test_standalone_new_ir.py 8.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

import paddle


H
hong 已提交
23 24
class TestNewIr(unittest.TestCase):
    def test_with_new_ir(self):
25
        paddle.enable_static()
26 27 28 29 30
        place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
H
hong 已提交
31
        exe = paddle.static.Executor(place)
H
hong 已提交
32

H
hong 已提交
33 34 35 36 37 38
        main_program = paddle.static.Program()
        new_scope = paddle.static.Scope()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x = paddle.ones([2, 2], dtype="float32")
                y = paddle.ones([2, 2], dtype="float32")
H
hong 已提交
39

H
hong 已提交
40 41
                z = x + y
            out = exe.run(main_program, {}, fetch_list=[z.name])
H
hong 已提交
42

H
hong 已提交
43
        gold_res = np.ones([2, 2], dtype="float32") * 2
H
hong 已提交
44

H
hong 已提交
45
        np.testing.assert_array_equal(out[0], gold_res)
H
hong 已提交
46 47 48


class TestCombineOp(unittest.TestCase):
49
    def test_with_new_ir(self):
50
        paddle.enable_static()
51 52 53 54 55
        place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
H
hong 已提交
56

57 58
        exe = paddle.static.Executor(place)

H
hong 已提交
59 60 61 62 63 64
        main_program = paddle.static.Program()
        new_scope = paddle.static.Scope()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x = paddle.ones([2, 2], dtype="float32")
                y = paddle.ones([2, 2], dtype="float32")
65

H
hong 已提交
66 67
                z = paddle.linalg.multi_dot([x, y])
            out = exe.run(main_program, {}, fetch_list=[z.name])
68 69 70

        gold_res = np.ones([2, 2], dtype="float32") * 2

H
hong 已提交
71
        np.testing.assert_array_equal(out[0], gold_res)
72 73


H
hong 已提交
74 75
class TestFeedOp(unittest.TestCase):
    def test_with_new_ir(self):
76
        paddle.enable_static()
77 78 79 80 81
        place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
H
hong 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
        exe = paddle.static.Executor(place)

        main_program = paddle.static.Program()
        new_scope = paddle.static.Scope()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x = paddle.static.data("x", [2, 2], dtype="float32")
                y = paddle.static.data("y", [2, 2], dtype="float32")

                z = x + y

            np_a = np.random.rand(2, 2).astype("float32")
            np_b = np.random.rand(2, 2).astype("float32")
            out = exe.run(
                main_program,
                feed={"x": np_a, "y": np_b},
                fetch_list=[z.name],
            )

        gold_res = np_a + np_b

        np.testing.assert_array_equal(out[0], gold_res)


H
hong 已提交
106 107
class TestSelectedRows(unittest.TestCase):
    def test_with_new_ir(self):
108
        # TODO(phlrain): support selected rows in GPU
H
hong 已提交
109
        paddle.enable_static()
H
hong 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        place = paddle.CPUPlace()
        exe = paddle.static.Executor(place)

        main_program = paddle.static.Program()
        new_scope = paddle.static.Scope()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                w = paddle.uniform([10, 10], dtype="float32")
                w.stop_gradient = False
                id = paddle.ones([2], dtype="int32")
                t = paddle.nn.functional.embedding(id, w, sparse=True)
                loss = paddle.mean(t)
                paddle.static.gradients(loss, w)

            out = exe.run(
                main_program,
                fetch_list=[loss.name],
            )


H
hong 已提交
130 131
class TestAddGradOp(unittest.TestCase):
    def test_with_new_ir(self):
132
        paddle.enable_static()
133 134 135 136 137
        place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
H
hong 已提交
138 139 140 141 142 143 144 145 146
        exe = paddle.static.Executor(place)

        main_program = paddle.static.Program()
        new_scope = paddle.static.Scope()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x = paddle.static.data("x", [2, 2], dtype="float32")
                y = paddle.static.data("y", [2, 2], dtype="float32")
                x.stop_gradient = False
H
hong 已提交
147

H
hong 已提交
148 149 150
                z = x * y

                paddle.static.gradients(z, x)
H
hong 已提交
151

H
hong 已提交
152 153 154 155 156 157 158 159 160 161 162 163 164
            np_a = np.random.rand(2, 2).astype("float32")
            np_b = np.random.rand(2, 2).astype("float32")
            out = exe.run(
                main_program,
                feed={"x": np_a, "y": np_b},
                fetch_list=[z.name],
            )

        gold_res = np_a * np_b

        np.testing.assert_array_equal(out[0], gold_res)


165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
class TestNewIrDygraph(unittest.TestCase):
    def test_with_new_ir(self):
        paddle.disable_static()

        @paddle.jit.to_static
        def func(x, y):
            return x + y

        x = paddle.ones([2, 2], dtype='float32')
        y = paddle.ones([2, 2], dtype='float32')
        z = func(x, y)

        gold_res = np.ones([2, 2], dtype="float32") * 2
        self.assertEqual(
            np.array_equal(
                z.numpy(),
                gold_res,
            ),
            True,
        )


class TestNewIrBackwardDygraph(unittest.TestCase):
    def test_with_new_ir(self):
        paddle.disable_static()
        build_strategy = paddle.static.BuildStrategy()
        build_strategy.enable_inplace = False

        @paddle.jit.to_static(build_strategy=build_strategy)
        def func(x, y):
            return x * y

        x = paddle.ones([2, 2], dtype='float32')
        y = paddle.ones([2, 2], dtype='float32')
        x.stop_gradient = False
        y.stop_gradient = False
        z = func(x, y)
        loss = z.mean()
        loss.backward()
        gold_res = np.ones([2, 2], dtype="float32")
        self.assertEqual(
            np.array_equal(
                z.numpy(),
                gold_res,
            ),
            True,
        )

        gold_res = np.ones([2, 2], dtype="float32") * 0.25
        np.testing.assert_array_equal(x.gradient(), gold_res)
        np.testing.assert_array_equal(y.gradient(), gold_res)


218 219
class TestSplitOp(unittest.TestCase):
    def test_with_new_ir(self):
220
        paddle.enable_static()
221 222 223 224 225
        place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
H
hong 已提交
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
        exe = paddle.static.Executor(place)

        main_program = paddle.static.Program()
        new_scope = paddle.static.Scope()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x = paddle.static.data("x", [6, 2], dtype="float32")
                out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=0)

            np_a = np.random.rand(6, 2).astype("float32")
            out = exe.run(
                main_program,
                feed={"x": np_a},
                fetch_list=[out0.name],
            )

            np.testing.assert_array_equal(out[0], np_a[0:2])


H
hong 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
class TestNewIrPrint(unittest.TestCase):
    def test_with_new_ir(self):
        paddle.enable_static()
        place = (
            paddle.CUDAPlace(0)
            if paddle.is_compiled_with_cuda()
            else paddle.CPUPlace()
        )
        exe = paddle.static.Executor(place)

        main_program = paddle.static.Program()
        new_scope = paddle.static.Scope()
        with paddle.static.scope_guard(new_scope):
            with paddle.static.program_guard(main_program):
                x = paddle.ones([2, 2], dtype="float32")
                y = paddle.ones([2, 2], dtype="float32")

                z = x + y
                z = paddle.static.Print(z)

            out = exe.run(main_program, {}, fetch_list=[z.name])

        gold_res = np.ones([2, 2], dtype="float32") * 2

        np.testing.assert_array_equal(out[0], gold_res)


H
hong 已提交
273 274 275 276 277 278
class TestJitSaveOp(unittest.TestCase):
    def test_with_new_ir(self):
        paddle.disable_static()

        linear = paddle.nn.Linear(10, 10)
        path = "example_model/linear"
H
hong 已提交
279

H
hong 已提交
280 281 282 283 284 285 286
        paddle.jit.save(
            linear,
            path,
            input_spec=[paddle.static.InputSpec([10, 10], 'float32', 'x')],
        )


287
if __name__ == "__main__":
288
    paddle.enable_static()
289
    unittest.main()