io.py 60.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import six
import pickle
import numpy as np

22
import paddle
23 24 25 26
from paddle import compat as cpt
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid import backward
27
from paddle.fluid import unique_name
28 29
from paddle.fluid.dygraph import layers
from paddle.fluid.layers import nn
30
from paddle.fluid.layers.utils import _hash_with_id
31
from paddle.fluid.dygraph.base import switch_to_static_graph
J
Jiabin Yang 已提交
32
from paddle.fluid.framework import _non_static_mode
33 34
from paddle.fluid.executor import _is_enable_standalone_executor, _is_dy2st_enable_standalone_executor
from paddle.fluid.dygraph.dygraph_to_static.partial_program import add_build_strategy_for, LazyInitialized
35
from paddle import _C_ops, _legacy_C_ops
36 37 38

__all__ = ['TranslatedLayer']

39 40 41
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
42
INFER_PROPERTY_SUFFIX = '.meta'
43

44 45 46
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
        raise ValueError("Unsupported program version: %d\n" %
                         program_desc._version())

    return program_desc


def _is_persistable(var_desc):
    if var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
            var_desc.type() == core.VarDesc.VarType.FETCH_LIST or \
            var_desc.type() == core.VarDesc.VarType.READER or \
            var_desc.type() == core.VarDesc.VarType.RAW:
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
    for block_idx in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(block_idx)
        for op_idx in six.moves.range(block.op_size()):
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
    for block_idx in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(block_idx)
        for op_idx in six.moves.range(block.op_size()):
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


123
@switch_to_static_graph
124 125 126
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
127
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
128
    """
129
    suffix = LOADED_VAR_SUFFIX
130
    name = cpt.to_text(name)
131 132
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
133 134


135 136 137
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
138 139 140


def _append_loaded_suffix_to_var(program_desc):
141
    suffix_varname_dict = dict()
142 143 144 145
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
146
        suffix_varname_dict[new_name] = old_name
147 148 149
        var_desc.set_name(new_name)
        for block_idx in six.moves.range(program_desc.num_blocks()):
            block = program_desc.block(block_idx)
C
Chen Weihang 已提交
150
            block._rename_var(cpt.to_bytes(old_name), cpt.to_bytes(new_name))
151 152 153 154
            for op_idx in six.moves.range(block.op_size()):
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
155
    return suffix_varname_dict
156 157


158 159 160 161 162 163 164 165 166 167 168 169 170 171
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
    new_old_dict = dict()
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
172
def _rename_var_program_desc(program_desc, include=None, exclude=None):
173
    """
174 175 176 177 178 179 180 181
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
182 183 184 185 186

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
187 188 189 190 191

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
192 193 194 195
    """
    dict_rename_var_old_new = dict()
    dict_rename_var_new_old = dict()
    old_names = []
196
    # Store all old names
197 198 199 200
    for b_idx in six.moves.range(program_desc.num_blocks()):
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
201 202 203 204

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
205 206 207 208
    for b_idx in six.moves.range(program_desc.num_blocks()):
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
209 210
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
W
WeiXin 已提交
211
            should_rename = (include is None or name_old in include) and (
212 213
                exclude is None
                or name_old not in exclude) and not is_double_grad_var
W
WeiXin 已提交
214
            if should_rename:
215 216 217 218
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
219 220 221 222 223 224 225 226 227
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
                        temp_name)
                    if name_new not in old_names[:var_idx] + old_names[var_idx +
                                                                       1:]:
                        break
            else:
                name_new = name_old
228
            if name_old != name_new:
229 230
                cur_block._rename_var(cpt.to_bytes(name_old),
                                      cpt.to_bytes(name_new))
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
            for b_idx in six.moves.range(program_desc.num_blocks()):
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
                            name_old, dict_rename_var_old_new[name_old])
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
                var_name]
250 251
            dict_rename_var_new_old[
                double_grad_rename_dict[var_name]] = var_name
252 253

    # Rename on program desc
254 255 256 257 258 259
    for b_idx in six.moves.range(program_desc.num_blocks()):
        cur_block = program_desc.block(b_idx)
        for op_idx in six.moves.range(cur_block.op_size()):
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
260
                    if input_arg_name != dict_rename_var_old_new[input_arg_name]:
261 262 263
                        op._rename_input(
                            input_arg_name,
                            dict_rename_var_old_new[input_arg_name])
264 265 266
                        if cur_block.has_var(cpt.to_bytes(input_arg_name)):
                            cur_block._rename_var(
                                cpt.to_bytes(input_arg_name),
267 268
                                cpt.to_bytes(
                                    dict_rename_var_old_new[input_arg_name]))
269 270 271 272 273 274 275
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
                    if output_arg_name != dict_rename_var_old_new[
                            output_arg_name]:
                        op._rename_output(
                            output_arg_name,
                            dict_rename_var_old_new[output_arg_name])
276 277 278
                        if cur_block.has_var(cpt.to_bytes(output_arg_name)):
                            cur_block._rename_var(
                                cpt.to_bytes(output_arg_name),
279 280
                                cpt.to_bytes(
                                    dict_rename_var_old_new[output_arg_name]))
281 282 283 284
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
        framework.Block(prog, i)
        for i in six.moves.range(prog.desc.num_blocks())
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
    for i in six.moves.range(program_desc.num_blocks()):
        block = program_desc.block(i)
        for j in six.moves.range(block.op_size()):
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


class _ProgramHolder(object):
    """
    Holds the execution information of a Program.

    _ProgramHolder is the execution unit of TranslatedLayer, 
    if TranslatedLayer contains multiple _ProgramHolder, 
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
        super(_ProgramHolder, self).__init__()

321
        # input, output, persistable, double_grads var info
322
        self._input_descs = []
323
        self._output_descs = []
324
        self._double_grad_descs = []
325
        self._persistable_names = []
326 327 328 329

        # execution scope
        self._inner_scope = core.Scope()

330 331
        # append suffix var name dict
        self._suffix_varname_dict = None
332 333 334 335 336 337
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
            self._infer_program_desc)

338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        start_op_index = self._infer_program_desc.block(0).op_size() + 2 * len(
            self._output_descs)
        end_op_index = whole_program.desc.block(0).op_size()
        if (start_op_index < end_op_index):
            return add_build_strategy_for(whole_program, start_op_index,
                                          end_op_index)
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

369 370 371 372 373 374 375 376
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

377 378 379 380 381 382 383 384
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

385
    @property
386 387
    def input_descs(self):
        return self._input_descs
388 389

    @property
390
    def output_descs(self):
391 392 393 394 395 396
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

397 398 399 400
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

401 402 403 404 405
    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
W
WeiXin 已提交
406 407
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
408 409
        rename_new_old_dict, _ = _rename_var_program_desc(
            program_desc, list_persistable_var)
410 411 412 413 414 415 416 417 418 419
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
        for i in six.moves.range(root_block.op_size()):
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
                feed_var_name = cpt.to_bytes(op.input('X')[0])
                root_block._remove_var(feed_var_name)
420 421
                self._input_descs.append(
                    root_block.find_var(cpt.to_bytes(op.output('Out')[0])))
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
                    'save_infer_model/scale_'):
                ops_to_remove.append(i)
                out_var_name = cpt.to_bytes(op.output('Out')[0])
                root_block._remove_var(out_var_name)
                self._output_descs.append(
                    root_block.find_var(cpt.to_bytes(op.input('X')[0])))
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
                fetch_var_name = cpt.to_bytes(op.output('Out')[0])
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
                        root_block.find_var(cpt.to_bytes(op.input('X')[0])))
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

444 445 446 447 448 449
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

450
        # 2. Input processing, reverse feed vars
451
        self._input_descs.reverse()
452 453 454 455

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
456 457 458 459 460
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
461
        # use, multiple outputs may be associated with multiple branches.
462 463 464 465
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
466 467 468 469 470
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
471
        # - append loaded suffix to persistable vars
472
        # NOTE: [why need to append suffix to persistable vars]
473 474 475 476 477 478
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
479
        # to add the LOADED suffix to the parameters of the model loaded
480 481
        self._suffix_varname_dict = _get_loaded_var_new_old(
            program_desc, rename_new_old_dict)
482

483 484 485 486 487 488 489 490 491 492 493 494
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
495 496 497
                var = nn.scale(var,
                               1.,
                               name="translated_layer/scale_{}".format(i))
498 499 500 501 502 503
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
504
    def _get_train_forward_program(self, infer_program_desc):
505 506 507 508 509 510 511 512
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
513
        # rewrite a series of methods for append_backward for program_desc.
514 515
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
        for block_idx in six.moves.range(program.num_blocks):
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
                    if "ReserveSpace" not in op.output_names or len(
                            op.output("ReserveSpace")) == 0:
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
                                ".".join(["reserve_space", 'tmp'])),
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=True)
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
532 533 534 535 536
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
537

538 539 540 541 542 543 544 545 546 547
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
548
#
549 550 551 552 553 554 555
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
556
#
557 558 559
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
560
# 1. Data Sharing:
561 562 563 564
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
565
#
566 567 568 569
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
570
#   We can not separate the program into forward and backward part, which will
571 572 573 574 575 576 577 578 579 580 581 582
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
def _load_persistable_vars_by_program(model_path,
                                      program_holder,
                                      params_filename=None):
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
583
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
584 585
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
J
Jiabin Yang 已提交
586
            if framework._in_eager_without_dygraph_check():
587 588 589 590 591
                new_var = framework.EagerParamBase(shape=each_var.shape(),
                                                   dtype=each_var.dtype(),
                                                   name=each_var.name(),
                                                   type=each_var.type(),
                                                   persistable=True)
592
            else:
593 594 595 596 597
                new_var = framework.ParamBase(shape=each_var.shape(),
                                              dtype=each_var.dtype(),
                                              name=each_var.name(),
                                              type=each_var.type(),
                                              persistable=True)
598
        else:
599 600 601 602 603
            new_var = framework._varbase_creator(type=each_var.type(),
                                                 name=each_var.name(),
                                                 shape=each_var.shape(),
                                                 dtype=each_var.dtype(),
                                                 persistable=True)
604 605 606 607 608 609 610 611 612 613 614
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
                attrs={'file_path': os.path.join(model_path, orig_each_name)})
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
615 616 617 618 619 620
        dict_name_old_new = {
            v: k
            for k, v in program_holder._suffix_varname_dict.items()
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
621 622 623 624 625 626 627 628 629 630 631 632 633 634

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': os.path.join(model_path, params_filename)})

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
635
    # After loading the model, the stop_gradient information
636 637 638 639 640 641 642 643 644 645 646 647
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


648 649
def _load_persistable_vars(model_path, var_info_path, program_holder,
                           params_filename):
650 651
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
652
        extra_var_info = pickle.load(f)
653 654 655 656

    # 2. construct var dict
    load_var_dict = dict()
    load_var_list = []
657 658 659 660
    inv_suffix_varname_dict = {
        value: key
        for key, value in program_holder._suffix_varname_dict.items()
    }
661 662 663

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
664
    # var in `extra_var_info` may have been pruned
665 666 667 668 669 670
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
                name)
671 672
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
673 674 675
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
J
Jiabin Yang 已提交
676
            if framework._in_eager_without_dygraph_check():
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
                new_var = framework.EagerParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
                    persistable=True)
            else:
                new_var = framework.ParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
                    persistable=True)
692
        else:
693 694
            new_var = framework._varbase_creator(name=new_name,
                                                 persistable=True)
695 696 697 698 699 700

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
701 702 703 704 705 706
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
707 708 709 710
        framework._dygraph_tracer().trace_op(type='load_combine',
                                             inputs={},
                                             outputs={'Out': load_var_list},
                                             attrs={'file_path': var_file_path})
711 712 713 714

    return load_var_dict


715 716 717 718 719 720 721 722 723
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
    no_suffix_var_dict = dict()
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


724 725 726 727 728 729 730 731
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
    program_holder_dict = dict()

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
732 733 734 735 736 737 738 739
        model_name = model_filename[:-len(INFER_MODEL_SUFFIX)]
        #Load every file that meets the requirements in the directory model_path.
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
                    model_name):
740 741 742
                parsing_names = filename[len(model_name
                                             ):-len(INFER_MODEL_SUFFIX) +
                                         1].split('.')
743 744 745 746 747
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
748 749 750 751
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
                _load_program_desc(model_file_path))
752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
                        _load_program_desc(model_file_path))

    return program_holder_dict


def _construct_params_and_buffers(model_path,
                                  programs,
770 771
                                  params_filename=None,
                                  append_suffix=True):
772 773
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
774
    params_path = os.path.join(model_path, str(params_filename))
775

776 777
    if os.path.exists(var_info_path):
        var_dict = _load_persistable_vars(model_path, var_info_path,
778
                                          programs['forward'], params_filename)
779 780 781
        model_name = params_filename[:-len(INFER_PARAMS_SUFFIX)]
        #Load every file that meets the requirements in the directory model_path.
        for file_name in os.listdir(model_path):
782 783
            if file_name.startswith(model_name) and file_name.endswith(
                    INFER_PARAMS_SUFFIX):
784 785 786
                parsing_names = file_name[len(model_name
                                              ):-len(INFER_PARAMS_SUFFIX) +
                                          1].split('.')
787 788 789 790
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
791 792 793 794
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
795 796
                _load_persistable_vars(model_path, var_info_path,
                                       programs[func_name], file_name))
797 798 799
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
        return dict()
800
    else:
801 802 803
        var_dict = _load_persistable_vars_by_program(model_path,
                                                     programs['forward'],
                                                     params_filename)
804 805 806 807

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

808 809 810
    return var_dict


0
0x45f 已提交
811 812 813
def _valid_vars(vars):
    if vars:
        return vars
J
Jiabin Yang 已提交
814
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
815 816 817 818 819 820 821 822 823 824 825
        return [
            core.eager.Tensor(core.VarDesc.VarType.FP32, [], "Fake_var",
                              core.VarDesc.VarType.RAW, False)
        ]
    else:
        return [
            core.VarBase(core.VarDesc.VarType.FP32, [], "Fake_var",
                         core.VarDesc.VarType.RAW, False)
        ]


W
WeiXin 已提交
826 827 828 829 830
def _run_dygraph(instance, input, program_holder):

    # 1. prepare inputs, outputs, attrs
    input_vars = []
    for i, value in enumerate(input):
831
        if not isinstance(value, (np.ndarray, core.VarBase, core.eager.Tensor)):
W
WeiXin 已提交
832 833 834 835 836
            raise TypeError(
                "The type of input in TranslatedLayer must be numpy array or Variable(VarBase), but received %s."
                % type(value))
        # NOTE: In order to unify the API, firstly convert the input to VarBase
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
837
            if framework._in_eager_without_dygraph_check():
838 839 840 841 842 843 844
                var = core.eager.Tensor(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True)
            else:
845 846 847 848 849
                var = core.VarBase(value=value,
                                   name=program_holder.input_descs[i].name(),
                                   persistable=False,
                                   place=framework._current_expected_place(),
                                   zero_copy=True)
W
WeiXin 已提交
850 851
        else:
            var = value
852
            # NOTE: we changed var name here,
W
WeiXin 已提交
853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
                % var_name)

    output_vars = []
    for var_desc in program_holder.output_descs:
J
Jiabin Yang 已提交
875
        if framework._in_eager_without_dygraph_check():
876 877 878 879 880
            var = core.eager.Tensor(dtype=var_desc.dtype(),
                                    dims=var_desc.shape(),
                                    name=var_desc.name(),
                                    type=var_desc.type(),
                                    persistable=False)
881
        else:
882
            var = core.VarBase(var_desc.dtype(), var_desc.shape(),
883
                               var_desc.name(), var_desc.type(), False)
W
WeiXin 已提交
884 885 886
        output_vars.append(var)

    # hold forward variables
J
Jiabin Yang 已提交
887
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
888
        tmp_scope_vec = [program_holder.scope]
889 890 891 892
    else:
        tmp_scope_vec = core.VarBase(core.VarDesc.VarType.FP32, [],
                                     "program_out_scope",
                                     core.VarDesc.VarType.STEP_SCOPES, True)
0
0x45f 已提交
893
        tmp_scope_vec.value().set_scope(program_holder.scope)
W
WeiXin 已提交
894

895 896
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
J
Jiabin Yang 已提交
897
        if framework._in_eager_without_dygraph_check():
898 899 900 901 902
            var = core.eager.Tensor(dtype=var_desc.dtype(),
                                    dims=var_desc.shape(),
                                    name=var_desc.name(),
                                    type=var_desc.type(),
                                    persistable=False)
903
        else:
904
            var = core.VarBase(var_desc.dtype(), var_desc.shape(),
905
                               var_desc.name(), var_desc.type(), False)
906 907
        double_grad_vars.append(var)

W
WeiXin 已提交
908 909
    # 2. run program by op
    trace_program = program_holder.infer_program if instance._is_test else program_holder.train_program
910
    forward_program = program_holder._infer_program_desc if instance._is_test else program_holder.forward_program
W
WeiXin 已提交
911
    end_op_index = program_holder.infer_program.block(0).op_size()
912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927

    attrs = [
        'global_block',
        trace_program.block(0), 'start_op_index', 0, 'end_op_index',
        end_op_index, 'is_test', instance._is_test, 'program_id',
        _hash_with_id(trace_program, instance)
    ]

    use_interpretorcore = _is_enable_standalone_executor(
    ) and _is_dy2st_enable_standalone_executor()
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
            ('forward_global_block', forward_program.block(0),
             'backward_global_block', program_holder.backward_program.block(0)))

928 929 930 931
    _legacy_C_ops.run_program(_valid_vars(input_vars),
                              _valid_vars(persistable_vars),
                              _valid_vars(output_vars), tmp_scope_vec,
                              _valid_vars(double_grad_vars), None, *attrs)
932

W
WeiXin 已提交
933 934 935 936 937 938 939 940
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
    # set param grad VarBase by forward VarBase(LoDTensor)
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
941
        grad_var_name = persistable_var.name + core.grad_var_suffix()
W
WeiXin 已提交
942
        grad_var = trace_program.block(0).find_var(cpt.to_bytes(grad_var_name))
943
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
944 945 946 947 948
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

949 950
    drop_scope_if_no_grad(instance, tmp_scope_vec)

W
WeiXin 已提交
951 952 953 954 955 956 957
    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


958 959
def drop_scope_if_no_grad(instance, scope_vec):
    tracer = framework._dygraph_tracer()
960 961
    scope = scope_vec.value().get_scope() if isinstance(
        scope_vec, (core.VarBase)) else scope_vec[0]
962
    if (not instance._is_test) and (not tracer._has_grad):
0
0x45f 已提交
963
        scope.drop_kids()
964 965


W
WeiXin 已提交
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
        trace_program, exclude=param_var_names)
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
    _append_block(main_program, trace_program, program_holder, input,
                  dict_rename_var_old_new)
    main_program._sync_with_cpp()
    outs = _get_output_from_program(main_program, program_holder,
                                    dict_rename_var_old_new)
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
    
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


def _append_block(dest_program,
                  src_program_desc,
                  program_holder,
                  input_variables,
                  dict_rename_var_old_new=None):
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
    
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc', 
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
    param_var_names = _collect_current_and_parent_var(dest_program,
                                                      origin_block_idx)
1026 1027 1028
    append_var_from_block_desc_static(dest_program.block(origin_block_idx),
                                      src_program_desc.block(0),
                                      exclude=param_var_names)
W
WeiXin 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
            "The number of input is invalid, expected {}, but received {}.".
            format(len(name_inp_desc), len(input_names)))
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
            outputs={'Out': [out_name]})

    append_ops = append_op_from_block_desc_static(
        dest_program.block(origin_block_idx), src_program_desc.block(0))
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1

    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1059 1060 1061 1062 1063
            append_var_from_block_desc_static(dest_block,
                                              src_block,
                                              exclude=param_var_names)
            append_ops += append_op_from_block_desc_static(
                dest_block, src_block)
W
WeiXin 已提交
1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
            op._set_attr('sub_block',
                         dest_program.block(offset_block_idx + origin_id))
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


def _get_output_from_program(program,
                             program_holder,
                             dict_rename_var_old_new=None):
    """
    Get output name of 'program' according to program_holder
    """
    outs = list()
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1130 1131 1132 1133 1134 1135
    op = framework.Operator(block=block,
                            desc=op_append,
                            type=op_type,
                            inputs=None,
                            outputs=None,
                            attrs=None)
W
WeiXin 已提交
1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182
    block.ops.append(op)
    return op


def append_var_from_block_desc_static(block,
                                      src_block_desc,
                                      include=None,
                                      exclude=None):
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
            exclude is None or var_desc_name not in exclude)
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
                    core.VarDesc.VarType.SELECTED_ROWS,
                    core.VarDesc.VarType.LOD_TENSOR,
                    core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
                    core.VarDesc.VarType.LOD_TENSOR,
                    core.VarDesc.VarType.LOD_TENSOR_ARRAY
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1183 1184 1185 1186 1187
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1188
            vars_append.append(
1189
                current_block.create_var(
W
WeiXin 已提交
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
                    set_need_check_feed=var_desc.need_check_feed()))
    return vars_append


1200 1201
class TranslatedLayer(layers.Layer):
    """
1202 1203 1204
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model 
    loaded by :ref:`api_paddle_jit_load` . It can be used like a 
    general Layer object in eval or train mode.
1205 1206
    
    .. note:
1207
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1208 1209 1210 1211 1212

    Examples:
        .. code-block:: python

            import numpy as np
1213 1214 1215
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1216

1217 1218 1219
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1220

1221 1222 1223 1224 1225 1226 1227
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1228

1229 1230 1231 1232
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1233

1234 1235
                def __len__(self):
                    return self.num_samples
1236

1237 1238
            class LinearNet(nn.Layer):
                def __init__(self):
1239
                    super(LinearNet, self).__init__()
1240
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1241

1242
                @paddle.jit.to_static
1243 1244 1245
                def forward(self, x):
                    return self._linear(x)

1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1257 1258
            # 1. train & save model.

1259 1260 1261 1262
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
1263

1264 1265 1266 1267 1268 1269 1270
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1271

1272 1273
            # train
            train(layer, loader, loss_fn, adam)
1274

1275
            # save
1276
            model_path = "linear.example.model"
1277
            paddle.jit.save(layer, model_path)
1278 1279

            # 2. load model as TranslatedLayer
1280 1281 1282 1283

            # load
            translated_layer = paddle.jit.load(model_path)

1284 1285
            # inference
            translated_layer.eval()
1286
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1287
            pred = translated_layer(x)
1288

1289 1290
            # fine-tune
            translated_layer.train()
1291 1292
            adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            train(translated_layer, loader, loss_fn, adam)
1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304

    """

    def __init__(self, programs, persistable_vars):
        super(TranslatedLayer, self).__init__()

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1305
                "TranslatedLayer need to use persistable variable dict for initialization."
1306 1307 1308 1309
            )

        self._program_holder_dict = programs

1310 1311 1312 1313 1314 1315 1316 1317
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
        # in the form of `self.**.**``, but the ParamBase or BarBase
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
        self._persistable_var_name_dict = dict()
1318 1319 1320
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
1321 1322
                if isinstance(var,
                              (framework.ParamBase, framework.EagerParamBase)):
1323 1324 1325
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
1326
                elif isinstance(var, (core.VarBase, core.eager.Tensor)):
1327 1328 1329 1330 1331 1332 1333
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1334 1335

        self._is_test = True
W
WeiXin 已提交
1336
        self._input_args_names = None
1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1354
        # 2. load layer parameters & buffers
1355 1356
        persistable_vars = _construct_params_and_buffers(
            model_path, programs, params_filename)
1357 1358 1359 1360 1361 1362

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1363 1364 1365 1366
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1367 1368 1369 1370
            setattr(
                TranslatedLayer, method_name,
                TranslatedLayer._execution_method_creator(
                    method_name, program_holder))
1371 1372 1373 1374 1375 1376 1377 1378

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
1379

W
WeiXin 已提交
1380 1381 1382 1383
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
J
Jiabin Yang 已提交
1384
            if _non_static_mode():
W
WeiXin 已提交
1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
                    core.ProgramDesc(program_holder.infer_program))
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1397 1398 1399

    def train(self):
        self._is_test = False
1400
        self.training = True
1401 1402 1403

    def eval(self):
        self._is_test = True
1404
        self.training = False
1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
        
        Returns:
            Program

        Examples:
            .. code-block:: python
            
                import numpy as np
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                # define a random dataset
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples

                    def __getitem__(self, idx):
                        image = np.random.random([IMAGE_SIZE]).astype('float32')
                        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                        return image, label

                    def __len__(self):
                        return self.num_samples

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                def train(layer, loader, loss_fn, opt):
                    for epoch_id in range(EPOCH_NUM):
                        for batch_id, (image, label) in enumerate(loader()):
                            out = layer(image)
                            loss = loss_fn(out, label)
                            loss.backward()
                            opt.step()
                            opt.clear_grad()
                            print("Epoch {} batch {}: loss = {}".format(
                                epoch_id, batch_id, np.mean(loss.numpy())))

                # create network
                layer = LinearNet()
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

                # create data loader
                dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                loader = paddle.io.DataLoader(dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True,
                    drop_last=True,
                    num_workers=2)

                # train
                train(layer, loader, loss_fn, adam)

                # save
                model_path = "linear.example.model"
                paddle.jit.save(layer, model_path)

                # load
                translated_layer = paddle.jit.load(model_path)

                # get program
                program = translated_layer.program()
        """
        # 1. get program holder
1492
        program_holder = self._get_program_holder(method_name)
1493 1494 1495 1496 1497 1498 1499

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
                "The method `%s` does not exist in loaded TranslatedLayer." %
                method_name)
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1516 1517 1518
            spec = paddle.static.InputSpec(shape=var_desc.shape(),
                                           dtype=var_desc.dtype(),
                                           name=var_desc.name())
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1530 1531
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1532
            # construct the description of Output tensor
1533 1534 1535
            spec = paddle.static.InputSpec(shape=var_desc.shape(),
                                           dtype=var_desc.dtype(),
                                           name=var_desc.name())
1536 1537 1538
            output_spec.append(spec)

        return output_spec