# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle from op_test import OpTest import numpy as np import os from paddle.fluid.framework import _test_eager_guard def output_hist(out): hist, _ = np.histogram(out, bins=2) hist = hist.astype("float32") hist /= float(out.size) prob = 0.5 * np.ones((2)) return hist, prob class TestBernoulliOp(OpTest): def setUp(self): self.op_type = "bernoulli" self.python_api = paddle.bernoulli self.inputs = {"X": np.random.uniform(size=(1000, 784))} self.attrs = {} self.outputs = {"Out": np.zeros((1000, 784)).astype("float32")} def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): hist, prob = output_hist(np.array(outs[0])) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=0.01), "hist: " + str(hist)) class TestBernoulliApi(unittest.TestCase): def test_dygraph(self): paddle.disable_static() x = paddle.rand([1024, 1024]) out = paddle.bernoulli(x) paddle.enable_static() hist, prob = output_hist(out.numpy()) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=0.01), "hist: " + str(hist)) def test_static(self): x = paddle.rand([1024, 1024]) out = paddle.bernoulli(x) exe = paddle.static.Executor(paddle.CPUPlace()) out = exe.run(paddle.static.default_main_program(), fetch_list=[out.name]) hist, prob = output_hist(out[0]) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=0.01), "hist: " + str(hist)) class TestRandomValue(unittest.TestCase): def test_fixed_random_number(self): # Test GPU Fixed random number, which is generated by 'curandStatePhilox4_32_10_t' if not paddle.is_compiled_with_cuda(): return if os.getenv("FLAGS_use_curand", None) in ('0', 'False', None): return print("Test Fixed Random number on GPU------>") paddle.disable_static() paddle.set_device('gpu') paddle.seed(100) np.random.seed(100) x_np = np.random.rand(32, 1024, 1024) x = paddle.to_tensor(x_np, dtype='float64') y = paddle.bernoulli(x).numpy() index0, index1, index2 = np.nonzero(y) self.assertEqual(np.sum(index0), 260028995) self.assertEqual(np.sum(index1), 8582429431) self.assertEqual(np.sum(index2), 8581445798) expect = [0., 0., 0., 0., 0., 0., 0., 1., 1., 1.] self.assertTrue(np.array_equal(y[16, 500, 500:510], expect)) x = paddle.to_tensor(x_np, dtype='float32') y = paddle.bernoulli(x).numpy() index0, index1, index2 = np.nonzero(y) self.assertEqual(np.sum(index0), 260092343) self.assertEqual(np.sum(index1), 8583509076) self.assertEqual(np.sum(index2), 8582778540) expect = [0., 0., 1., 1., 1., 1., 0., 1., 1., 1.] self.assertTrue(np.array_equal(y[16, 500, 500:510], expect)) with _test_eager_guard(): x = paddle.to_tensor(x_np, dtype='float64') y = paddle.bernoulli(x).numpy() index0, index1, index2 = np.nonzero(y) self.assertEqual(np.sum(index0), 260028995) self.assertEqual(np.sum(index1), 8582429431) self.assertEqual(np.sum(index2), 8581445798) expect = [0., 0., 0., 0., 0., 0., 0., 1., 1., 1.] self.assertTrue(np.array_equal(y[16, 500, 500:510], expect)) x = paddle.to_tensor(x_np, dtype='float32') y = paddle.bernoulli(x).numpy() index0, index1, index2 = np.nonzero(y) self.assertEqual(np.sum(index0), 260092343) self.assertEqual(np.sum(index1), 8583509076) self.assertEqual(np.sum(index2), 8582778540) expect = [0., 0., 1., 1., 1., 1., 0., 1., 1., 1.] self.assertTrue(np.array_equal(y[16, 500, 500:510], expect)) paddle.enable_static() if __name__ == "__main__": paddle.enable_static() unittest.main()