# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle class TestNewIr(unittest.TestCase): def test_with_new_ir(self): paddle.enable_static() place = ( paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace() ) exe = paddle.static.Executor(place) main_program = paddle.static.Program() new_scope = paddle.static.Scope() with paddle.static.scope_guard(new_scope): with paddle.static.program_guard(main_program): x = paddle.ones([2, 2], dtype="float32") y = paddle.ones([2, 2], dtype="float32") z = x + y out = exe.run(main_program, {}, fetch_list=[z.name]) gold_res = np.ones([2, 2], dtype="float32") * 2 np.testing.assert_array_equal(out[0], gold_res) class TestCombineOp(unittest.TestCase): def test_with_new_ir(self): paddle.enable_static() place = ( paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace() ) exe = paddle.static.Executor(place) main_program = paddle.static.Program() new_scope = paddle.static.Scope() with paddle.static.scope_guard(new_scope): with paddle.static.program_guard(main_program): x = paddle.ones([2, 2], dtype="float32") y = paddle.ones([2, 2], dtype="float32") z = paddle.linalg.multi_dot([x, y]) out = exe.run(main_program, {}, fetch_list=[z.name]) gold_res = np.ones([2, 2], dtype="float32") * 2 np.testing.assert_array_equal(out[0], gold_res) class TestFeedOp(unittest.TestCase): def test_with_new_ir(self): paddle.enable_static() place = ( paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace() ) exe = paddle.static.Executor(place) main_program = paddle.static.Program() new_scope = paddle.static.Scope() with paddle.static.scope_guard(new_scope): with paddle.static.program_guard(main_program): x = paddle.static.data("x", [2, 2], dtype="float32") y = paddle.static.data("y", [2, 2], dtype="float32") z = x + y np_a = np.random.rand(2, 2).astype("float32") np_b = np.random.rand(2, 2).astype("float32") out = exe.run( main_program, feed={"x": np_a, "y": np_b}, fetch_list=[z.name], ) gold_res = np_a + np_b np.testing.assert_array_equal(out[0], gold_res) class TestSelectedRows(unittest.TestCase): def test_with_new_ir(self): # TODO(phlrain): support selected rows in GPU paddle.enable_static() place = paddle.CPUPlace() exe = paddle.static.Executor(place) main_program = paddle.static.Program() new_scope = paddle.static.Scope() with paddle.static.scope_guard(new_scope): with paddle.static.program_guard(main_program): w = paddle.uniform([10, 10], dtype="float32") w.stop_gradient = False id = paddle.ones([2], dtype="int32") t = paddle.nn.functional.embedding(id, w, sparse=True) loss = paddle.mean(t) paddle.static.gradients(loss, w) out = exe.run( main_program, fetch_list=[loss.name], ) class TestAddGradOp(unittest.TestCase): def test_with_new_ir(self): paddle.enable_static() place = ( paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace() ) exe = paddle.static.Executor(place) main_program = paddle.static.Program() new_scope = paddle.static.Scope() with paddle.static.scope_guard(new_scope): with paddle.static.program_guard(main_program): x = paddle.static.data("x", [2, 2], dtype="float32") y = paddle.static.data("y", [2, 2], dtype="float32") x.stop_gradient = False z = x * y paddle.static.gradients(z, x) np_a = np.random.rand(2, 2).astype("float32") np_b = np.random.rand(2, 2).astype("float32") out = exe.run( main_program, feed={"x": np_a, "y": np_b}, fetch_list=[z.name], ) gold_res = np_a * np_b np.testing.assert_array_equal(out[0], gold_res) class TestNewIrDygraph(unittest.TestCase): def test_with_new_ir(self): paddle.disable_static() @paddle.jit.to_static def func(x, y): return x + y x = paddle.ones([2, 2], dtype='float32') y = paddle.ones([2, 2], dtype='float32') z = func(x, y) gold_res = np.ones([2, 2], dtype="float32") * 2 self.assertEqual( np.array_equal( z.numpy(), gold_res, ), True, ) class TestNewIrBackwardDygraph(unittest.TestCase): def test_with_new_ir(self): paddle.disable_static() build_strategy = paddle.static.BuildStrategy() build_strategy.enable_inplace = False @paddle.jit.to_static(build_strategy=build_strategy) def func(x, y): return x * y x = paddle.ones([2, 2], dtype='float32') y = paddle.ones([2, 2], dtype='float32') x.stop_gradient = False y.stop_gradient = False z = func(x, y) loss = z.mean() loss.backward() gold_res = np.ones([2, 2], dtype="float32") self.assertEqual( np.array_equal( z.numpy(), gold_res, ), True, ) gold_res = np.ones([2, 2], dtype="float32") * 0.25 np.testing.assert_array_equal(x.gradient(), gold_res) np.testing.assert_array_equal(y.gradient(), gold_res) class TestSplitOp(unittest.TestCase): def test_with_new_ir(self): paddle.enable_static() place = ( paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace() ) exe = paddle.static.Executor(place) main_program = paddle.static.Program() new_scope = paddle.static.Scope() with paddle.static.scope_guard(new_scope): with paddle.static.program_guard(main_program): x = paddle.static.data("x", [6, 2], dtype="float32") out0, out1, out2 = paddle.split(x, num_or_sections=3, axis=0) np_a = np.random.rand(6, 2).astype("float32") out = exe.run( main_program, feed={"x": np_a}, fetch_list=[out0.name], ) np.testing.assert_array_equal(out[0], np_a[0:2]) class TestNewIrPrint(unittest.TestCase): def test_with_new_ir(self): paddle.enable_static() place = ( paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() else paddle.CPUPlace() ) exe = paddle.static.Executor(place) main_program = paddle.static.Program() new_scope = paddle.static.Scope() with paddle.static.scope_guard(new_scope): with paddle.static.program_guard(main_program): x = paddle.ones([2, 2], dtype="float32") y = paddle.ones([2, 2], dtype="float32") z = x + y z = paddle.static.Print(z) out = exe.run(main_program, {}, fetch_list=[z.name]) gold_res = np.ones([2, 2], dtype="float32") * 2 np.testing.assert_array_equal(out[0], gold_res) class TestJitSaveOp(unittest.TestCase): def test_with_new_ir(self): paddle.disable_static() linear = paddle.nn.Linear(10, 10) path = "example_model/linear" paddle.jit.save( linear, path, input_spec=[paddle.static.InputSpec([10, 10], 'float32', 'x')], ) if __name__ == "__main__": paddle.enable_static() unittest.main()