test_standalone_new_ir.py 2.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import unittest

import numpy as np

import paddle

paddle.enable_static()


H
hong 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
# class TestNewIr(unittest.TestCase):
#     def test_with_new_ir(self):
#         place = paddle.CPUPlace()
#         exe = paddle.static.Executor(place)

#         x = paddle.ones([2, 2], dtype="float32")
#         y = paddle.ones([2, 2], dtype="float32")

#         z = x + y
#         out = exe.run(
#             paddle.static.default_main_program(), {}, fetch_list=[z.name]
#         )

#         gold_res = np.ones([2, 2], dtype="float32") * 2

#         self.assertEqual(
#             np.array_equal(
#                 np.array(
#                     paddle.static.global_scope().find_var(z.name).get_tensor()
#                 ),
#                 gold_res,
#             ),
#             True,
#         )


class TestCombineOp(unittest.TestCase):
52 53 54 55 56 57 58
    def test_with_new_ir(self):
        place = paddle.CPUPlace()
        exe = paddle.static.Executor(place)

        x = paddle.ones([2, 2], dtype="float32")
        y = paddle.ones([2, 2], dtype="float32")

H
hong 已提交
59
        z = paddle.linalg.multi_dot([x, y])
60 61 62 63 64 65 66 67 68
        out = exe.run(
            paddle.static.default_main_program(), {}, fetch_list=[z.name]
        )

        gold_res = np.ones([2, 2], dtype="float32") * 2

        self.assertEqual(
            np.array_equal(
                np.array(
69
                    paddle.static.global_scope().find_var(z.name).get_tensor()
70 71 72 73 74 75 76 77 78
                ),
                gold_res,
            ),
            True,
        )


if __name__ == "__main__":
    unittest.main()