
508
        # - append loaded suffix to persistable vars
509
        # NOTE: [why need to append suffix to persistable vars]
510 511 512 513 514 515
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
516
        # to add the LOADED suffix to the parameters of the model loaded
517
        self._suffix_varname_dict = _get_loaded_var_new_old(
518 519
            program_desc, rename_new_old_dict
        )
520

521 522 523 524 525 526 527 528 529 530 531 532
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
533 534 535
                var = nn.scale(
                    var, 1.0, name="translated_layer/scale_{}".format(i)
                )
536 537 538 539 540 541
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
542
    def _get_train_forward_program(self, infer_program_desc):
543 544 545 546 547 548 549 550
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
551
        # rewrite a series of methods for append_backward for program_desc.
552 553
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
554 555 556 557 558 559
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
        for block_idx in six.moves.range(program.num_blocks):
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
560 561 562 563
                    if (
                        "ReserveSpace" not in op.output_names
                        or len(op.output("ReserveSpace")) == 0
                    ):
564 565
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
566 567
                                ".".join(["reserve_space", 'tmp'])
                            ),
568 569 570
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
571 572
                            stop_gradient=True,
                        )
573
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
574 575 576 577 578
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
579

580 581 582 583 584 585 586 587 588 589
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
590
#
591 592 593 594 595 596 597
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
598
#
599 600 601
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
602
# 1. Data Sharing:
603 604 605 606
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
607
#
608 609 610 611
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
612
#   We can not separate the program into forward and backward part, which will
613 614 615 616 617
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
618 619 620
def _load_persistable_vars_by_program(
    model_path, program_holder, params_filename=None
):
621 622 623 624
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
625
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
626 627
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
J
Jiabin Yang 已提交
628
            if framework._in_eager_without_dygraph_check():
629 630 631 632 633 634 635
                new_var = framework.EagerParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
636
            else:
637 638 639 640 641 642 643
                new_var = framework.ParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
644
        else:
645 646 647 648 649 650 651
            new_var = framework._varbase_creator(
                type=each_var.type(),
                name=each_var.name(),
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                persistable=True,
            )
652 653 654 655 656
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
657 658
                attrs={'file_path': os.path.join(model_path, orig_each_name)},
            )
659 660 661 662 663
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
664
        dict_name_old_new = {
665
            v: k for k, v in program_holder._suffix_varname_dict.items()
666 667 668
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
669 670 671 672 673

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
674 675
            attrs={'file_path': os.path.join(model_path, params_filename)},
        )
676 677 678 679 680 681 682 683

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
684
    # After loading the model, the stop_gradient information
685 686 687 688 689 690 691 692 693 694 695 696
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


697 698 699
def _load_persistable_vars(
    model_path, var_info_path, program_holder, params_filename
):
700 701
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
702
        extra_var_info = pickle.load(f)
703 704 705 706

    # 2. construct var dict
    load_var_dict = dict()
    load_var_list = []
707
    inv_suffix_varname_dict = {
708
        value: key for key, value in program_holder._suffix_varname_dict.items()
709
    }
710 711 712

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
713
    # var in `extra_var_info` may have been pruned
714 715 716 717 718
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
719 720
                name,
            )
721 722
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
723 724 725
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
J
Jiabin Yang 已提交
726
            if framework._in_eager_without_dygraph_check():
727 728 729 730 731 732
                new_var = framework.EagerParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
733 734
                    persistable=True,
                )
735 736 737 738 739 740 741
            else:
                new_var = framework.ParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
742 743
                    persistable=True,
                )
744
        else:
745 746 747
            new_var = framework._varbase_creator(
                name=new_name, persistable=True
            )
748 749 750 751 752 753

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
754 755 756 757 758 759
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
760 761 762 763 764 765
        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': var_file_path},
        )
766 767 768 769

    return load_var_dict


770 771 772 773 774 775 776 777 778
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
    no_suffix_var_dict = dict()
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


779 780 781 782 783 784 785 786
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
    program_holder_dict = dict()

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
787 788
        model_name = model_filename[: -len(INFER_MODEL_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
789 790 791 792 793
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
794 795 796 797 798
                model_name
            ):
                parsing_names = filename[
                    len(model_name) : -len(INFER_MODEL_SUFFIX) + 1
                ].split('.')
799 800 801 802 803
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
804 805 806
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
807 808
                _load_program_desc(model_file_path)
            )
809 810 811 812 813 814 815 816 817 818 819
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
820 821
                        _load_program_desc(model_file_path)
                    )
822 823 824 825

    return program_holder_dict


826 827 828
def _construct_params_and_buffers(
    model_path, programs, params_filename=None, append_suffix=True
):
829 830
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
831
    params_path = os.path.join(model_path, str(params_filename))
832

833
    if os.path.exists(var_info_path):
834 835 836 837 838
        var_dict = _load_persistable_vars(
            model_path, var_info_path, programs['forward'], params_filename
        )
        model_name = params_filename[: -len(INFER_PARAMS_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
839
        for file_name in os.listdir(model_path):
840
            if file_name.startswith(model_name) and file_name.endswith(
841 842 843 844 845
                INFER_PARAMS_SUFFIX
            ):
                parsing_names = file_name[
                    len(model_name) : -len(INFER_PARAMS_SUFFIX) + 1
                ].split('.')
846 847 848 849
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
850 851 852 853
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
854 855 856 857
                _load_persistable_vars(
                    model_path, var_info_path, programs[func_name], file_name
                )
            )
858 859 860
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
        return dict()
861
    else:
862 863 864
        var_dict = _load_persistable_vars_by_program(
            model_path, programs['forward'], params_filename
        )
865 866 867 868

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

869 870 871
    return var_dict


0
0x45f 已提交
872 873 874
def _valid_vars(vars):
    if vars:
        return vars
J
Jiabin Yang 已提交
875
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
876
        return [
877 878 879 880 881 882 883
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
0
0x45f 已提交
884 885 886
        ]
    else:
        return [
887 888 889 890 891 892 893
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
0
0x45f 已提交
894 895 896
        ]


W
WeiXin 已提交
897 898 899 900 901
def _run_dygraph(instance, input, program_holder):

    # 1. prepare inputs, outputs, attrs
    input_vars = []
    for i, value in enumerate(input):
902
        if not isinstance(value, (np.ndarray, core.VarBase, core.eager.Tensor)):
W
WeiXin 已提交
903 904
            raise TypeError(
                "The type of input in TranslatedLayer must be numpy array or Variable(VarBase), but received %s."
905 906
                % type(value)
            )
W
WeiXin 已提交
907 908
        # NOTE: In order to unify the API, firstly convert the input to VarBase
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
909
            if framework._in_eager_without_dygraph_check():
910 911 912 913 914
                var = core.eager.Tensor(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
915 916
                    zero_copy=True,
                )
917
            else:
918 919 920 921 922 923 924
                var = core.VarBase(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True,
                )
W
WeiXin 已提交
925 926
        else:
            var = value
927
            # NOTE: we changed var name here,
W
WeiXin 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
946 947
                % var_name
            )
W
WeiXin 已提交
948 949 950

    output_vars = []
    for var_desc in program_holder.output_descs:
J
Jiabin Yang 已提交
951
        if framework._in_eager_without_dygraph_check():
952 953 954 955 956 957 958
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
959
        else:
960 961 962 963 964 965 966
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
W
WeiXin 已提交
967 968 969
        output_vars.append(var)

    # hold forward variables
J
Jiabin Yang 已提交
970
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
971
        tmp_scope_vec = [program_holder.scope]
972
    else:
973 974 975 976 977 978 979
        tmp_scope_vec = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "program_out_scope",
            core.VarDesc.VarType.STEP_SCOPES,
            True,
        )
0
0x45f 已提交
980
        tmp_scope_vec.value().set_scope(program_holder.scope)
W
WeiXin 已提交
981

982 983
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
J
Jiabin Yang 已提交
984
        if framework._in_eager_without_dygraph_check():
985 986 987 988 989 990 991
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
992
        else:
993 994 995 996 997 998 999
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
1000 1001
        double_grad_vars.append(var)

W
WeiXin 已提交
1002
    # 2. run program by op
1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
    trace_program = (
        program_holder.infer_program
        if instance._is_test
        else program_holder.train_program
    )
    forward_program = (
        program_holder._infer_program_desc
        if instance._is_test
        else program_holder.forward_program
    )
W
WeiXin 已提交
1013
    end_op_index = program_holder.infer_program.block(0).op_size()
1014 1015 1016

    attrs = [
        'global_block',
1017 1018 1019 1020 1021 1022 1023 1024 1025
        trace_program.block(0),
        'start_op_index',
        0,
        'end_op_index',
        end_op_index,
        'is_test',
        instance._is_test,
        'program_id',
        _hash_with_id(trace_program, instance),
1026 1027
    ]

1028 1029 1030 1031
    use_interpretorcore = (
        _is_enable_standalone_executor()
        and _is_dy2st_enable_standalone_executor()
    )
1032 1033 1034
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
            (
                'forward_global_block',
                forward_program.block(0),
                'backward_global_block',
                program_holder.backward_program.block(0),
            )
        )

    _legacy_C_ops.run_program(
        _valid_vars(input_vars),
        _valid_vars(persistable_vars),
        _valid_vars(output_vars),
        tmp_scope_vec,
        _valid_vars(double_grad_vars),
        None,
        *attrs
    )
1052

W
WeiXin 已提交
1053 1054 1055 1056 1057 1058 1059 1060
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
    # set param grad VarBase by forward VarBase(LoDTensor)
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
1061
        grad_var_name = persistable_var.name + core.grad_var_suffix()
W
WeiXin 已提交
1062
        grad_var = trace_program.block(0).find_var(cpt.to_bytes(grad_var_name))
1063
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
1080 1081
        trace_program, exclude=param_var_names
    )
W
WeiXin 已提交
1082 1083 1084
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
1085 1086 1087 1088 1089 1090 1091
    _append_block(
        main_program,
        trace_program,
        program_holder,
        input,
        dict_rename_var_old_new,
    )
W
WeiXin 已提交
1092
    main_program._sync_with_cpp()
1093 1094 1095
    outs = _get_output_from_program(
        main_program, program_holder, dict_rename_var_old_new
    )
W
WeiXin 已提交
1096 1097 1098 1099 1100 1101 1102 1103
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
1104

W
WeiXin 已提交
1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


1123 1124 1125 1126 1127 1128 1129
def _append_block(
    dest_program,
    src_program_desc,
    program_holder,
    input_variables,
    dict_rename_var_old_new=None,
):
W
WeiXin 已提交
1130 1131
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
1132

W
WeiXin 已提交
1133 1134 1135 1136 1137
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
1138
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc',
W
WeiXin 已提交
1139 1140 1141 1142
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
1143 1144 1145 1146 1147 1148 1149 1150
    param_var_names = _collect_current_and_parent_var(
        dest_program, origin_block_idx
    )
    append_var_from_block_desc_static(
        dest_program.block(origin_block_idx),
        src_program_desc.block(0),
        exclude=param_var_names,
    )
W
WeiXin 已提交
1151 1152 1153 1154 1155

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
1156 1157 1158 1159
            "The number of input is invalid, expected {}, but received {}.".format(
                len(name_inp_desc), len(input_names)
            )
        )
W
WeiXin 已提交
1160 1161 1162 1163 1164 1165
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
1166 1167
            outputs={'Out': [out_name]},
        )
W
WeiXin 已提交
1168 1169

    append_ops = append_op_from_block_desc_static(
1170 1171
        dest_program.block(origin_block_idx), src_program_desc.block(0)
    )
W
WeiXin 已提交
1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1

    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1185 1186 1187
            append_var_from_block_desc_static(
                dest_block, src_block, exclude=param_var_names
            )
1188
            append_ops += append_op_from_block_desc_static(
1189 1190
                dest_block, src_block
            )
W
WeiXin 已提交
1191 1192 1193 1194 1195 1196 1197 1198 1199

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
1200 1201 1202
            op._set_attr(
                'sub_block', dest_program.block(offset_block_idx + origin_id)
            )
W
WeiXin 已提交
1203 1204 1205 1206
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


1207 1208 1209
def _get_output_from_program(
    program, program_holder, dict_rename_var_old_new=None
):
W
WeiXin 已提交
1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257
    """
    Get output name of 'program' according to program_holder
    """
    outs = list()
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1258 1259 1260 1261 1262 1263 1264 1265
    op = framework.Operator(
        block=block,
        desc=op_append,
        type=op_type,
        inputs=None,
        outputs=None,
        attrs=None,
    )
W
WeiXin 已提交
1266 1267 1268 1269
    block.ops.append(op)
    return op


1270 1271 1272
def append_var_from_block_desc_static(
    block, src_block_desc, include=None, exclude=None
):
W
WeiXin 已提交
1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
1291 1292
            exclude is None or var_desc_name not in exclude
        )
W
WeiXin 已提交
1293 1294 1295
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
1296 1297 1298
                core.VarDesc.VarType.SELECTED_ROWS,
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1299 1300 1301 1302 1303 1304 1305
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
1306 1307
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1308 1309 1310 1311 1312
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1313 1314 1315 1316 1317
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1318
            vars_append.append(
1319
                current_block.create_var(
W
WeiXin 已提交
1320 1321 1322 1323 1324 1325
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
1326 1327 1328
                    set_need_check_feed=var_desc.need_check_feed(),
                )
            )
W
WeiXin 已提交
1329 1330 1331
    return vars_append


1332 1333
class TranslatedLayer(layers.Layer):
    """
1334 1335
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model
    loaded by :ref:`api_paddle_jit_load` . It can be used like a
1336
    general Layer object in eval or train mode.
1337

1338
    .. note:
1339
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1340 1341 1342 1343 1344

    Examples:
        .. code-block:: python

            import numpy as np
1345 1346 1347
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1348

1349 1350 1351
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1352

1353 1354 1355 1356 1357 1358 1359
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1360

1361 1362 1363 1364
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1365

1366 1367
                def __len__(self):
                    return self.num_samples
1368

1369 1370
            class LinearNet(nn.Layer):
                def __init__(self):
1371
                    super(LinearNet, self).__init__()
1372
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1373

1374
                @paddle.jit.to_static
1375 1376 1377
                def forward(self, x):
                    return self._linear(x)

1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1389 1390
            # 1. train & save model.

1391 1392 1393 1394
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
1395

1396 1397 1398 1399 1400 1401 1402
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1403

1404 1405
            # train
            train(layer, loader, loss_fn, adam)
1406

1407
            # save
1408
            model_path = "linear.example.model"
1409
            paddle.jit.save(layer, model_path)
1410 1411

            # 2. load model as TranslatedLayer
1412 1413 1414 1415

            # load
            translated_layer = paddle.jit.load(model_path)

1416 1417
            # inference
            translated_layer.eval()
1418
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1419
            pred = translated_layer(x)
1420

1421 1422
            # fine-tune
            translated_layer.train()
1423 1424
            adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            train(translated_layer, loader, loss_fn, adam)
1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436

    """

    def __init__(self, programs, persistable_vars):
        super(TranslatedLayer, self).__init__()

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1437
                "TranslatedLayer need to use persistable variable dict for initialization."
1438 1439 1440 1441
            )

        self._program_holder_dict = programs

1442 1443 1444 1445 1446 1447 1448 1449
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
        # in the form of `self.**.**``, but the ParamBase or BarBase
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
        self._persistable_var_name_dict = dict()
1450 1451 1452
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
1453 1454 1455
                if isinstance(
                    var, (framework.ParamBase, framework.EagerParamBase)
                ):
1456 1457 1458
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
1459
                elif isinstance(var, (core.VarBase, core.eager.Tensor)):
1460 1461 1462 1463 1464 1465 1466
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1467 1468

        self._is_test = True
W
WeiXin 已提交
1469
        self._input_args_names = None
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1487
        # 2. load layer parameters & buffers
1488
        persistable_vars = _construct_params_and_buffers(
1489 1490
            model_path, programs, params_filename
        )
1491 1492 1493 1494 1495 1496

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1497 1498 1499 1500
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1501
            setattr(
1502 1503
                TranslatedLayer,
                method_name,
1504
                TranslatedLayer._execution_method_creator(
1505 1506 1507
                    method_name, program_holder
                ),
            )
1508 1509 1510 1511 1512 1513 1514 1515

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
W
WeiXin 已提交
1516 1517 1518 1519
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
J
Jiabin Yang 已提交
1520
            if _non_static_mode():
W
WeiXin 已提交
1521 1522 1523 1524 1525 1526 1527
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
1528 1529
                    core.ProgramDesc(program_holder.infer_program)
                )
W
WeiXin 已提交
1530 1531 1532 1533
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1534 1535 1536

    def train(self):
        self._is_test = False
1537
        self.training = True
1538 1539 1540

    def eval(self):
        self._is_test = True
1541
        self.training = False
1542 1543 1544 1545 1546 1547 1548 1549

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
1550

1551 1552 1553 1554 1555
        Returns:
            Program

        Examples:
            .. code-block:: python
1556

1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628
                import numpy as np
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                # define a random dataset
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples

                    def __getitem__(self, idx):
                        image = np.random.random([IMAGE_SIZE]).astype('float32')
                        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                        return image, label

                    def __len__(self):
                        return self.num_samples

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                def train(layer, loader, loss_fn, opt):
                    for epoch_id in range(EPOCH_NUM):
                        for batch_id, (image, label) in enumerate(loader()):
                            out = layer(image)
                            loss = loss_fn(out, label)
                            loss.backward()
                            opt.step()
                            opt.clear_grad()
                            print("Epoch {} batch {}: loss = {}".format(
                                epoch_id, batch_id, np.mean(loss.numpy())))

                # create network
                layer = LinearNet()
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

                # create data loader
                dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                loader = paddle.io.DataLoader(dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True,
                    drop_last=True,
                    num_workers=2)

                # train
                train(layer, loader, loss_fn, adam)

                # save
                model_path = "linear.example.model"
                paddle.jit.save(layer, model_path)

                # load
                translated_layer = paddle.jit.load(model_path)

                # get program
                program = translated_layer.program()
        """
        # 1. get program holder
1629
        program_holder = self._get_program_holder(method_name)
1630 1631 1632 1633 1634 1635 1636

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1637 1638 1639 1640 1641

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
1642 1643 1644
                "The method `%s` does not exist in loaded TranslatedLayer."
                % method_name
            )
1645 1646 1647 1648 1649 1650 1651 1652 1653
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1654 1655 1656 1657 1658
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1670 1671
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1672
            # construct the description of Output tensor
1673 1674 1675 1676 1677
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1678 1679 1680
            output_spec.append(spec)

        return output_spec