test_softmax_op.py 12.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
19
from op_test import OpTest, convert_float_to_uint16
20
import paddle.fluid.core as core
21 22
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
23
import paddle
24
import paddle.nn.functional as F
25 26

np.random.seed(10)
Q
qijun 已提交
27 28 29 30


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
31 32 33
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
Q
qijun 已提交
34 35 36 37
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


38 39 40 41 42 43 44 45 46
def ref_softmax(x, axis=None, dtype=None):
    x_t = x.copy()
    if dtype is not None:
        x_t = x_t.astype(dtype)
    if axis is None:
        axis = -1
    return np.apply_along_axis(stable_softmax, axis, x_t)


Q
qijun 已提交
47
class TestSoftmaxOp(OpTest):
F
fengjiayi 已提交
48 49 50
    def get_x_shape(self):
        return [10, 10]

D
dengkaipeng 已提交
51 52 53
    def get_axis(self):
        return -1

Q
qijun 已提交
54
    def setUp(self):
Q
fix bug  
qijun 已提交
55
        self.op_type = "softmax"
P
update  
phlrain 已提交
56
        self.python_api = paddle.nn.functional.softmax
57
        self.use_cudnn = False
K
Kexin Zhao 已提交
58
        self.use_mkldnn = False
59 60
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        self.dtype = np.float32 if core.is_compiled_with_rocm() else np.float64
K
Kexin Zhao 已提交
61
        self.init_kernel_type()
F
fengjiayi 已提交
62
        self.shape = self.get_x_shape()
D
dengkaipeng 已提交
63
        self.axis = self.get_axis()
F
fengjiayi 已提交
64

65
        np.random.seed(0)
F
fengjiayi 已提交
66
        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
D
dengkaipeng 已提交
67
        out = np.apply_along_axis(stable_softmax, self.axis, x)
K
Kexin Zhao 已提交
68 69 70

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
71
        self.attrs = {
D
dengkaipeng 已提交
72
            'axis': self.axis,
73
            'use_cudnn': self.use_cudnn,
74
            'use_mkldnn': self.use_mkldnn
75
        }
76

K
Kexin Zhao 已提交
77
    def init_kernel_type(self):
78
        pass
Q
qijun 已提交
79

Q
qijun 已提交
80
    def test_check_output(self):
81
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
82 83
        if self.use_cudnn:
            place = core.CUDAPlace(0)
84
            self.check_output_with_place(
P
update  
phlrain 已提交
85 86 87
                place,
                atol=1e-5,
                check_dygraph=(self.use_mkldnn == False),
P
phlrain 已提交
88
                check_eager=True)
89
        else:
P
update  
phlrain 已提交
90
            self.check_output(
P
phlrain 已提交
91
                check_dygraph=(self.use_mkldnn == False), check_eager=True)
Q
qijun 已提交
92

Q
qijun 已提交
93
    def test_check_grad(self):
94
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
95
        if self.use_cudnn or self.dtype == np.float16:
96
            place = core.CUDAPlace(0)
C
chengduo 已提交
97 98
            if core.is_float16_supported(place):
                self.check_grad_with_place(
99 100 101 102
                    place, ["X"],
                    "Out",
                    max_relative_error=0.01,
                    check_dygraph=(self.use_mkldnn == False))
103
        else:
104 105 106 107 108
            self.check_grad(
                ["X"],
                "Out",
                max_relative_error=0.01,
                check_dygraph=(self.use_mkldnn == False))
109 110


F
fengjiayi 已提交
111 112 113 114 115
class TestSoftmaxOp2(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
class TestSoftmaxOp3(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


class TestSoftmaxOp4(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


class TestSoftmaxOp5(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 2


140
class TestSoftmaxOp6(TestSoftmaxOp):
D
dengkaipeng 已提交
141 142 143 144 145 146 147
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 3


148 149
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
150
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
151 152 153 154
    def init_kernel_type(self):
        self.use_cudnn = True


F
fengjiayi 已提交
155 156 157 158 159 160 161
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


G
GaoWei8 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp3(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp4(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


D
dengkaipeng 已提交
182 183
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
D
dengkaipeng 已提交
184
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
D
dengkaipeng 已提交
185 186 187
    def get_x_shape(self):
        return [2, 3, 4, 5]

G
GaoWei8 已提交
188 189 190 191 192 193 194 195 196 197
    def get_axis(self):
        return 2


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp6(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

D
dengkaipeng 已提交
198
    def get_axis(self):
199
        return 3
D
dengkaipeng 已提交
200 201


G
GaoWei8 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp7(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp8(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 0


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp9(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 1


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp10(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 2


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp11(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 3


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp12(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 4


259 260
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
261 262 263 264 265 266 267 268 269 270
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
chengduo 已提交
271 272 273 274
    # FIXME: If the x_shape is [10, 10], gradient failed.
    def test_check_grad(self):
        pass

275

Z
zhupengyang 已提交
276 277 278
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxFP16Op2(TestSoftmaxFP16Op):
F
fengjiayi 已提交
279
    def get_x_shape(self):
Z
zhupengyang 已提交
280
        return [2, 3, 4, 10]
281

F
fengjiayi 已提交
282

283 284
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
285 286
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
287
        self.use_cudnn = True
K
Kexin Zhao 已提交
288 289 290 291 292 293 294
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
295 296


F
fengjiayi 已提交
297 298 299 300 301 302 303
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxBF16Op(OpTest):
    def setUp(self):
        self.op_type = "softmax"
        self.use_cudnn = self.init_cudnn()
        self.use_mkldnn = False
        self.dtype = np.uint16
        self.shape = [10, 10]
        self.axis = -1

        np.random.seed(0)
        x = np.random.uniform(0.1, 1, self.shape).astype(np.float32)
        out = np.apply_along_axis(stable_softmax, self.axis, x)

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(convert_float_to_uint16(x))
        }
        self.outputs = {'Out': convert_float_to_uint16(out)}
        self.attrs = {
            'axis': self.axis,
            'use_cudnn': self.use_cudnn,
            'use_mkldnn': self.use_mkldnn
        }

    def init_cudnn(self):
        return False

    def test_check_output(self):
        place = core.CUDAPlace(0)
        self.check_output_with_place(
            place, check_dygraph=(self.use_mkldnn == False))

    def test_check_grad(self):
        place = core.CUDAPlace(0)
        self.check_grad_with_place(
            place, ["X"],
            "Out",
            numeric_grad_delta=0.05,
            check_dygraph=(self.use_mkldnn == False))


@unittest.skipIf(
    not core.is_compiled_with_cuda() or core.cudnn_version() < 8100,
    "core is not compiled with CUDA and cudnn version need larger than 8.1.0")
class TestSoftmaxBF16CUDNNOp(TestSoftmaxBF16Op):
    def init_cudnn(self):
        return True


354
class TestSoftmaxAPI(unittest.TestCase):
355 356 357 358 359
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.random.uniform(-1., 1., [2, 3, 4, 5]).astype('float32')
        self.out_ref = np.apply_along_axis(stable_softmax, -1, self.x_np)
360 361 362 363
        self.executed_api()

    def executed_api(self):
        self.softmax = F.softmax
364

365 366
    def test_static_check(self):
        with paddle.static.program_guard(paddle.static.Program()):
367
            x = paddle.fluid.data('X', self.x_np.shape, 'float32')
368
            out1 = self.softmax(x)
369 370
            m = paddle.nn.Softmax()
            out2 = m(x)
371
            exe = paddle.static.Executor(self.place)
372 373 374 375
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)
376

377
    def test_dygraph_check(self):
378
        paddle.disable_static(self.place)
379

380
        x = paddle.to_tensor(self.x_np)
381 382
        out1 = self.softmax(x)
        x = paddle.to_tensor(self.x_np)
383 384 385 386 387 388
        m = paddle.nn.Softmax()
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

389 390
        out1 = self.softmax(x, axis=0)
        x = paddle.to_tensor(self.x_np)
391 392 393 394 395 396
        m = paddle.nn.Softmax(axis=0)
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=0, dtype=None)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

397 398 399 400 401 402 403
        # explicilty use float32 for ROCm, as MIOpen does not yet support float64
        if core.is_compiled_with_rocm():
            out = self.softmax(x, dtype=np.float32)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float32)
        else:
            out = self.softmax(x, dtype=np.float64)
            out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float64)
404
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)
405

406
        paddle.enable_static()
407 408

    def test_error(self):
409 410
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
411
            self.assertRaises(TypeError, self.softmax, 1)
412
            # The input dtype must be float16, float32, float64.
Z
zhupengyang 已提交
413 414
            x_int32 = paddle.fluid.data(
                name='x_int32', shape=[2, 3], dtype='int32')
415
            self.assertRaises(TypeError, self.softmax, x_int32)
416
            # support the input dtype is float16
Z
zhupengyang 已提交
417 418
            x_fp16 = paddle.fluid.data(
                name='x_fp16', shape=[2, 3], dtype='float16')
419 420 421 422 423 424
            self.softmax(x_fp16)


class TestSoftmaxInplaceAPI(TestSoftmaxAPI):
    def executed_api(self):
        self.softmax = F.softmax_
425 426


C
caoying03 已提交
427
if __name__ == "__main__":
Q
qijun 已提交
428
    unittest.main()