test_bernoulli_op.py 4.7 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import paddle
from op_test import OpTest
import numpy as np
21
import os
P
phlrain 已提交
22
from paddle.fluid.framework import _test_eager_guard
L
Leo Chen 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35


def output_hist(out):
    hist, _ = np.histogram(out, bins=2)
    hist = hist.astype("float32")
    hist /= float(out.size)
    prob = 0.5 * np.ones((2))
    return hist, prob


class TestBernoulliOp(OpTest):
    def setUp(self):
        self.op_type = "bernoulli"
P
phlrain 已提交
36
        self.python_api = paddle.bernoulli
L
Leo Chen 已提交
37 38
        self.inputs = {"X": np.random.uniform(size=(1000, 784))}
        self.attrs = {}
39
        self.outputs = {"Out": np.zeros((1000, 784)).astype("float32")}
L
Leo Chen 已提交
40 41 42 43 44

    def test_check_output(self):
        self.check_output_customized(self.verify_output)

    def verify_output(self, outs):
45
        hist, prob = output_hist(np.array(outs[0]))
L
Leo Chen 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
        self.assertTrue(
            np.allclose(
                hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))


class TestBernoulliApi(unittest.TestCase):
    def test_dygraph(self):
        paddle.disable_static()
        x = paddle.rand([1024, 1024])
        out = paddle.bernoulli(x)
        paddle.enable_static()
        hist, prob = output_hist(out.numpy())
        self.assertTrue(
            np.allclose(
                hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))

    def test_static(self):
        x = paddle.rand([1024, 1024])
        out = paddle.bernoulli(x)
        exe = paddle.static.Executor(paddle.CPUPlace())
        out = exe.run(paddle.static.default_main_program(),
                      fetch_list=[out.name])
        hist, prob = output_hist(out[0])
        self.assertTrue(
            np.allclose(
                hist, prob, rtol=0, atol=0.01), "hist: " + str(hist))


74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
class TestRandomValue(unittest.TestCase):
    def test_fixed_random_number(self):
        # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t'
        if not paddle.is_compiled_with_cuda():
            return

        if os.getenv("FLAGS_use_curand", None) in ('0', 'False', None):
            return

        print("Test Fixed Random number on GPU------>")
        paddle.disable_static()
        paddle.set_device('gpu')
        paddle.seed(100)
        np.random.seed(100)

        x_np = np.random.rand(32, 1024, 1024)

        x = paddle.to_tensor(x_np, dtype='float64')
        y = paddle.bernoulli(x).numpy()
        index0, index1, index2 = np.nonzero(y)
        self.assertEqual(np.sum(index0), 260028995)
        self.assertEqual(np.sum(index1), 8582429431)
        self.assertEqual(np.sum(index2), 8581445798)
        expect = [0., 0., 0., 0., 0., 0., 0., 1., 1., 1.]
        self.assertTrue(np.array_equal(y[16, 500, 500:510], expect))

        x = paddle.to_tensor(x_np, dtype='float32')
        y = paddle.bernoulli(x).numpy()
        index0, index1, index2 = np.nonzero(y)
        self.assertEqual(np.sum(index0), 260092343)
        self.assertEqual(np.sum(index1), 8583509076)
        self.assertEqual(np.sum(index2), 8582778540)
        expect = [0., 0., 1., 1., 1., 1., 0., 1., 1., 1.]
        self.assertTrue(np.array_equal(y[16, 500, 500:510], expect))

P
phlrain 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
        with _test_eager_guard():
            x = paddle.to_tensor(x_np, dtype='float64')
            y = paddle.bernoulli(x).numpy()
            index0, index1, index2 = np.nonzero(y)
            self.assertEqual(np.sum(index0), 260028995)
            self.assertEqual(np.sum(index1), 8582429431)
            self.assertEqual(np.sum(index2), 8581445798)
            expect = [0., 0., 0., 0., 0., 0., 0., 1., 1., 1.]
            self.assertTrue(np.array_equal(y[16, 500, 500:510], expect))

            x = paddle.to_tensor(x_np, dtype='float32')
            y = paddle.bernoulli(x).numpy()
            index0, index1, index2 = np.nonzero(y)
            self.assertEqual(np.sum(index0), 260092343)
            self.assertEqual(np.sum(index1), 8583509076)
            self.assertEqual(np.sum(index2), 8582778540)
            expect = [0., 0., 1., 1., 1., 1., 0., 1., 1., 1.]
            self.assertTrue(np.array_equal(y[16, 500, 500:510], expect))

128 129 130
        paddle.enable_static()


L
Leo Chen 已提交
131
if __name__ == "__main__":
P
phlrain 已提交
132
    paddle.enable_static()
L
Leo Chen 已提交
133
    unittest.main()