test_softmax_op.py 10.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
Q
qijun 已提交
19
from op_test import OpTest
20
import paddle.fluid.core as core
21 22
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
23
import paddle
24
import paddle.nn.functional as F
25 26

np.random.seed(10)
Q
qijun 已提交
27 28 29 30


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
31 32 33
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
Q
qijun 已提交
34 35 36 37
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


38 39 40 41 42 43 44 45 46
def ref_softmax(x, axis=None, dtype=None):
    x_t = x.copy()
    if dtype is not None:
        x_t = x_t.astype(dtype)
    if axis is None:
        axis = -1
    return np.apply_along_axis(stable_softmax, axis, x_t)


Q
qijun 已提交
47
class TestSoftmaxOp(OpTest):
F
fengjiayi 已提交
48 49 50
    def get_x_shape(self):
        return [10, 10]

D
dengkaipeng 已提交
51 52 53
    def get_axis(self):
        return -1

Q
qijun 已提交
54
    def setUp(self):
Q
fix bug  
qijun 已提交
55
        self.op_type = "softmax"
56
        self.use_cudnn = False
K
Kexin Zhao 已提交
57
        self.use_mkldnn = False
58
        self.dtype = np.float64
K
Kexin Zhao 已提交
59
        self.init_kernel_type()
F
fengjiayi 已提交
60
        self.shape = self.get_x_shape()
D
dengkaipeng 已提交
61
        self.axis = self.get_axis()
F
fengjiayi 已提交
62

63
        np.random.seed(0)
F
fengjiayi 已提交
64
        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
D
dengkaipeng 已提交
65
        out = np.apply_along_axis(stable_softmax, self.axis, x)
K
Kexin Zhao 已提交
66 67 68

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
69
        self.attrs = {
D
dengkaipeng 已提交
70
            'axis': self.axis,
71
            'use_cudnn': self.use_cudnn,
72
            'use_mkldnn': self.use_mkldnn
73
        }
74

K
Kexin Zhao 已提交
75
    def init_kernel_type(self):
76
        pass
Q
qijun 已提交
77

Q
qijun 已提交
78
    def test_check_output(self):
79
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
80 81
        if self.use_cudnn:
            place = core.CUDAPlace(0)
82 83
            self.check_output_with_place(
                place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
84
        else:
85
            self.check_output(check_dygraph=(self.use_mkldnn == False))
Q
qijun 已提交
86

Q
qijun 已提交
87
    def test_check_grad(self):
88
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
89
        if self.use_cudnn or self.dtype == np.float16:
90
            place = core.CUDAPlace(0)
C
chengduo 已提交
91 92
            if core.is_float16_supported(place):
                self.check_grad_with_place(
93 94 95 96
                    place, ["X"],
                    "Out",
                    max_relative_error=0.01,
                    check_dygraph=(self.use_mkldnn == False))
97
        else:
98 99 100 101 102
            self.check_grad(
                ["X"],
                "Out",
                max_relative_error=0.01,
                check_dygraph=(self.use_mkldnn == False))
103 104


F
fengjiayi 已提交
105 106 107 108 109
class TestSoftmaxOp2(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
class TestSoftmaxOp3(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


class TestSoftmaxOp4(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


class TestSoftmaxOp5(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 2


134
class TestSoftmaxOp6(TestSoftmaxOp):
D
dengkaipeng 已提交
135 136 137 138 139 140 141
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 3


142 143
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
144
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
145 146 147 148
    def init_kernel_type(self):
        self.use_cudnn = True


F
fengjiayi 已提交
149 150 151 152 153 154 155
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


G
GaoWei8 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp3(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp4(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


D
dengkaipeng 已提交
176 177
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
D
dengkaipeng 已提交
178
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
D
dengkaipeng 已提交
179 180 181
    def get_x_shape(self):
        return [2, 3, 4, 5]

G
GaoWei8 已提交
182 183 184 185 186 187 188 189 190 191
    def get_axis(self):
        return 2


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp6(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

D
dengkaipeng 已提交
192
    def get_axis(self):
193
        return 3
D
dengkaipeng 已提交
194 195


G
GaoWei8 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp7(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp8(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 0


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp9(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 1


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp10(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 2


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp11(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 3


@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp12(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5, 6]

    def get_axis(self):
        return 4


253 254
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
255 256 257 258 259 260 261 262 263 264
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
chengduo 已提交
265 266 267 268
    # FIXME: If the x_shape is [10, 10], gradient failed.
    def test_check_grad(self):
        pass

269

270
@unittest.skip('disable TestSoftmaxFP16Op2')
C
chengduo 已提交
271 272 273 274 275 276 277 278 279 280
class TestSoftmaxFP16Op2(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

F
fengjiayi 已提交
281 282 283
    def get_x_shape(self):
        return [2, 3, 4, 5]

284 285 286
    def test_check_grad(self):
        pass

F
fengjiayi 已提交
287

288 289
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
290 291
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
292
        self.use_cudnn = True
K
Kexin Zhao 已提交
293 294 295 296 297 298 299
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
300 301


F
fengjiayi 已提交
302 303 304 305 306 307 308
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


309
class TestSoftmaxAPI(unittest.TestCase):
310 311 312 313 314 315
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.random.uniform(-1., 1., [2, 3, 4, 5]).astype('float32')
        self.out_ref = np.apply_along_axis(stable_softmax, -1, self.x_np)

316 317
    def test_static_check(self):
        with paddle.static.program_guard(paddle.static.Program()):
318
            x = paddle.data('X', self.x_np.shape, 'float32')
319 320 321
            out1 = F.softmax(x)
            m = paddle.nn.Softmax()
            out2 = m(x)
322
            exe = paddle.static.Executor(self.place)
323 324 325 326
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out1, out2])
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in res:
            self.assertEqual(np.allclose(out_ref, r), True)
327

328
    def test_dygraph_check(self):
329
        paddle.disable_static(self.place)
330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
        x = paddle.to_tensor(self.x_np)
        out1 = F.softmax(x)
        m = paddle.nn.Softmax()
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=None)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out1 = F.softmax(x, axis=0)
        m = paddle.nn.Softmax(axis=0)
        out2 = m(x)
        out_ref = ref_softmax(self.x_np, axis=0, dtype=None)
        for r in [out1, out2]:
            self.assertEqual(np.allclose(out_ref, r.numpy()), True)

        out = F.softmax(x, dtype=np.float64)
        out_ref = ref_softmax(self.x_np, axis=-1, dtype=np.float64)
348
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)
349

350
        paddle.enable_static()
351 352

    def test_error(self):
353 354 355 356 357 358 359 360 361
        with paddle.static.program_guard(paddle.static.Program()):
            # The input type must be Variable.
            self.assertRaises(TypeError, F.softmax, 1)
            # The input dtype must be float16, float32, float64.
            x_int32 = paddle.data(name='x_int32', shape=[2, 3], dtype='int32')
            self.assertRaises(TypeError, F.softmax, x_int32)
            # support the input dtype is float16
            x_fp16 = paddle.data(name='x_fp16', shape=[2, 3], dtype='float16')
            F.softmax(x_fp16)
362 363


C
caoying03 已提交
364
if __name__ == "__main__":
Q
qijun 已提交
365
    unittest.main()