test_softmax_op.py 8.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Q
qijun 已提交
17 18
import unittest
import numpy as np
Q
qijun 已提交
19
from op_test import OpTest
20
import paddle.fluid.core as core
21 22
import paddle.fluid as fluid
from paddle.fluid import compiler, Program, program_guard
23
import paddle
24
import paddle.nn.functional as F
25 26

np.random.seed(10)
Q
qijun 已提交
27 28 29 30


def stable_softmax(x):
    """Compute the softmax of vector x in a numerically stable way."""
31 32 33
    # clip to shiftx, otherwise, when calc loss with
    # log(exp(shiftx)), may get log(0)=INF
    shiftx = (x - np.max(x)).clip(-64.)
Q
qijun 已提交
34 35 36 37
    exps = np.exp(shiftx)
    return exps / np.sum(exps)


Q
qijun 已提交
38
class TestSoftmaxOp(OpTest):
F
fengjiayi 已提交
39 40 41
    def get_x_shape(self):
        return [10, 10]

D
dengkaipeng 已提交
42 43 44
    def get_axis(self):
        return -1

Q
qijun 已提交
45
    def setUp(self):
Q
fix bug  
qijun 已提交
46
        self.op_type = "softmax"
47
        self.use_cudnn = False
K
Kexin Zhao 已提交
48
        self.use_mkldnn = False
49
        self.dtype = np.float64
K
Kexin Zhao 已提交
50
        self.init_kernel_type()
F
fengjiayi 已提交
51
        self.shape = self.get_x_shape()
D
dengkaipeng 已提交
52
        self.axis = self.get_axis()
F
fengjiayi 已提交
53

54
        np.random.seed(0)
F
fengjiayi 已提交
55
        x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
D
dengkaipeng 已提交
56
        out = np.apply_along_axis(stable_softmax, self.axis, x)
K
Kexin Zhao 已提交
57 58 59

        self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
        self.outputs = {'Out': out}
60
        self.attrs = {
D
dengkaipeng 已提交
61
            'axis': self.axis,
62
            'use_cudnn': self.use_cudnn,
63
            'use_mkldnn': self.use_mkldnn
64
        }
65

K
Kexin Zhao 已提交
66
    def init_kernel_type(self):
67
        pass
Q
qijun 已提交
68

Q
qijun 已提交
69
    def test_check_output(self):
70
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
71 72
        if self.use_cudnn:
            place = core.CUDAPlace(0)
73 74
            self.check_output_with_place(
                place, atol=1e-5, check_dygraph=(self.use_mkldnn == False))
75
        else:
76
            self.check_output(check_dygraph=(self.use_mkldnn == False))
Q
qijun 已提交
77

Q
qijun 已提交
78
    def test_check_grad(self):
79
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
C
chengduo 已提交
80
        if self.use_cudnn or self.dtype == np.float16:
81
            place = core.CUDAPlace(0)
C
chengduo 已提交
82 83
            if core.is_float16_supported(place):
                self.check_grad_with_place(
84 85 86 87
                    place, ["X"],
                    "Out",
                    max_relative_error=0.01,
                    check_dygraph=(self.use_mkldnn == False))
88
        else:
89 90 91 92 93
            self.check_grad(
                ["X"],
                "Out",
                max_relative_error=0.01,
                check_dygraph=(self.use_mkldnn == False))
94 95


96
class TestSoftmaxOpError(unittest.TestCase):
97 98 99 100 101 102
    def test_errors(self):
        with program_guard(Program(), Program()):
            # The input type of softmax_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.softmax, x1)
103
            # The input dtype of softmax_op must be float16, float32 or float64.
104 105
            x2 = fluid.layers.data(name='x2', shape=[4], dtype="int32")
            self.assertRaises(TypeError, fluid.layers.softmax, x2)
106 107
            x3 = fluid.layers.data(name='x3', shape=[4], dtype="float16")
            fluid.layers.softmax(x3)
108 109


F
fengjiayi 已提交
110 111 112 113 114
class TestSoftmaxOp2(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
class TestSoftmaxOp3(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 0


class TestSoftmaxOp4(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 1


class TestSoftmaxOp5(TestSoftmaxOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 2


139
class TestSoftmaxOp6(TestSoftmaxOp):
D
dengkaipeng 已提交
140 141 142 143 144 145 146
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
        return 3


147 148
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
149
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
K
Kexin Zhao 已提交
150 151 152 153
    def init_kernel_type(self):
        self.use_cudnn = True


F
fengjiayi 已提交
154 155 156 157 158 159 160
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


D
dengkaipeng 已提交
161 162
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
D
dengkaipeng 已提交
163
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
D
dengkaipeng 已提交
164 165 166 167
    def get_x_shape(self):
        return [2, 3, 4, 5]

    def get_axis(self):
168
        return 3
D
dengkaipeng 已提交
169 170


171 172
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
173 174 175 176 177 178 179 180 181 182
class TestSoftmaxFP16Op(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

C
chengduo 已提交
183 184 185 186
    # FIXME: If the x_shape is [10, 10], gradient failed.
    def test_check_grad(self):
        pass

187

188
@unittest.skip('disable TestSoftmaxFP16Op2')
C
chengduo 已提交
189 190 191 192 193 194 195 196 197 198
class TestSoftmaxFP16Op2(TestSoftmaxOp):
    def init_kernel_type(self):
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)

F
fengjiayi 已提交
199 200 201
    def get_x_shape(self):
        return [2, 3, 4, 5]

202 203 204
    def test_check_grad(self):
        pass

F
fengjiayi 已提交
205

206 207
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
K
Kexin Zhao 已提交
208 209
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
    def init_kernel_type(self):
210
        self.use_cudnn = True
K
Kexin Zhao 已提交
211 212 213 214 215 216 217
        self.dtype = np.float16

    def test_check_output(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
            if core.is_float16_supported(place):
                self.check_output_with_place(place, atol=1e-3)
Q
Qiao Longfei 已提交
218 219


F
fengjiayi 已提交
220 221 222 223 224 225 226
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
    def get_x_shape(self):
        return [2, 3, 4, 5]


227 228 229 230 231 232 233 234
class TestNnFunctionalSoftmaxApi(unittest.TestCase):
    def setUp(self):
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda(
        ) else paddle.CPUPlace()
        self.x_np = np.random.uniform(-1., 1., [2, 3, 4, 5]).astype('float32')
        self.out_ref = np.apply_along_axis(stable_softmax, -1, self.x_np)

    def test_api_static(self):
235
        with program_guard(Program()):
236
            x = paddle.data('X', self.x_np.shape, 'float32')
237 238 239 240
            out = F.softmax(x)
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x_np}, fetch_list=[out])
        self.assertEqual(np.allclose(self.out_ref, res[0]), True)
241

242 243
    def test_api_imperative(self):
        paddle.disable_static(self.place)
244

245 246 247
        x = paddle.to_variable(self.x_np)
        out = F.softmax(x)
        self.assertEqual(np.allclose(self.out_ref, out.numpy()), True)
248

249 250 251
        out = F.softmax(x, axis=0)
        out_ref = np.apply_along_axis(stable_softmax, 0, self.x_np)
        self.assertEqual(np.allclose(out_ref, out.numpy()), True)
252

253
        paddle.enable_static()
254 255 256 257

    def test_error(self):
        with program_guard(Program(), Program()):
            # The x should be variable and its dtype should be float32, float64.
258
            self.assertRaises(TypeError, F.softmax, [1])
259 260

            x = paddle.data(name='x', shape=[2, 3], dtype='int32')
261
            self.assertRaises(TypeError, F.softmax, x)
262 263


C
caoying03 已提交
264
if __name__ == "__main__":
Q
qijun 已提交
265
    unittest.main()