control_flow.py 171.3 KB
Newer Older
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18
from .layer_function_generator import autodoc, templatedoc
19
from .tensor import assign, cast, fill_constant
20
from .. import core
21 22 23 24 25 26 27 28 29
from ..framework import (
    Program,
    Variable,
    Operator,
    _non_static_mode,
    static_only,
    _in_legacy_dygraph,
    in_dygraph_mode,
)
30
from ..layer_helper import LayerHelper, unique_name
M
minqiyang 已提交
31
from .nn import logical_and, logical_not, logical_or
32 33 34 35 36 37 38 39 40 41 42
from .utils import (
    assert_same_structure,
    map_structure,
    hold_mutable_vars,
    copy_mutable_vars,
    padding_to_same_structure,
    is_sequence,
    pack_sequence_as,
    flatten,
    to_sequence,
)
Y
yuyang18 已提交
43
import numpy
44
import warnings
45
import six
L
liym27 已提交
46
from functools import reduce, partial
47 48 49 50 51 52
from ..data_feeder import (
    convert_dtype,
    check_variable_and_dtype,
    check_type,
    check_dtype,
)
53 54
from ... import compat as cpt
from ..backward import _infer_var_data_type_shape_
55
from paddle import _C_ops, _legacy_C_ops
D
dzhwinter 已提交
56

Q
QI JUN 已提交
57
__all__ = [
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
    'While',
    'Switch',
    'increment',
    'array_write',
    'create_array',
    'less_than',
    'less_equal',
    'greater_than',
    'greater_equal',
    'equal',
    'not_equal',
    'array_read',
    'array_length',
    'cond',
    'IfElse',
    'DynamicRNN',
    'StaticRNN',
    'reorder_lod_tensor_by_rank',
    'Print',
    'Assert',
    'is_empty',
    'case',
    'switch_case',
    'while_loop',
D
dzhwinter 已提交
82 83
]

Y
Yu Yang 已提交
84

85 86
def select_output(input, outputs, mask):
    """
87
    **select_output**
88 89 90 91 92 93 94 95 96 97 98 99 100 101
    This API takes in one input and multiple outputs and an integer mask. It
    selects the output specified by the mask and copy the input to selected
    output. It is useful in control flow.

    Args:
        input(Variable): The input variable
        outputs(tuple|list): The output variables
        mask(Variable): A tensor containing 1 integer number selecting which
            output to be copied with input

    Returns:
        Variable: The outputs variables
    """
    helper = LayerHelper('select_output', **locals())
102 103 104 105
    check_type(input, 'input', (Variable), 'select_output')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_output')
    check_type(outputs, 'outputs', (list, tuple), 'select_output')

106 107 108 109 110
    helper.append_op(
        type='select_output',
        inputs={'X': input, 'Mask': mask},
        outputs={'Out': outputs},
    )
111 112 113
    return outputs


114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
def _select_input_infer_shape(first_shape, second_shape):
    """
    This function infer the output shape by following algorithm:
    1. if the dims is different, raise a error.
    2. compare axis one by one:
        if a == b: we set axis to a
        if a != b: we set axis to -1
    for compatibility,non declarative mode, we just return second_shape.
    """
    if len(first_shape) != len(second_shape):
        warnings.warn(
            f"the input shapes of select_input should have the same rank, but get {first_shape}, {second_shape}"
        )
        return second_shape
    out_shape = list(
129 130
        map(lambda a, b: a if a == b else -1, first_shape, second_shape)
    )
131 132 133
    return out_shape


134 135 136
def select_input(inputs, mask):
    """
    **select_input**
137

138 139 140 141 142 143 144 145 146 147 148 149
    This API takes in multiple inputs and uses an integer mask to select one
    input to output. It is useful in control flow.

    Args:
        inputs(tuple|list): The input variables
        mask(Variable): A tensor containing 1 integer number selecting which
            input to output

    Returns:
        Variable: The selected input variable
    """
    helper = LayerHelper('select_input', **locals())
150 151 152
    check_type(inputs, 'inputs', (list, tuple), 'select_input')
    check_variable_and_dtype(mask, 'mask', ['int32'], 'select_input')

153
    # Select input should expand the shape. If it is - 1 and valid number, use - 1 first. If the dim is different, an error will be reported directly
154
    # assert inputs[0].dtype == inputs[1].dtype, f"Expect the inputs should have the same dtype, but get {inputs[0].dtype} and {inputs[1].dtype}"
155 156 157
    output_shape = _select_input_infer_shape(inputs[0].shape, inputs[1].shape)
    output_dtype = inputs[1].dtype
    output_type = inputs[1].type
158

159 160 161 162 163 164 165 166
    out = helper.create_variable(
        dtype=output_dtype, shape=output_shape, type=output_type
    )
    helper.append_op(
        type='select_input',
        inputs={'X': inputs, 'Mask': mask},
        outputs={'Out': out},
    )
167 168 169
    return out


170
def select_input_with_buildin_type(inputs, mask, name):
171 172 173
    from paddle.fluid.dygraph.dygraph_to_static.variable_trans_func import (
        to_static_variable,
    )
174
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
175

176 177
    false_var, true_var = inputs

178
    if isinstance(false_var, UndefinedVar) and isinstance(
179 180 181
        true_var, UndefinedVar
    ):
        """None -> UndefinedVar, so the real value is a [None, UndefinedVar] or [None, None], we just return None."""
182 183
        return None

184
    if isinstance(false_var, Variable) and isinstance(true_var, Variable):
185 186 187 188
        try:
            return select_input(inputs, mask)
        except Exception as e:
            raise RuntimeError(
189 190
                f"Exceptions throwed while doing select_input on {name}:\n{e}"
            )
191

192 193 194
    elif isinstance(false_var, (support_ret_buildin_type)) and isinstance(
        false_var, type(true_var)
    ):
195 196 197 198
        if false_var == true_var:
            return false_var
        else:
            inputs = [
199
                to_static_variable(false_var),
200
                to_static_variable(true_var),
201 202
            ]
    # Deal with the situations like this: false_var is int and true_var is Variable
203 204 205 206 207 208 209
    elif (
        isinstance(false_var, support_ret_buildin_type)
        and isinstance(true_var, Variable)
    ) or (
        isinstance(true_var, support_ret_buildin_type)
        and isinstance(false_var, Variable)
    ):
210 211 212 213
        inputs = [to_static_variable(false_var), to_static_variable(true_var)]
        warnings.warn(
            "Return results from different branches in cond are not same type: "
            "false_var returned by fasle_fn is '{}' and true_var of true_fn is "
214 215 216 217 218 219 220 221 222
            "'{}'".format(type(false_var), type(true_var))
        )
    elif (
        isinstance(false_var, UndefinedVar)
        and isinstance(true_var, (Variable,) + support_ret_buildin_type)
    ) or (
        isinstance(true_var, UndefinedVar)
        and isinstance(false_var, (Variable,) + support_ret_buildin_type)
    ):
223 224

        def create_var_if_not_undefined_var(a):
225 226
            if isinstance(a, UndefinedVar):
                return a
227 228
            return to_static_variable(a)

229
        true_var, false_var = to_static_variable(true_var), to_static_variable(
230 231
            false_var
        )
232
        inputs = [false_var, true_var]
233 234 235
    else:
        raise TypeError(
            "Unsupported return type of true_fn and false_fn in cond: false_var "
236 237 238 239
            "returned by fasle_fn is '{}' and true_var of true_fn is '{}'".format(
                type(false_var), type(true_var)
            )
        )
240 241 242 243
    try:
        return select_input(inputs, mask)
    except Exception as e:
        raise RuntimeError(
244 245
            f"Exceptions throwed while doing select_input on {name}:\n{e}"
        )
246 247


248
def split_lod_tensor(input, mask, level=0):
249 250 251 252
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
253 254
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
255 256

    Args:
257
        input(Variable|tuple|list|None): The input tensor that contains complete
258
                                lod information needed to construct the output.
259
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
260
        level(int): The specific lod level to split.
261 262

    Returns:
Q
qiaolongfei 已提交
263 264 265 266
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
267 268 269 270

    Examples:
        .. code-block:: python

271
          import paddle.fluid as fluid
Q
qiaolongfei 已提交
272
          x = fluid.layers.data(name='x', shape=[1])
273 274
          x.persistable = True

Q
qiaolongfei 已提交
275
          y = fluid.layers.data(name='y', shape=[1])
276 277
          y.persistable = True

Q
qiaolongfei 已提交
278
          out_true, out_false = fluid.layers.split_lod_tensor(
279
                input=x, mask=y, level=level)
280

281
    """
282 283 284 285 286 287
    check_type(
        input,
        'input',
        (Variable, list, tuple, type(None)),
        'fluid.layers.split_lod_tensor',
    )
288 289
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.split_lod_tensor')
    check_type(level, 'level', int, 'fluid.layers.split_lod_tensor')
290
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
291 292
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
293 294 295 296 297 298 299 300 301
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true, 'OutFalse': out_false},
        attrs={'level': level},
    )
302 303 304
    return out_true, out_false


305
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
306 307 308 309 310
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
311 312 313
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
314 315

    Args:
316 317 318
        in_true(Variable|tuple|list|None): The True branch to be merged.
        in_false(Variable|tuple|list|None): The False branch to be merged.
        x(Variable|tuple|list|None): The input tensor that contains complete
319
                            lod information needed to construct the output.
320
        mask(Variable|list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
321
        level(int): The specific lod level to merge.
322 323 324 325 326 327 328

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

329
          import paddle.fluid as fluid
330 331 332 333 334 335 336 337 338 339 340 341
          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
342
    helper = LayerHelper('merge_lod_tensor', **locals())
343 344 345 346 347 348
    check_type(
        x,
        'x',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
349
    check_type(mask, 'mask', (Variable, list), 'fluid.layers.merge_lod_tensor')
350 351 352 353 354 355 356 357 358 359 360 361
    check_type(
        in_true,
        'in_true',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
    check_type(
        in_false,
        'in_false',
        (Variable, list, tuple, type(None)),
        'fluid.layers.merge_lod_tensor',
    )
X
Xin Pan 已提交
362
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
363 364 365 366 367 368
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x, 'Mask': mask, 'InTrue': in_true, 'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level},
    )
369 370 371
    return out


372
@static_only
373 374 375 376 377 378 379 380 381 382 383 384
def Print(
    input,
    first_n=-1,
    message=None,
    summarize=20,
    print_tensor_name=True,
    print_tensor_type=True,
    print_tensor_shape=True,
    print_tensor_layout=True,
    print_tensor_lod=True,
    print_phase='both',
):
Y
Yan Chunwei 已提交
385
    '''
386 387
    :api_attr: Static Graph

Y
Yan Chunwei 已提交
388 389 390 391 392 393 394 395 396
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
397
        input (Variable): A Tensor to print.
398
        summarize (int): Number of elements in the tensor to be print. If it's
T
tianshuo78520a 已提交
399
                value is -1, then all elements in the tensor will be print.
Y
yangyaming 已提交
400 401
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
402 403 404
        print_tensor_name (bool, optional): Print the tensor name. Default: True.
        print_tensor_type (bool, optional): Print the tensor type. Defaultt: True.
        print_tensor_shape (bool, optional): Print the tensor shape. Default: True.
405
        print_tensor_layout (bool, optional): Print the tensor layout. Default: True.
406
        print_tensor_lod (bool, optional): Print the tensor lod. Default: True.
407
        print_phase (str): Which phase to displace, including 'forward',
408
                'backward' and 'both'. Default: 'both'. If set to 'backward', will
409 410
                only print the gradients of input tensor; If set to 'both', will
                both print the input tensor itself and the gradients of input tensor.
Y
Yan Chunwei 已提交
411 412

    Returns:
413
        Variable: Output tensor.
Y
Yan Chunwei 已提交
414

415 416 417 418
    NOTES:
        The input and output are two different variables, and in the
        following process, you should use the output variable but not the input,
        otherwise, the print layer doesn't have backward.
Y
Yan Chunwei 已提交
419

Y
Yan Chunwei 已提交
420 421
    Examples:
        .. code-block:: python
422

423 424 425
           import paddle

           paddle.enable_static()
426

427 428 429 430 431 432 433 434 435 436 437 438 439 440
           x = paddle.full(shape=[2, 3], fill_value=3, dtype='int64')
           out = paddle.static.Print(x, message="The content of input layer:")

           main_program = paddle.static.default_main_program()
           exe = paddle.static.Executor(place=paddle.CPUPlace())
           res = exe.run(main_program, fetch_list=[out])
           # Variable: fill_constant_1.tmp_0
           #   - message: The content of input layer:
           #   - lod: {}
           #   - place: CPUPlace
           #   - shape: [2, 3]
           #   - layout: NCHW
           #   - dtype: long
           #   - data: [3 3 3 3 3 3]
Y
Yan Chunwei 已提交
441
    '''
442 443 444 445 446 447
    check_variable_and_dtype(
        input,
        'input',
        ['float32', 'float64', 'int32', 'int64', 'bool'],
        'fluid.layers.Print',
    )
448

449 450
    helper = LayerHelper('print' + "_" + input.name, **locals())
    output = helper.create_variable_for_type_inference(input.dtype)
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
    helper.append_op(
        type='print',
        inputs={'In': input},
        outputs={'Out': output},
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_layout': print_tensor_layout,
            'print_tensor_lod': print_tensor_lod,
            'print_phase': print_phase.upper(),
        },
    )
467
    return output
Y
Yan Chunwei 已提交
468 469


H
Huihuang Zheng 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532
def Assert(cond, data=None, summarize=20, name=None):
    '''
    This API creates an op that asserts the given condition is true. If the
    condition is false, prints the tensors in data. ``summarize`` specifies the
    number of the elements in the tensors to print.

    Args:
        cond (Variable): The boolean condition tensor whose numel should be 1.
        data (list|tuple, optional): list or tuple of tensors to print when
            condition is not true. If it's ``None``, no tensor will be printed.
            The default value is ``None``.
        summarize (int, optional): Number of elements in the tensor to be
            printed. If its value is -1, then all elements in the tensor will
            be printed. The default value is 20.
        name (str, optional): The default value is ``None`` . Normally users
            don't have to set this parameter. For more information, please
            refer to :ref:`api_guide_Name` .

    Returns:
        Operator: the created operation.

    Raises:
        TypeError: If ``cond`` is not boolean Variable.
        TypeError: If ``data`` is not a list or tuple or ``None``.
        TypeError: If ``summarize`` is not int.
        TypeError: If ``name`` is not a string or ``None`` .
        fluid.core.EnforceNotMet: If the condition is False in running time.

    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            x = layers.fill_constant(shape=[2, 3], dtype='float32', value=2.0)
            condition = layers.reduce_max(x) < 1.0 # False
            layers.Assert(condition, [x], 10, "example_assert_layer")

            exe = fluid.Executor()
            try:
                exe.run(fluid.default_main_program())
                # Print x and throws paddle.fluid.core.EnforceNotMet exception
                # Example printed message for x:
                #
                # Variable: fill_constant_0.tmp_0
                #   - lod: {}
                #   - place: CPUPlace()
                #   - shape: [2, 3]
                #   - layout: NCHW
                #   - dtype: float
                #   - data: [2 2 2 2 2 2]
            except fluid.core.EnforceNotMet as e:
                print("Assert Exception Example")

    '''
    check_variable_and_dtype(cond, "cond", ["bool"], "fluid.layers.Assert")
    check_type(data, "data", (list, tuple, type(None)), "fluid.layers.Assert")
    check_type(summarize, "summarize", int, "fluid.layers.Assert")
    check_type(name, "name", (str, type(None)), "fluid.layers.Assert")

    layer_name = name if name else ('assert_' + cond.name)
    helper = LayerHelper(layer_name, **locals())

533 534 535 536 537
    op = helper.append_op(
        type="assert",
        inputs={"Cond": cond, "Data": [] if data is None else list(data)},
        attrs={"summarize": summarize},
    )
H
Huihuang Zheng 已提交
538 539 540 541

    return op


Y
Yu Yang 已提交
542 543
class BlockGuard(object):
    """
544 545 546 547
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
548 549
    """

550 551
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
552
            raise TypeError("BlockGuard takes a program")
553
        self.main_program = main_program
Y
Yu Yang 已提交
554 555

    def __enter__(self):
W
Wu Yi 已提交
556
        self.main_program._create_block()
Y
Yu Yang 已提交
557 558

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
559
        self.main_program._rollback()
Y
Yu Yang 已提交
560 561 562 563 564
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
565 566 567 568 569
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
570 571
    """

Y
Yu Yang 已提交
572
    def __init__(self, rnn):
X
Xin Pan 已提交
573
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
574
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
575
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
576 577 578 579
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
580
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
581 582

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
583 584
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
585
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
586
        self.rnn._complete_op()
587 588 589
        return super(BlockGuardWithCompletion, self).__exit__(
            exc_type, exc_val, exc_tb
        )
Y
Yu Yang 已提交
590 591 592 593


class StaticRNNMemoryLink(object):
    """
594 595 596 597
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
598 599 600 601 602 603 604 605 606


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
607 608 609 610 611 612 613 614 615
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
616
    """
617 618
    :api_attr: Static Graph

619 620
    StaticRNN class.

621 622 623 624 625 626 627
    The StaticRNN can process a batch of sequence data. The first dimension of inputs
    represents sequence length, the length of each input sequence must be equal.
    StaticRNN will unfold sequence into time steps, user needs to define how to process
    each time step during the :code:`with` step.

    Args:
        name (str, optional): Please refer to :ref:`api_guide_Name`, Default None.
C
chengduo 已提交
628 629

    Examples:
630 631 632 633 634 635
        .. code-block:: python

            import paddle.fluid as fluid
            import paddle.fluid.layers as layers

            vocab_size, hidden_size=10000, 200
636 637
            x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
            # create word sequence
638 639 640 641 642
            x_emb = layers.embedding(
                input=x,
                size=[vocab_size, hidden_size],
                dtype='float32',
                is_sparse=False)
643
            # transform batch size to dim 1
644 645 646 647
            x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

            rnn = fluid.layers.StaticRNN()
            with rnn.step():
648
                # mark created x_emb as input, each step process a word
649
                word = rnn.step_input(x_emb)
650
                # create prev memory parameter, batch size comes from word
651 652
                prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
653 654
                # use hidden to update prev
                rnn.update_memory(prev, hidden)
655
                # mark hidden as output
656
                rnn.step_output(hidden)
657
            # get StaticrNN final output
658
            result = rnn()
C
chengduo 已提交
659

660
    """
661

Y
Yu Yang 已提交
662 663 664 665
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

666
    def __init__(self, name=None):
667
        check_type(name, "name", (str, type(None)), "fluid.layers.StaticRNN")
668
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
669 670 671 672 673 674 675 676
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
677
        """
678 679
        Define operators in each step. step is used in :code:`with` block, OP in :code:`with` block
        will be executed sequence_len times (sequence_len is the length of input)
C
chengduo 已提交
680
        """
Y
Yang Yang 已提交
681
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
682 683 684 685 686

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

687 688 689 690 691 692 693 694 695
    def memory(
        self,
        init=None,
        shape=None,
        batch_ref=None,
        init_value=0.0,
        init_batch_dim_idx=0,
        ref_batch_dim_idx=1,
    ):
696
        """
C
chengduo 已提交
697 698 699
        Create a memory variable for static rnn.
        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
700 701
        must be set, and this function will create a new variable with shape and batch_ref
        to initialize :code:`init` Variable.
C
chengduo 已提交
702

703
        Args:
704
            init(Variable, optional): Tensor used to init memory. If it is not set,
C
chengduo 已提交
705 706
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
707 708 709 710 711 712 713
            shape(list|tuple): When :code:`init` is None use this arg to initialize memory shape.
            NOTE the shape does not contain batch_size. Default: None.
            batch_ref(Variable, optional): When :code:`init` is None, memory's batch size will
            be set as batch_ref's ref_batch_dim_idx value. Default: None.
            init_value(float, optional): When :code:`init` is None, used to init memory's value. Default: 0.0.
            init_batch_dim_idx(int, optional): the batch_size axis of the :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int, optional): the batch_size axis of the :code:`batch_ref` Variable. Default: 1.
C
chengduo 已提交
714 715

        Returns:
716 717 718 719 720
            Variable: The memory variable.

        Examples 1:
            .. code-block:: python

721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
744 745 746


        Examples 2:
747 748
            .. code-block:: python

749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers
                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
                boot_memory = fluid.layers.data(name='boot', shape=[hidden_size], dtype='float32', lod_level=1)
                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # init memory
                        prev = rnn.memory(init=boot_memory)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # update hidden with prev
                        rnn.update_memory(prev, hidden)
771

772
        """
Y
Yu Yang 已提交
773
        self._assert_in_rnn_block_('memory')
774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
        check_type(
            init,
            "init",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            shape,
            "shape",
            (list, tuple, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
        check_type(
            batch_ref,
            "batch_ref",
            (Variable, type(None)),
            "fluid.layers.StaticRNN.memory",
        )
Y
Yu Yang 已提交
792
        if init is None:
793
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
794
                raise ValueError(
795 796
                    "if init is None, memory at least need shape and batch_ref"
                )
797
            parent_block = self._parent_block()
798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
            var_name = unique_name.generate_with_ignorable_key(
                "@".join([self.helper.name, "memory_boot"])
            )
            boot_var = parent_block.create_var(
                name=var_name,
                shape=shape,
                dtype=batch_ref.dtype,
                persistable=False,
            )

            parent_block.append_op(
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
                    'shape': boot_var.shape,
                    'dtype': boot_var.dtype,
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx,
                },
            )
Y
Yu Yang 已提交
820 821 822 823

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
824 825 826
                name=unique_name.generate_with_ignorable_key(
                    "@".join([self.helper.name, "mem"])
                ),
F
fengjiayi 已提交
827
                dtype=init.dtype,
828 829 830 831 832
                shape=init.shape,
            )
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem
            )
Y
Yu Yang 已提交
833 834 835
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
836 837 838 839 840 841 842 843
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
844 845 846 847 848
            Variable: The current time step data in the input sequence.

        Examples:
            .. code-block:: python

849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
872

C
chengduo 已提交
873
        """
Y
Yu Yang 已提交
874
        self._assert_in_rnn_block_('step_input')
875
        check_type(x, "x", Variable, "fluid.layers.StaticRNN.step_input")
Y
Yu Yang 已提交
876
        if self.seq_len is None:
Y
Yu Yang 已提交
877
            self.seq_len = x.shape[0]
878
        elif x.shape[0] != -1 and self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
879 880
            raise ValueError("Static RNN only take fix seq_len input")

881 882 883
        ipt = self.helper.create_variable(
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type
        )
Y
Yu Yang 已提交
884 885 886 887
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
888 889 890 891 892 893 894 895
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
896 897 898 899

        Examples:
            .. code-block:: python

900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        rnn.step_output(hidden)

                result = rnn()
926

C
chengduo 已提交
927
        """
Y
Yu Yang 已提交
928
        self._assert_in_rnn_block_('step_output')
929
        check_type(o, "o", Variable, "fluid.layers.StaticRNN.step_output")
Y
Yu Yang 已提交
930

X
Xin Pan 已提交
931
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
932 933 934 935 936 937
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
            attrs={'dtype': o.dtype},
        )
Y
Yu Yang 已提交
938

939 940 941 942 943
        out_var = self._parent_block().create_var(
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
            dtype=tmp_o.dtype,
        )
Y
Yu Yang 已提交
944 945 946 947

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
948 949 950 951
        """
        Mark the StaticRNN output variables.

        Args:
952
            outputs: The output Tensor, can mark multiple variables as output
C
chengduo 已提交
953 954 955

        Returns:
            None
956 957 958 959

        Examples:
            .. code-block:: python

960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986
                import paddle.fluid as fluid
                import paddle.fluid.layers as layers

                vocab_size, hidden_size=10000, 200
                x = fluid.data(name="x", shape=[None, 1, 1], dtype='int64')
                # create word sequence
                x_emb = layers.embedding(
                        input=x,
                        size=[vocab_size, hidden_size],
                        dtype='float32',
                        is_sparse=False)
                # transform batch size to dim 1
                x_emb = layers.transpose(x_emb, perm=[1, 0, 2])

                rnn = fluid.layers.StaticRNN()
                with rnn.step():
                        # mark created x_emb as input, each step process a word
                        word = rnn.step_input(x_emb)
                        # create prev memory parameter, batch size comes from word
                        prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
                        hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
                        # use hidden to update prev
                        rnn.update_memory(prev, hidden)
                        # mark each step's hidden and word as output
                        rnn.output(hidden, word)

                result = rnn()
C
chengduo 已提交
987
        """
Y
Yu Yang 已提交
988 989 990 991
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
992
        """
993
        Update the memory from :code:`mem` to :code:`var`.
C
chengduo 已提交
994 995 996

        Args:
            mem(Variable): the memory variable.
997
            var(Variable): the plain variable generated in RNN block, used to update memory.
T
tianshuo78520a 已提交
998
                           var and mem should have same dims and data type.
C
chengduo 已提交
999 1000 1001

        Returns:
            None
1002

C
chengduo 已提交
1003
        """
1004 1005
        check_type(mem, "mem", Variable, "fluid.layers.StaticRNN.update_memory")
        check_type(var, "var", Variable, "fluid.layers.StaticRNN.update_memory")
Y
Yu Yang 已提交
1006 1007
        self.memories[mem.name].mem = var

1008
    def _parent_block(self):
1009
        prog = self.helper.main_program
Y
Yu Yang 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1025
    def _complete_op(self):
1026 1027
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
1028
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
1043 1044 1045
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
1046 1047 1048 1049 1050 1051 1052 1053
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

1054 1055 1056
        parameters = [
            parent_block._find_var_recursive(name) for name in set(params)
        ]
Y
Yu Yang 已提交
1057 1058

        step_scope = parent_block.create_var(
1059 1060
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yu Yang 已提交
1061 1062 1063 1064

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
1065
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
1066 1067 1068
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
1069
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
1070 1071
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
1072 1073 1074
            assert (
                mem.mem is not None
            ), "%s should be updated in every step." % (mem.init.name)
Y
Yu Yang 已提交
1075 1076
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
1077
            new_mem = self.helper.create_variable_for_type_inference(
1078 1079 1080 1081 1082 1083 1084 1085
                dtype=mem_var.dtype
            )
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
                attrs={'dtype': mem_var.dtype},
            )
Y
Yu Yang 已提交
1086 1087 1088

            memories.append(new_mem.name)

1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103
        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters,
            },
            outputs={'outputs': outlinks, 'step_scopes': [step_scope]},
            attrs={
                'has_states': len(pre_memories) > 0,
                'ex_states': pre_memories,
                'states': memories,
                'sub_block': rnn_block,
            },
        )
Y
Yu Yang 已提交
1104 1105


Y
Yang Yang(Tony) 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
1121
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
1122 1123 1124
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


1125 1126 1127
def get_inputs_outputs_in_block(
    current_block, inner_inputs, inner_outputs, helper
):
1128 1129 1130 1131 1132 1133 1134 1135
    """
    Find inputs and outputs in current control flow block.
    :param current_block: Current control flow block.
    :param inner_inputs: Input var name of ops in current block.
    :param inner_outputs: Output var name of ops in current block.
    :return: inner_inputs, inner_outputs
    """

1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
    def is_ignore_vars(op, var_name):
        # NOTE(dev): There are some persistable var created in some non-standard API
        # such as "contrib.layers.shuffle_batch". It create a "Seed" used both in
        # Input and Output. This var shall not be considered as a loop_var in
        # control_flow.
        IGNORE_VAR_NAMES = {"shuffle_batch": ["shuffle_batch_seed"]}
        if op.type in IGNORE_VAR_NAMES:
            var_names = IGNORE_VAR_NAMES[op.type]
            for name in var_names:
                if name in var_name:
                    return True
        return False

1149 1150 1151 1152 1153 1154 1155 1156
    # Step1: update inner_inputs and inner_outputs
    # NOTE: Here assumes that all variables are input or output of Ops,
    # but some variables are created without appendding a real op.
    # For example, in `arr = create_array(dtype)`, `arr` is not a output of a op.
    for op in current_block.ops:
        assert isinstance(op, Operator)
        for iname in op.input_names:
            for in_var_name in op.input(iname):
1157
                if in_var_name not in inner_outputs and not is_ignore_vars(
1158 1159
                    op, in_var_name
                ):
1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174
                    inner_inputs.add(in_var_name)

        for oname in op.output_names:
            for out_var_name in op.output(oname):
                inner_outputs.add(out_var_name)

    # Step2: Remove LOD_TENSOR_ARRAY created in current control flow block.
    remove_inner_inputs = set()
    parent_block = helper.main_program.block(current_block.parent_idx)

    for in_var_name in inner_inputs:
        parent_block_var = parent_block._find_var_recursive(in_var_name)
        current_block_var = None
        if current_block.has_var(in_var_name):
            current_block_var = current_block.var(in_var_name)
1175 1176 1177 1178 1179
        if (
            not parent_block_var
            and current_block_var
            and current_block_var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1180 1181 1182 1183 1184 1185 1186
            remove_inner_inputs.add(in_var_name)

    inner_inputs = inner_inputs - remove_inner_inputs

    return inner_inputs, inner_outputs


Y
Yang Yang(Tony) 已提交
1187
class While(object):
X
Xin Pan 已提交
1188
    """
1189
    :api_attr: Static Graph
1190

1191
    while loop control flow. Repeat while body until cond is False.
X
Xin Pan 已提交
1192

1193 1194 1195 1196
    Note:
        A new OP :ref:`api_fluid_layers_while_loop` is highly recommended instead of ``While`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_while_loop` is easier to use and is called with less code but does the same thing as ``While`` .

1197 1198 1199 1200 1201 1202
    Notice:
        Local variables created in ``While`` are similar to that created in while of C++, and cannot be referenced externally.
        As a result, they cannot be obtained through ``fetch_list`` of ``Executor``. If you would like to access the variable
        out of ``while`` , PaddlePaddle provides ``assign`` API to assign local variables to external. Please refer to example
        code 2 or refer to `issue#22724 <https://github.com/PaddlePaddle/Paddle/issues/22724>`_.

X
Xin Pan 已提交
1203
    Args:
1204
        cond(Variable): A Tensor whose data type is bool controlling whether to continue looping.
G
guofei 已提交
1205
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
1206
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
1207

1208
    Examples 1:
X
Xin Pan 已提交
1209
          .. code-block:: python
1210

1211
            import paddle.fluid as fluid
1212 1213 1214 1215 1216
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)           # loop counter

            loop_len = fluid.layers.fill_constant(shape=[1],dtype='int64', value=10)    # loop length
1217

1218
            cond = fluid.layers.less_than(x=i, y=loop_len)
1219
            while_op = fluid.layers.While(cond=cond)
1220
            with while_op.block():
1221
                i = fluid.layers.increment(x=i, value=1, in_place=True)
1222
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)
1223 1224 1225 1226 1227

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[i])
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
            print(res) # [array([10])]


    Examples 2:
          .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np

            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
            loop_len = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            one = fluid.layers.fill_constant(shape=[1], dtype='float32', value=1)
            data = fluid.data(name='data', shape=[1], dtype='float32')
            sums = fluid.layers.fill_constant(shape=[1], dtype='float32', value=0)  # Define the variable to be obtained ouside of While, which name should be different from the variable inside the While to be obtained

            cond = fluid.layers.less_than(x=i, y=loop_len)
            while_op = fluid.layers.While(cond=cond)
            with while_op.block():
                sums_tensor = fluid.layers.elementwise_add(x=data, y=data)
                fluid.layers.assign(sums_tensor, sums)  # Update the value of sums_tensor defined in While to the sums which defined outside of While through layers.assign
                i = fluid.layers.increment(x=i, value=1, in_place=True)
                data = fluid.layers.elementwise_add(x=data, y=one)
                fluid.layers.less_than(x=i, y=loop_len, cond=cond)

            feed_data = np.ones(1).astype('float32')
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())
            res = exe.run(fluid.default_main_program(), feed={'data': feed_data}, fetch_list=sums)
            print(res[0])  # [2.]    # Because the data in While does not update the value outside the While, the value of sums is [2.] after the loop
X
Xin Pan 已提交
1257 1258
    """

Y
Yang Yang(Tony) 已提交
1259 1260 1261 1262
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
1263
    def __init__(self, cond, is_test=False, name=None):
1264
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
1265
        self.status = While.BEFORE_WHILE_BLOCK
1266
        check_variable_and_dtype(cond, 'cond', ['bool'], 'fluid.layers.While')
Y
Yang Yang(Tony) 已提交
1267
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
1268
            raise TypeError(
1269 1270 1271 1272
                "condition expected shape as [1], but given shape as {0}.".format(
                    list(cond.shape)
                )
            )
Y
Yang Yang(Tony) 已提交
1273
        self.cond_var = cond
C
chengduo 已提交
1274
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
1275 1276 1277 1278

    def block(self):
        return WhileGuard(self)

1279
    def _complete(self):
Y
Yang Yang(Tony) 已提交
1280 1281
        main_program = self.helper.main_program
        while_block = main_program.current_block()
1282
        parent_block = main_program.block(
1283 1284
            main_program.current_block().parent_idx
        )
Y
Yang Yang(Tony) 已提交
1285 1286 1287

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
1288
        x_name_list, inner_outputs = get_inputs_outputs_in_block(
1289 1290
            while_block, x_name_list, inner_outputs, self.helper
        )
Y
Yang Yang(Tony) 已提交
1291 1292 1293

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
1294 1295 1296
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
1297

1298
        x_name_list |= set(map(lambda x: x.name, out_vars))
1299 1300 1301
        # NOTE(dev): cond_var has been contained in Input('Condition'), so
        # we remove it from Input('X')
        x_name_list -= {self.cond_var.name}
1302

Y
Yang Yang(Tony) 已提交
1303
        step_scope = parent_block.create_var(
1304 1305
            type=core.VarDesc.VarType.STEP_SCOPES
        )
Y
Yang Yang(Tony) 已提交
1306 1307 1308 1309

        parent_block.append_op(
            type='while',
            inputs={
1310 1311 1312 1313 1314
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
                'Condition': [self.cond_var],
Y
Yang Yang(Tony) 已提交
1315
            },
1316 1317 1318
            outputs={'Out': out_vars, 'StepScopes': [step_scope]},
            attrs={'sub_block': while_block, "is_test": self.is_test},
        )
Y
Yang Yang(Tony) 已提交
1319 1320


1321 1322 1323
support_ret_buildin_type = (bool, float, six.integer_types)


1324
def assign_skip_lod_tensor_array(input, output):
1325
    """
1326
    Assign input to output, but skip the process of copying LoDTensorArray unless it's created in while_block.
1327
    """
1328 1329

    def has_shape_diff(x_var, y_var):
1330 1331
        if len(x_var.shape) != len(y_var.shape):
            return True
1332
        for x_dim, y_dim in zip(x_var.shape, y_var.shape):
1333 1334
            if x_dim != y_dim and -1 not in [x_dim, y_dim]:
                return True
1335 1336
        return False

1337
    if not isinstance(input, (Variable, core.VarBase)):
1338
        if isinstance(output, Variable) and isinstance(
1339 1340
            input, support_ret_buildin_type
        ):
1341 1342 1343
            assign(input, output)
        else:
            output = input
1344 1345
        return

1346 1347
    if input.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        main_program = input.block.program
1348
        parent_block = main_program.block(
1349 1350
            main_program.current_block().parent_idx
        )
1351 1352 1353
        if parent_block and not parent_block._find_var_recursive(input.name):
            assign(input, output)
    else:
1354 1355 1356 1357 1358
        if (
            isinstance(output, Variable)
            and isinstance(input, Variable)
            and has_shape_diff(input, output)
        ):
1359
            warnings.warn(
1360 1361 1362 1363
                "In dy2static mode, we attemp to assign a variable with shape {} into a variable with shape{}, which is not always right.".format(
                    input.shape, output.shape
                )
            )
1364
        assign(input, output)
1365 1366


G
guofei 已提交
1367
def while_loop(cond, body, loop_vars, is_test=False, name=None):
G
guofei 已提交
1368
    """
1369 1370
    :api_attr: Static Graph

G
guofei 已提交
1371 1372
    while_loop is one of the control flows. Repeats while_loop `body` until `cond` returns False.

1373 1374 1375 1376
    Notice:
        Local variables defined in ``body`` cannot be obtained through ``fetch_list`` of ``Executor`` , variables should
        be defined outside ``body`` and placed in ``loop_vars`` for looping, then these variables can be fetched by ``fetch_list`` .

G
guofei 已提交
1377
    Args:
1378
        cond(Callable): A callable returning a boolean tensor controlling whether to continue looping. And ``cond`` takes
1379
            as many arguments as ``loop_vars`` .
1380 1381 1382
        body(Callable): A callable returning a tuple or list of tensors or LoDTensorArrays of the same arity
            (length and structure) and types as ``loops_vars`` . And ``body`` takes as many arguments as ``loop_vars`` .
        loop_vars(list|tuple): A list or tuple of tensors or LoDTensorArrays that is passed to both ``cond`` and ``body`` .
G
guofei 已提交
1383
        is_test(bool, optional): A flag indicating whether execution is in test phase. Default value is False.
G
guofei 已提交
1384 1385
        name(str, optional): Normally there is no need for users to set this property. For more information, please
            refer to :ref:`api_guide_Name`. Default is None.
1386

G
guofei 已提交
1387
    Returns:
C
Chen Long 已提交
1388
        A list or tuple of Tensors or LoDTensorArrays which returned by ``body`` .
G
guofei 已提交
1389 1390 1391 1392

    Examples:
        .. code-block:: python

1393 1394 1395
            import paddle
            paddle.enable_static()

1396 1397
            def cond(i, ten):
                return i < ten
G
guofei 已提交
1398

1399 1400 1401
            def body(i, ten):
                i = i + 1
                return [i, ten]
G
guofei 已提交
1402

C
Chen Long 已提交
1403 1404 1405 1406 1407 1408
            main_program = paddle.static.default_main_program()
            startup_program = paddle.static.default_startup_program()
            with paddle.static.program_guard(main_program, startup_program):
                i = paddle.full(shape=[1], fill_value=0, dtype='int64')     # loop counter
                ten = paddle.full(shape=[1], fill_value=10, dtype='int64')  # loop length
                i, ten = paddle.static.nn.while_loop(cond, body, [i, ten])
1409

C
Chen Long 已提交
1410
                exe = paddle.static.Executor(paddle.CPUPlace())
1411
                res = exe.run(main_program, feed={}, fetch_list=[i])
G
guofei 已提交
1412 1413 1414 1415 1416 1417 1418 1419
                print(res) # [array([10])]
    """
    helper = LayerHelper('while_loop', **locals())

    if not callable(cond):
        raise TypeError("cond in while_loop should be callable")
    if not callable(body):
        raise TypeError("body in while_loop should be callable")
1420
    check_type(loop_vars, 'loop_vars', (list, tuple), 'fluid.layers.while_loop')
G
guofei 已提交
1421 1422 1423 1424
    if len(loop_vars) == 0:
        raise ValueError("loop_vars in while_loop should not be empty")

    pre_cond = cond(*loop_vars)
1425 1426 1427
    check_variable_and_dtype(
        pre_cond, 'var of cond returned', ['bool'], 'fluid.layers.while_loop'
    )
G
guofei 已提交
1428 1429
    if reduce(lambda a, b: a * b, pre_cond.shape, 1) != 1:
        raise TypeError(
1430
            "the shape of the variable returned by cond should be [1],"
1431 1432
            "but given shape as {0}.".format(list(pre_cond.shape))
        )
G
guofei 已提交
1433

J
Jiabin Yang 已提交
1434
    if _non_static_mode():
1435
        now_cond = pre_cond.numpy()[0]
1436
        while now_cond:
1437 1438 1439 1440 1441 1442
            output_vars = body(*loop_vars)
            if not isinstance(output_vars, (list, tuple)):
                output_vars = [output_vars]
            if len(output_vars) != len(loop_vars):
                raise ValueError(
                    "body in while_loop should return the same arity "
1443 1444
                    "(length and structure) and types as loop_vars"
                )
1445
            now_cond = cond(*output_vars).numpy()[0]
1446
            map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
1447 1448
        return loop_vars

G
guofei 已提交
1449
    while_loop_block = While(pre_cond, is_test, name)
1450
    has_mutable_vars_in_loop = hold_mutable_vars(loop_vars)
G
guofei 已提交
1451
    with while_loop_block.block():
1452 1453 1454 1455 1456 1457 1458 1459 1460
        # If a variable with mutable type is included in loop_vars, like `dict/list`,
        # modifying it in the body function will cause origin variable to be modified
        # synchronously. This will raise an assignment error out of while block.
        # Here we make a copy of the mutable vars to avoid this problem.
        if has_mutable_vars_in_loop:
            new_loop_vars = copy_mutable_vars(loop_vars)
            output_vars = body(*new_loop_vars)
        else:
            output_vars = body(*loop_vars)
1461 1462
        if not isinstance(output_vars, (list, tuple)):
            output_vars = [output_vars]
1463
        try:
1464
            loop_vars = _deal_with_undefined_var(output_vars, loop_vars)
1465 1466
            assert_same_structure(output_vars, loop_vars, check_types=False)
        except ValueError as e:
1467 1468
            raise ValueError(
                "body in while_loop should return the same arity "
1469 1470
                "(length and structure) as loop_vars: {0}".format(e)
            )
1471
        now_cond = cond(*output_vars)
1472
        map_structure(assign_skip_lod_tensor_array, output_vars, loop_vars)
G
guofei 已提交
1473 1474 1475 1476
        assign(now_cond, pre_cond)
    return loop_vars


1477
def _deal_with_undefined_var(output_vars, loop_vars):
1478 1479 1480 1481 1482 1483 1484
    """Deal with undefined var cases, We create undefined variable based on the results of body().
    In Dy2Static, we use undefined var to represent the var created in control flow. This function
    expand the loop_vars and replace original loop_vars.
    1. UndefinedVar = Variable      # create a variable
    2. UndefinedVar = None          # create a undefined var with RETURN_NO_VALUE_MAGIC_NUM
    3. UndefinedVar = List(int)     # create a list of variable
    4. UndefinedVar = value         # create a variable
1485
    """
1486 1487 1488 1489
    from paddle.fluid.dygraph.dygraph_to_static.utils import (
        UndefinedVar,
        create_undefined_variable,
    )
1490 1491

    def create_var_like(o_var):
1492 1493 1494 1495
        if (
            isinstance(o_var, (Variable,) + support_ret_buildin_type)
            or o_var is None
        ):
1496
            return create_undefined_variable()
1497
        if is_sequence(o_var):
1498
            """
1499 1500 1501
            Create a complex container class inside the body of while, including Python list and python Dict
            """
            return map_structure(lambda x: create_undefined_variable(), o_var)
1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514

    if len(output_vars) != len(loop_vars):
        raise ValueError("The length of loop_vars should be the same.")

    results = []
    for o_var, l_var in zip(output_vars, loop_vars):
        if isinstance(l_var, UndefinedVar) or l_var is None:
            results.append(create_var_like(o_var))
        else:
            results.append(l_var)
    return results


1515
def lod_rank_table(x, level=0):
1516 1517
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
1518 1519
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
1520
    a length, both of which are int type. Refering to specified level of LoD,
T
tianshuo78520a 已提交
1521
    the index is the sequence index number and the length represents the
Y
yangyaming 已提交
1522 1523
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
1524 1525 1526 1527

        .. code-block:: text

            x is a LoDTensor:
1528 1529
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
1530 1531
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
1532 1533 1534
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
1535

Y
yangyaming 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
1545 1546 1547 1548

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
1549 1550
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
1551 1552 1553 1554 1555 1556 1557

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

1558
            import paddle.fluid as fluid
Y
yangyaming 已提交
1559
            x = fluid.layers.data(name='x', shape=[10],
1560
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
1561
            out = layers.lod_rank_table(x=x, level=0)
1562
    """
1563 1564 1565
    check_type(x, 'x', (Variable, list), 'lod_rank_table')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1566 1567 1568
            check_type(
                input_x, 'input[' + str(i) + ']', Variable, 'lod_rank_table'
            )
1569

Y
Yu Yang 已提交
1570
    helper = LayerHelper("lod_rank_table", **locals())
1571 1572 1573 1574 1575 1576 1577 1578 1579 1580
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
        name=unique_name.generate("lod_rank_table"),
    )
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level},
    )
Y
Yu Yang 已提交
1581
    return table
Y
Yu Yang 已提交
1582 1583


Y
yuyang18 已提交
1584
@templatedoc()
1585
def max_sequence_len(rank_table):
Y
yuyang18 已提交
1586 1587 1588 1589 1590 1591 1592 1593
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
1594 1595

    Args:
Y
yuyang18 已提交
1596
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
1597 1598

    Returns:
Y
yuyang18 已提交
1599
        ${out_comment}.
F
fengjiayi 已提交
1600 1601
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
1602
    res = helper.create_variable_for_type_inference(dtype="int64")
1603 1604 1605 1606 1607
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res},
    )
F
fengjiayi 已提交
1608 1609 1610
    return res


1611
def lod_tensor_to_array(x, table):
1612
    """
F
fengjiayi 已提交
1613 1614
    Convert a LoDTensor to a LoDTensorArray.

1615 1616 1617 1618 1619
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
1620
    Users should not use it directly.
1621 1622

    Args:
F
fengjiayi 已提交
1623
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
1624 1625
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
1626
                                descending order. It is generally generated
F
fengjiayi 已提交
1627
                                by `layers.lod_rank_table()` API.
1628 1629

    Returns:
F
fengjiayi 已提交
1630
        Variable: The LoDTensorArray that has been converted from the input tensor.
1631 1632 1633 1634

    Examples:
        .. code-block:: python

1635
          import paddle.fluid as fluid
1636 1637 1638
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
1639
    """
1640 1641 1642
    check_type(x, 'x', (Variable, list), 'lod_tensor_to_array')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1643 1644 1645 1646 1647 1648
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'lod_tensor_to_array',
            )
1649 1650 1651
    check_type(table, 'table', (Variable, list), 'lod_tensor_to_array')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
1652 1653 1654 1655 1656 1657
            check_type(
                table_x,
                'table[' + str(i) + ']',
                Variable,
                'lod_tensor_to_array',
            )
1658 1659
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
1660
        name=unique_name.generate("lod_tensor_to_array"),
1661
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1662 1663 1664 1665 1666 1667 1668
        dtype=x.dtype,
    )
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x, 'RankTable': table},
        outputs={'Out': array},
    )
1669 1670 1671
    return array


1672
def array_to_lod_tensor(x, table):
1673
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
1674 1675

    Args:
1676
        x (Variable|list): The lod tensor array to be converted to a tensor.
1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

1688
          import paddle.fluid as fluid
1689 1690 1691 1692
          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
1693
    """
1694 1695 1696
    check_type(x, 'x', (Variable, list), 'array_to_lod_tensor')
    if isinstance(x, (list)):
        for i, input_x in enumerate(x):
1697 1698 1699 1700 1701 1702
            check_type(
                input_x,
                'input[' + str(i) + ']',
                Variable,
                'array_to_lod_tensor',
            )
1703 1704 1705
    check_type(table, 'table', (Variable, list), 'array_to_lod_tensor')
    if isinstance(table, (list)):
        for i, table_x in enumerate(table):
1706 1707 1708 1709 1710 1711
            check_type(
                table_x,
                'table[' + str(i) + ']',
                Variable,
                'array_to_lod_tensor',
            )
1712

1713
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
1714
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
1715 1716 1717 1718 1719
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x, 'RankTable': table},
        outputs={'Out': tmp},
    )
1720 1721 1722
    return tmp


1723
def increment(x, value=1.0, in_place=True):
1724
    """
1725 1726
    The OP is usually used for control flow to increment the data of :attr:`x` by an amount :attr:`value`.
    Notice that the number of elements in :attr:`x` must be equal to 1.
1727

1728
    Parameters:
T
tianshuo78520a 已提交
1729
        x (Variable): A tensor that must always contain only one element, its data type supports
1730 1731 1732
            float32, float64, int32 and int64.
        value (float, optional): The amount to increment the data of :attr:`x`. Default: 1.0.
        in_place (bool, optional): Whether the OP should be performed in-place. Default: True.
1733 1734

    Returns:
1735
        Variable: The elementwise-incremented tensor with the same shape and data type as :attr:`x`.
1736 1737 1738 1739

    Examples:
        .. code-block:: python

1740
          import paddle.fluid as fluid
1741 1742
          counter = fluid.layers.zeros(shape=[1], dtype='float32') # [0.]
          fluid.layers.increment(counter) # [1.]
1743
    """
H
hong 已提交
1744
    if in_dygraph_mode():
1745
        return _C_ops.increment_(x, value)
H
hong 已提交
1746

1747 1748 1749
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'increment'
    )
Y
Yu Yang 已提交
1750
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
1751
    if not in_place:
X
Xin Pan 已提交
1752
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
1753 1754
    else:
        out = x
1755 1756 1757 1758 1759 1760
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
        outputs={'Out': [out]},
        attrs={'step': float(value)},
    )
Y
Yang Yu 已提交
1761
    return out
Y
Yu Yang 已提交
1762 1763


1764
def array_write(x, i, array=None):
1765
    """
1766 1767 1768 1769
    This OP writes the input ``x`` into the i-th position of the ``array``
    :ref:`api_fluid_LoDTensorArray` and returns the modified array.
    If ``array`` is none, a new LoDTensorArray will be created and returned.
    This OP is often used together with :ref:`api_fluid_layers_array_read` OP.
1770 1771

    Args:
1772 1773 1774 1775
        x (Variable): The input data to be written into array. It's multi-dimensional
            Tensor or LoDTensor. Data type: float32, float64, int32, int64.
        i (Variable): 1-D Tensor with shape [1], which represents the position into which
            ``x`` is written. Data type: int64.
1776 1777
        array (LoDTensorArray, optional): The LoDTensorArray into which ``x`` is written.
            The default value is None, when a new LoDTensorArray will be created and returned
1778
            as a result.
1779

1780
    Returns:
1781
        Variable: The input ``array`` after ``x`` is written into.
1782 1783

    Examples:
D
dzhwinter 已提交
1784
        .. code-block:: python
1785

1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
            import paddle.fluid as fluid
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # Write tmp into the position of arr with subscript 10 and return arr.
            arr = fluid.layers.array_write(tmp, i=i)

            # Now, arr is a LoDTensorArray with length 11. We can use array_read OP to read
            # the data at subscript 10 and print it out.
            item = fluid.layers.array_read(arr, i=i)
            input = fluid.layers.Print(item, message="The content of i-th LoDTensor:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
            # 1570533133    The content of i-th LoDTensor:  The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2], which is tmp above.
            # dtype is the corresponding C++ data type, which may vary in different environments.
1809 1810
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
1811 1812
            #       and '__int64' on Windows. They both represent 64-bit integer variables.

1813
    """
J
Jiabin Yang 已提交
1814
    if _non_static_mode():
1815 1816 1817 1818 1819 1820 1821 1822 1823
        assert isinstance(
            x, Variable
        ), "The input data 'x' in array_write must be Variable in dygraph mode"
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_write must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
1824
        i = i.numpy().item(0)
1825 1826 1827
        if array is None:
            array = create_array(x.dtype)
        assert isinstance(
1828 1829
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
1830 1831 1832 1833 1834 1835 1836 1837 1838
        assert i <= len(
            array
        ), "The index 'i' should not be greater than the length of 'array' in dygraph mode"
        if i < len(array):
            array[i] = x
        else:
            array.append(x)
        return array

1839 1840
    check_variable_and_dtype(i, 'i', ['int64'], 'array_write')
    check_type(x, 'x', (Variable), 'array_write')
Y
Yu Yang 已提交
1841
    helper = LayerHelper('array_write', **locals())
1842
    if array is not None:
1843 1844 1845 1846
        if (
            not isinstance(array, Variable)
            or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
        ):
1847
            raise TypeError(
1848 1849
                "array should be tensor array vairable in array_write Op"
            )
Y
Yu Yang 已提交
1850 1851 1852 1853
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1854 1855 1856 1857 1858 1859 1860
            dtype=x.dtype,
        )
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x], 'I': [i]},
        outputs={'Out': [array]},
    )
Y
Yu Yang 已提交
1861 1862 1863
    return array


1864
def create_array(dtype, initialized_list=None):
1865
    """
1866
    This OP creates an LOD_TENSOR_ARRAY. It is used as
1867
    the input of :ref:`api_fluid_layers_array_read` and
1868 1869
    :ref:`api_fluid_layers_array_write`. Also it can be used
    with  :ref:`api_fluid_layers_While` to create RNN network.
1870 1871

    Args:
1872 1873
        dtype (str): The data type of the elements in the lod_tensor_array.
                     Support data type: float32, float64, int32, int64.
1874 1875
        initialized_list(list): Used to initialize as default value for created array.
                    All values in initialized list should be a Tensor.
1876 1877

    Returns:
1878
        Variable: The empty lod_tensor_array. The data type of elements in Tensor is ``dtype``.
1879 1880 1881 1882

    Examples:
        .. code-block:: python

1883
          import paddle.fluid as fluid
1884
          data = fluid.layers.create_array(dtype='float32') # Create a float32 LoDTensorArray.
1885 1886

    """
1887 1888 1889 1890
    array = []
    if initialized_list is not None:
        if not isinstance(initialized_list, (list, tuple)):
            raise TypeError(
1891 1892 1893 1894
                "Require type(initialized_list) should be list/tuple, but received {}".format(
                    type(initialized_list)
                )
            )
1895 1896 1897 1898 1899 1900
        array = list(initialized_list)

    # NOTE: Only support plain list like [x, y,...], not support nested list in static mode.
    for val in array:
        if not isinstance(val, Variable):
            raise TypeError(
1901 1902 1903 1904
                "All values in `initialized_list` should be Variable, but recevied {}.".format(
                    type(val)
                )
            )
1905

J
Jiabin Yang 已提交
1906
    if _non_static_mode():
1907
        return array
1908

Y
Yang Yang(Tony) 已提交
1909
    helper = LayerHelper("array", **locals())
1910
    tensor_array = helper.create_variable(
Y
Yang Yang(Tony) 已提交
1911 1912
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
1913 1914
        dtype=dtype,
    )
Y
Yang Yang(Tony) 已提交
1915

1916 1917 1918 1919 1920
    for val in array:
        array_write(x=val, i=array_length(tensor_array), array=tensor_array)

    return tensor_array

Y
Yang Yang(Tony) 已提交
1921

Y
yuyang18 已提交
1922
@templatedoc()
W
wawltor 已提交
1923
def less_than(x, y, force_cpu=None, cond=None, name=None):
1924
    """
1925

Y
yuyang18 已提交
1926
    ${comment}
1927 1928

    Args:
N
Noel 已提交
1929 1930
        x(Tensor): ${x_comment}.
        y(Tensor): ${y_comment}.
Y
yuyang18 已提交
1931
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
N
Noel 已提交
1932
        cond(Tensor, optional): Optional output which can be any created Tensor
1933
            that meets the requirements to store the result of *less_than*.
N
Noel 已提交
1934
            if cond is None, a new Tensor will be created to store the result.
W
wawltor 已提交
1935 1936
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
1937
    Returns:
Y
yuyang18 已提交
1938
        ${out_comment}.
1939 1940 1941 1942

    Examples:
        .. code-block:: python

N
Noel 已提交
1943 1944 1945 1946 1947 1948 1949
            import paddle

            x = paddle.to_tensor([1, 2, 3, 4], dtype='float32')
            y = paddle.to_tensor([2, 2, 1, 3], dtype='float32')
            result = paddle.less_than(x, y)
            print(result) # [True, False, False, False]

1950
    """
1951 1952 1953 1954 1955 1956
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_than"
    )
1957 1958 1959 1960 1961
    if cond is not None:
        check_type(cond, "cond", Variable, "less_than")
    if force_cpu != None:
        check_type(force_cpu, "force_cpu", bool, "less_than")

Y
Yang Yang(Tony) 已提交
1962 1963
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
1964
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
1965 1966
        cond.stop_gradient = True

Y
yuyang18 已提交
1967 1968 1969 1970
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu

1971 1972 1973 1974 1975 1976
    helper.append_op(
        type='less_than',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Y
Yang Yang(Tony) 已提交
1977 1978 1979
    return cond


Z
zhoukunsheng 已提交
1980
@templatedoc()
W
wawltor 已提交
1981
def less_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
1982
    """
1983
    :alias_main: paddle.less_equal
1984 1985
        :alias: paddle.less_equal,paddle.tensor.less_equal,paddle.tensor.logic.less_equal
        :old_api: paddle.fluid.layers.less_equal
1986

1987
    This OP returns the truth value of :math:`x <= y` elementwise, which is equivalent function to the overloaded operator `<=`.
Z
zhoukunsheng 已提交
1988 1989

    Args:
1990
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1991
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
1992 1993
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *less_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
1994 1995
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
1996 1997

    Returns:
1998
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
1999 2000 2001 2002

    Examples:
        .. code-block:: python

2003
          import paddle.fluid as fluid
2004 2005 2006 2007 2008 2009
          import numpy as np
          label = fluid.layers.assign(np.array([1, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([1, 2], dtype='int32'))
          out = fluid.layers.less_equal(x=label, y=limit) #out=[True, False]
          out1 = label<= limit #out1=[True, False]

Z
zhoukunsheng 已提交
2010
    """
2011 2012 2013 2014 2015 2016
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "less_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "less_equal"
    )
2017
    if cond is not None:
2018
        check_type(cond, "cond", Variable, "less_equal")
2019

Z
zhoukunsheng 已提交
2020 2021 2022 2023 2024 2025 2026
    helper = LayerHelper("less_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2027 2028 2029 2030 2031 2032
    helper.append_op(
        type='less_equal',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Z
zhoukunsheng 已提交
2033 2034 2035 2036
    return cond


@templatedoc()
W
wawltor 已提交
2037
def greater_than(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2038
    """
2039
    :alias_main: paddle.greater_than
2040 2041
        :alias: paddle.greater_than,paddle.tensor.greater_than,paddle.tensor.logic.greater_than
        :old_api: paddle.fluid.layers.greater_than
2042

2043
    This OP returns the truth value of :math:`x > y` elementwise, which is equivalent function to the overloaded operator `>`.
Z
zhoukunsheng 已提交
2044 2045

    Args:
2046
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2047
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2048 2049
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_than*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2050 2051
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2052 2053

    Returns:
2054
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x` .
Z
zhoukunsheng 已提交
2055 2056 2057 2058

    Examples:
        .. code-block:: python

2059
          import paddle.fluid as fluid
2060 2061 2062 2063 2064
          import numpy as np
          label = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          limit = fluid.layers.assign(np.array([3, 2], dtype='int32'))
          out = fluid.layers.greater_than(x=label, y=limit) #out=[False, True]
          out1 = label > limit #out1=[False, True]
Z
zhoukunsheng 已提交
2065
    """
2066 2067 2068 2069 2070 2071
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "greater_than"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "greater_than"
    )
2072
    if cond is not None:
2073
        check_type(cond, "cond", Variable, "greater_than")
2074

Z
zhoukunsheng 已提交
2075 2076 2077 2078 2079 2080 2081
    helper = LayerHelper("greater_than", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2082
    if in_dygraph_mode():
2083
        return _C_ops.greater_than(x, y, -1)
2084
    else:
2085 2086 2087 2088 2089 2090
        helper.append_op(
            type='greater_than',
            inputs={'X': [x], 'Y': [y]},
            outputs={'Out': [cond]},
            attrs=attrs,
        )
2091
        return cond
Z
zhoukunsheng 已提交
2092 2093 2094


@templatedoc()
W
wawltor 已提交
2095
def greater_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2096
    """
2097
    :alias_main: paddle.greater_equal
2098 2099
        :alias: paddle.greater_equal,paddle.tensor.greater_equal,paddle.tensor.logic.greater_equal
        :old_api: paddle.fluid.layers.greater_equal
2100

2101
    This OP returns the truth value of :math:`x >= y` elementwise, which is equivalent function to the overloaded operator `>=`.
Z
zhoukunsheng 已提交
2102 2103

    Args:
2104
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2105
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2106 2107
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *greater_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2108 2109
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2110 2111

    Returns:
2112
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2113 2114 2115 2116

    Examples:
        .. code-block:: python

2117
          import paddle.fluid as fluid
2118 2119 2120 2121 2122 2123
          import numpy as np

          label = fluid.layers.assign(np.array([2, 2], dtype='int32'))
          limit = fluid.layers.assign(np.array([2, 3], dtype='int32'))
          out = fluid.layers.greater_equal(x=label, y=limit) #out=[True, False]
          out_1 = label >= limit #out1=[True, False]
2124

Z
zhoukunsheng 已提交
2125
    """
2126 2127 2128 2129 2130 2131
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "greater_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "greater_equal"
    )
2132
    if cond is not None:
2133
        check_type(cond, "cond", Variable, "greater_equal")
2134

Z
zhoukunsheng 已提交
2135 2136 2137 2138 2139 2140 2141
    helper = LayerHelper("greater_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

    attrs = dict()

2142 2143 2144 2145 2146 2147
    helper.append_op(
        type='greater_equal',
        inputs={'X': [x], 'Y': [y]},
        outputs={'Out': [cond]},
        attrs=attrs,
    )
Z
zhoukunsheng 已提交
2148 2149 2150
    return cond


W
wawltor 已提交
2151
def equal(x, y, cond=None, name=None):
2152 2153 2154 2155
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
W
wangchaochaohu 已提交
2156 2157
        x(Variable): Tensor, data type is float32, float64, int32, int64.
        y(Variable): Tensor, data type is float32, float64, int32, int64.
2158
        cond(Variable, optional): Optional output which can be any created
W
wangchaochaohu 已提交
2159 2160
            Variable that meets the requirements to store the result of *equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2161 2162
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
2163 2164

    Returns:
W
wangchaochaohu 已提交
2165 2166
        Variable: output Tensor, it's shape is the same as the input's Tensor,
        and the data type is bool.
2167 2168 2169 2170

    Examples:
        .. code-block:: python

2171
          import paddle.fluid as fluid
W
wangchaochaohu 已提交
2172 2173 2174 2175 2176 2177 2178
          import numpy as np
          out_cond =fluid.data(name="input1", shape=[2], dtype='bool')
          label = fluid.layers.assign(np.array([3, 3], dtype="int32"))
          limit = fluid.layers.assign(np.array([3, 2], dtype="int32"))
          label_cond = fluid.layers.assign(np.array([1, 2], dtype="int32"))
          out1 = fluid.layers.equal(x=label,y=limit) #out1=[True, False]
          out2 = fluid.layers.equal(x=label_cond,y=limit, cond=out_cond) #out2=[False, True] out_cond=[False, True]
2179
    """
H
hong 已提交
2180 2181
    if in_dygraph_mode():
        default_axis = -1
2182
        return _C_ops.equal(x, y, default_axis)
H
hong 已提交
2183

2184 2185 2186 2187 2188 2189
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "equal"
    )
2190
    if cond is not None:
2191
        check_type(cond, "cond", Variable, "equal")
2192

2193 2194
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
2195
        cond = helper.create_variable_for_type_inference(dtype='bool')
2196 2197
        cond.stop_gradient = True

2198 2199 2200
    helper.append_op(
        type='equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}
    )
2201 2202 2203
    return cond


W
wawltor 已提交
2204
def not_equal(x, y, cond=None, name=None):
Z
zhoukunsheng 已提交
2205
    """
2206
    :alias_main: paddle.not_equal
2207 2208
        :alias: paddle.not_equal,paddle.tensor.not_equal,paddle.tensor.logic.not_equal
        :old_api: paddle.fluid.layers.not_equal
2209

2210
    This OP returns the truth value of :math:`x != y` elementwise, which is equivalent function to the overloaded operator `!=`.
Z
zhoukunsheng 已提交
2211 2212

    Args:
2213
        x(Variable): First input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2214
        y(Variable): Second input to compare which is N-D tensor. The input data type should be float32, float64, int32, int64.
2215 2216
        cond(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of *not_equal*.
            if cond is None, a new Varibale will be created to store the result.
W
wawltor 已提交
2217 2218
        name(str, optional): The default value is None.  Normally there is no need for
            user to set this property.  For more information, please refer to :ref:`api_guide_Name`.
Z
zhoukunsheng 已提交
2219 2220

    Returns:
2221
        Variable, the output data type is bool: The tensor variable storing the output, the output shape is same as input :attr:`x`.
Z
zhoukunsheng 已提交
2222 2223 2224 2225

    Examples:
        .. code-block:: python

2226
          import paddle.fluid as fluid
2227

2228 2229
          label = fluid.layers.data(name='label', shape=[1], dtype='int64')
          limit = fluid.layers.fill_constant(shape=[1], value=1, dtype='int64')
Z
zhoukunsheng 已提交
2230 2231
          out = fluid.layers.not_equal(x=label, y=limit)
    """
2232 2233 2234 2235 2236 2237
    check_variable_and_dtype(
        x, "x", ["float32", "float64", "int32", "int64"], "not_equal"
    )
    check_variable_and_dtype(
        y, "y", ["float32", "float64", "int32", "int64"], "not_equal"
    )
2238
    if cond is not None:
2239
        check_type(cond, "cond", Variable, "not_equal")
2240

Z
zhoukunsheng 已提交
2241 2242 2243 2244 2245
    helper = LayerHelper("not_equal", **locals())
    if cond is None:
        cond = helper.create_variable_for_type_inference(dtype='bool')
        cond.stop_gradient = True

2246 2247 2248
    helper.append_op(
        type='not_equal', inputs={'X': [x], 'Y': [y]}, outputs={'Out': [cond]}
    )
Z
zhoukunsheng 已提交
2249 2250 2251
    return cond


2252
def array_read(array, i):
2253
    """
2254
    This OP is used to read data at the specified position from the input array
2255
    :ref:`api_fluid_LoDTensorArray` . ``array`` is the input array and ``i``
2256
    is the specified read position. This OP is often used together with
2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268
    :ref:`api_fluid_layers_array_write` OP.

    Case 1:
    ::
        Input:
            The shape of first three tensors are [1], and that of the last one is [1,2]:
                array = ([0.6], [0.1], [0.3], [0.4, 0.2])
            And:
                i = [3]

        Output:
            output = [0.4, 0.2]
2269

K
kavyasrinet 已提交
2270
    Args:
2271 2272 2273
        array (LoDTensorArray): The input LoDTensorArray.
        i (Variable): 1-D Tensor, whose shape is [1] and dtype is int64. It represents the
            specified read position of ``array``.
2274

K
kavyasrinet 已提交
2275
    Returns:
2276
        Variable: The LoDTensor or Tensor that is read at the specified position of ``array``.
2277

K
kavyasrinet 已提交
2278
    Examples:
2279 2280
        .. code-block:: python

2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308
            # First we're going to create a LoDTensorArray, then we're going to write the Tensor into
            # the specified position, and finally we're going to read the Tensor at that position.
            import paddle.fluid as fluid
            arr = fluid.layers.create_array(dtype='float32')
            tmp = fluid.layers.fill_constant(shape=[3, 2], dtype='int64', value=5)
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is the Tensor with shape [3,2], and if we write it into the position with subscript 10
            # of the empty-array: arr, then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i, array=arr)
            # Read the data of the position with subscript 10.
            item = fluid.layers.array_read(arr, i)

            # You can print out the data via executor.
            input = fluid.layers.Print(item, message="The LoDTensor of the i-th position:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:

            # 1569588169  The LoDTensor of the i-th position: The place is:CPUPlace
            # Tensor[array_read_0.tmp_0]
            #    shape: [3,2,]
            #    dtype: l
            #    data: 5,5,5,5,5,5,

            # the output is 2-D Tensor with shape [3,2].
            # dtype is the corresponding C++ data type, which may vary in different environments.
2309 2310
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2311
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2312
    """
J
Jiabin Yang 已提交
2313
    if _non_static_mode():
2314
        assert isinstance(
2315 2316
            array, list
        ), "The 'array' in array_read must be list in dygraph mode"
2317 2318 2319 2320 2321 2322
        assert isinstance(
            i, Variable
        ), "The index 'i' in array_read must be Variable in dygraph mode"
        assert i.shape == [
            1
        ], "The shape of index 'i' should be [1] in dygraph mode"
2323
        i = i.numpy().item(0)
2324 2325
        return array[i]

2326
    check_variable_and_dtype(i, 'i', ['int64'], 'array_read')
Y
Yu Yang 已提交
2327
    helper = LayerHelper('array_read', **locals())
2328 2329 2330 2331
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
Y
Yu Yang 已提交
2332
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
2333
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
2334 2335 2336 2337 2338
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array], 'I': [i]},
        outputs={'Out': [out]},
    )
Y
Yu Yang 已提交
2339
    return out
Y
Yang Yu 已提交
2340 2341


2342
def shrink_memory(x, i, table):
2343
    """
Y
yuyang18 已提交
2344
    This function creates an operator to shrink rnn memory using the RankTable
2345
    as mentioned in the input parameter.
Y
yuyang18 已提交
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
2366
    """
Y
Yang Yu 已提交
2367
    helper = LayerHelper('shrink_memory', **locals())
2368 2369 2370
    check_type(x, 'x', Variable, 'shrink_memory')
    check_type(i, 'i', Variable, 'shrink_memory')
    check_type(table, 'table', Variable, 'shrink_memory')
X
Xin Pan 已提交
2371
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
2372 2373 2374 2375 2376 2377
    helper.append_op(
        type='shrink_rnn_memory',
        inputs={'X': [x], 'I': [i], 'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={},
    )
Y
Yang Yu 已提交
2378
    return out
Y
Yang Yu 已提交
2379 2380


2381
def array_length(array):
2382
    """
2383
    This OP is used to get the length of the input array :ref:`api_fluid_LoDTensorArray` .
2384
    It can be used together with :ref:`api_fluid_layers_array_read` , :ref:`api_fluid_layers_array_write` ,
T
tianshuo78520a 已提交
2385
    :ref:`api_fluid_layers_While` OP to traverse, read and write LoDTensorArray.
2386

K
kavyasrinet 已提交
2387
    Args:
2388
        array (LoDTensorArray): The input array that will be used to compute the length.
K
kavyasrinet 已提交
2389 2390

    Returns:
2391
        Variable: 1-D Tensor with shape [1], which is the length of array. Datatype: int64.
K
kavyasrinet 已提交
2392 2393

    Examples:
Q
qiaolongfei 已提交
2394
        .. code-block:: python
K
kavyasrinet 已提交
2395

2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411
            import paddle.fluid as fluid
            tmp = fluid.layers.zeros(shape=[10], dtype='int32')
            i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
            # tmp is 1-D Tensor with shape [10]. We write tmp into arr on subscript 10,
            # then the length of arr becomes 11.
            arr = fluid.layers.array_write(tmp, i=i)
            # return the length of arr
            arr_len = fluid.layers.array_length(arr)

            # You can use executor to print out the length of LoDTensorArray.
            input = fluid.layers.Print(arr_len, message="The length of LoDTensorArray:")
            main_program = fluid.default_main_program()
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(main_program)

            # The printed result is:
Q
qiaolongfei 已提交
2412

2413 2414 2415 2416 2417
            # 1569576542  The length of LoDTensorArray:   The place is:CPUPlace
            # Tensor[array_length_0.tmp_0]
            #    shape: [1,]
            #    dtype: l
            #    data: 11,
2418

2419 2420 2421
            # 1-D Tensor with shape [1], whose value is 11. It means that the length of LoDTensorArray
            # is 11.
            # dtype is the corresponding C++ data type, which may vary in different environments.
2422 2423
            # Eg: if the data type of tensor is int64, then the corresponding C++ data type is int64_t,
            #       so the dtype value is typeid(int64_t).Name(), which is 'x' on MacOS, 'l' on Linux,
2424
            #       and '__int64' on Windows. They both represent 64-bit integer variables.
2425
    """
2426

J
Jiabin Yang 已提交
2427
    if _non_static_mode():
2428
        assert isinstance(
2429 2430
            array, list
        ), "The 'array' in array_write must be a list in dygraph mode"
2431 2432
        return len(array)

2433 2434 2435 2436
    if (
        not isinstance(array, Variable)
        or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY
    ):
2437
        raise TypeError(
2438 2439
            "array should be tensor array vairable in array_length Op"
        )
2440

Y
Yang Yu 已提交
2441
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
2442
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
2443
    tmp.stop_gradient = True
2444 2445 2446
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}
    )
Y
Yang Yu 已提交
2447
    return tmp
Y
Yu Yang 已提交
2448 2449 2450


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
2451
    """
2452 2453 2454
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
2455 2456 2457
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
2458
    def __init__(self, block):
2459
        check_type(block, "block", ConditionalBlock, "ConditionalBlockGuard")
Y
Yu Yang 已提交
2460 2461 2462 2463 2464 2465 2466 2467
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
2468 2469 2470
        return super(ConditionalBlockGuard, self).__exit__(
            exc_type, exc_val, exc_tb
        )
Y
Yu Yang 已提交
2471 2472 2473


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
2474 2475 2476 2477 2478 2479 2480 2481
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
T
tianshuo78520a 已提交
2482
        is_scalar_condition (bool): whether the branch is controlled by a scalar.
Y
Yan Chunwei 已提交
2483 2484 2485 2486 2487
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

2488
             import paddle.fluid as fluid
Y
Yan Chunwei 已提交
2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499
             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

2500
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
2501
        for each_input in inputs:
2502
            check_type(each_input, "input", Variable, "ConditionalBlock")
Y
Yu Yang 已提交
2503
        self.inputs = inputs
2504
        self.is_scalar_condition = is_scalar_condition
2505
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
2506 2507 2508 2509 2510 2511 2512 2513 2514 2515

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()
2516 2517 2518
        params, intermediate = get_inputs_outputs_in_block(
            inside_block, params, intermediate, helper=self.helper
        )
Y
Yu Yang 已提交
2519

2520 2521 2522
        # Todo(liym27) Here assume that all params are in recursive parent block
        # but when minimize() called in control flow, some params may be in
        # conditional grad block
Y
Yu Yang 已提交
2523
        param_list = [
W
Wu Yi 已提交
2524
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
2525 2526
        ]

X
Xin Pan 已提交
2527 2528 2529 2530 2531
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
2532 2533

        step_scope = parent_block.create_var(
2534 2535
            type=core.VarDesc.VarType.STEP_SCOPES
        )
2536
        conditional_block_op = parent_block.append_op(
Y
Yu Yang 已提交
2537 2538
            type='conditional_block',
            inputs={
2539 2540
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
2541
            },
2542
            outputs={'Out': out_list, 'Scope': [step_scope]},
2543 2544
            attrs={
                'sub_block': inside_block,
2545 2546 2547
                'is_scalar_condition': self.is_scalar_condition,
            },
        )
2548

2549
        if self.need_append_conditional_block_grad(inside_block):
2550 2551 2552
            self.append_conditional_block_grad(
                parent_block, inside_block, conditional_block_op
            )
2553 2554 2555

    def need_append_conditional_block_grad(self, inside_block):
        grad_sub_block_idx = inside_block.backward_block_idx
2556
        inside_block_idx = inside_block.idx
2557

2558 2559
        # if inside_block have grad_block and grad_block is not itself,
        # we will append conditional block grad.
2560 2561 2562
        return (
            grad_sub_block_idx != -1 and grad_sub_block_idx != inside_block_idx
        )
2563

2564 2565 2566
    def append_conditional_block_grad(
        self, parent_block, inside_block, conditional_block_op
    ):
2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604
        '''
        Append op `conditional_block_grad` manually.
        When `optimizer.minimize/append_backward` is called in Paddle control flow,
        grad ops will be appended before appending op `conditional_block` so that
        op `conditional_block_grad` can't be appended when calling
        `optimizer.minimize/append_backward`. After appending op `conditional_block`,
        `conditional_block_grad` is appended manually.

        Args:
            parent_block (Block): The block that `conditional_block_op` blongs to.
            inside_block (Block): The sub block of `conditional_block_op`.
            conditional_block_op (Operator): The forward op conditional_block.
        '''

        grad_sub_block_idx = inside_block.backward_block_idx
        grad_sub_block = self.helper.main_program.block(grad_sub_block_idx)

        intermediate = set()
        params = set()

        for each_op in grad_sub_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)

        param_list = []
        for inner_input_name in params:
            inner_var = parent_block._find_var_recursive(inner_input_name)
            if inner_var:
                param_list.append(cpt.to_text(inner_var.name))

        grad_op_desc, op_grad_to_var = core.get_grad_op_desc(
2605 2606
            conditional_block_op.desc, cpt.to_text(set()), [grad_sub_block.desc]
        )
2607 2608 2609 2610 2611 2612 2613 2614 2615

        # append op_desc in grad_op_descs to target_block
        op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName()
        backward = core.op_proto_and_checker_maker.OpRole.Backward
        new_op_desc = parent_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc[0])
        new_op_desc._set_attr(op_role_attr_name, backward)
        # set input and output manually
        new_op_desc.set_input('Input', param_list)
2616 2617 2618
        new_op_desc.set_output(
            'Input@GRAD', [param + "@GRAD" for param in param_list]
        )
2619 2620 2621

        new_vars = set()
        for grad_var_name in new_op_desc.output_arg_names():
2622 2623 2624 2625 2626 2627
            if (
                grad_sub_block.desc.has_var_recursive(
                    cpt.to_bytes(grad_var_name)
                )
                or grad_var_name == core.empty_var_name()
            ):
2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643
                continue
            grad_sub_block.desc.var(cpt.to_bytes(grad_var_name))
            new_vars.add(grad_var_name)
            if grad_var_name not in op_grad_to_var:
                continue

        # infer_shape and infer_type
        new_op_desc.infer_var_type(grad_sub_block.desc)
        new_op_desc.infer_shape(grad_sub_block.desc)

        for arg in new_op_desc.output_arg_names():
            if arg in new_vars:
                _infer_var_data_type_shape_(arg, grad_sub_block)

        self.helper.main_program._sync_with_cpp()

2644

2645
def copy_var_to_parent_block(var, layer_helper):
2646 2647
    if not isinstance(var, Variable):
        return var
2648 2649
    prog = layer_helper.main_program
    parent_idx = prog.current_block().parent_idx
2650 2651 2652
    assert (
        parent_idx >= 0
    ), "Got wrong parent block index when assigning var to parent scope in control_flow"
2653 2654
    parent_block = prog.block(parent_idx)

2655 2656 2657 2658
    if (
        var.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY
        and parent_block._find_var_recursive(var.name)
    ):
2659 2660
        parent_block_var = var
    else:
2661 2662 2663
        parent_block_var = parent_block.create_var(
            dtype=var.dtype, shape=var.shape, type=var.type
        )
2664
        assign(var, parent_block_var)
2665 2666 2667
    return parent_block_var


2668
def cond(pred, true_fn=None, false_fn=None, name=None, return_names=None):
2669
    """
2670 2671 2672 2673 2674 2675 2676 2677 2678
    This API returns ``true_fn()`` if the predicate ``pred`` is true else
    ``false_fn()`` . Users could also set ``true_fn`` or ``false_fn`` to
    ``None`` if do nothing and this API will treat the callable simply returns
    ``None`` in this case.

    ``true_fn`` and ``false_fn`` should return same nest structure of tensors
    or both return ``None`` if user doens't like to return anything. A nest
    structure of tensors in PaddlePaddle is tensor(s), or tuple of tensors, or
    list of tensors.
2679 2680

    Note:
2681 2682 2683 2684
        1. The tuples or lists returned by ``true_fn`` and ``false_fn`` must have
        the same shape because of dataflow model of PaddlePaddle while the
        tensors in the tuples or the lists can have different shapes.

2685 2686 2687
        2. This API could be used under both static mode or dygraph mode. If it
        is in dygraph mode, the API only runs one branch based on condition.

2688
        3. If it is in static mode, any tensors or operations created outside
2689 2690 2691
        or inside of ``true_fn`` and ``false_fn`` will be in net building
        regardless of which branch is selected at runtime. This has frequently
        surprised users who expected a lazy semantics. For example:
2692 2693

        .. code-block:: python
2694 2695 2696 2697 2698

            import paddle

            a = paddle.zeros((1, 1))
            b = paddle.zeros((1, 1))
2699
            c = a * b
2700
            out = paddle.static.nn.cond(a < b, lambda: a + c, lambda: b * b)
2701

2702 2703 2704
        No matter whether ``a < b`` , ``c = a * b`` will be in net building and
        run. ``a + c`` and ``b * b`` will be in net building, but only one
        branch will be executed during runtime.
2705 2706

    Args:
2707
        pred(Tensor): A boolean tensor whose numel should be 1. The boolean
2708
            value determines whether to return the result of ``true_fn`` or
2709 2710 2711 2712 2713 2714
            ``false_fn`` .
        true_fn(callable, optional): A callable to be performed if ``pred`` is
            true. The default value is ``None`` .
        false_fn(callable, optional): A callable to be performed if ``pred`` is
            false. The default value is ``None`` .
        name(str, optional): The default value is ``None`` . Normally users
2715
             don't have to set this parameter. For more information, please
2716
             refer to :ref:`api_guide_Name` .
2717 2718 2719
        return_names(sequence of string, optional): The default value is ``None`` .
             Normally users don't have to set this parameters.  A sequence of strings
             to represents the name of returned vars.  The structure of sequence must
2720
             be same with return values of true_fn and false_fn.
2721 2722

    Returns:
2723
        Tensor|list(Tensor)|tuple(Tensor): returns ``true_fn()`` if the
2724
        predicate ``pred`` is true else ``false_fn()`` .
2725 2726 2727

    Raises:
        TypeError: if ``true_fn`` or ``false_fn`` is not callable.
2728 2729
        ValueError: if ``true_fn`` and ``false_fn`` don't return the same nest
            structure of tensors.
2730 2731 2732 2733

    Examples:
        .. code-block:: python

2734
            import paddle
2735 2736 2737 2738 2739 2740 2741 2742 2743 2744

            #
            # pseudocode:
            # if 0.1 < 0.23:
            #     return 1, True
            # else:
            #     return 3, 2
            #

            def true_func():
2745 2746 2747 2748
                return paddle.full(shape=[1, 2], dtype='int32',
                                   fill_value=1), paddle.full(shape=[2, 3],
                                                              dtype='bool',
                                                              fill_value=True)
2749

2750 2751

            def false_func():
2752 2753 2754 2755 2756
                return paddle.full(shape=[3, 4], dtype='float32',
                                   fill_value=3), paddle.full(shape=[4, 5],
                                                              dtype='int64',
                                                              fill_value=2)

2757

2758 2759
            x = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
            y = paddle.full(shape=[1], dtype='float32', fill_value=0.23)
2760
            pred = paddle.less_than(x=x, y=y, name=None)
2761
            ret = paddle.static.nn.cond(pred, true_func, false_func)
2762
            # ret is a tuple containing 2 tensors
2763 2764
            # ret[0] = [[1 1]]
            # ret[1] = [[ True  True  True]
2765
            #           [ True  True  True]]
2766

2767
    """
J
Jiabin Yang 已提交
2768
    if _non_static_mode():
2769
        assert isinstance(pred, Variable), "The pred in cond must be Variable"
C
crystal 已提交
2770
        assert pred.size == 1, "condition input's numel should be 1"
2771 2772 2773 2774 2775
        pred = pred.numpy()[0]
        if pred:
            if true_fn is not None:
                if not callable(true_fn):
                    raise TypeError(
2776 2777 2778 2779
                        "The true_fn in cond must be callable, but received {}".format(
                            type(true_fn).__name__
                        )
                    )
2780 2781 2782 2783 2784
                return true_fn()
        else:
            if false_fn is not None:
                if not callable(false_fn):
                    raise TypeError(
2785 2786 2787 2788
                        "The false_fn in cond must be callable, but received {}".format(
                            type(false_fn).__name__
                        )
                    )
2789 2790 2791
                return false_fn()
        return None

2792 2793
    check_variable_and_dtype(pred, "pred", ['bool'], "fluid.layers.cond")
    check_type(name, "name", (str, type(None)), "fluid.layers.cond")
2794 2795 2796
    helper = LayerHelper('cond', **locals())
    true_output = None
    false_output = None
2797
    copy_to_parent_func = lambda var: copy_var_to_parent_block(var, helper)
2798 2799
    if true_fn is not None:
        if not callable(true_fn):
2800 2801
            raise TypeError(
                "The true_fn in cond must be callable, but received {}".format(
2802 2803 2804
                    type(true_fn).__name__
                )
            )
2805 2806 2807 2808
        true_cond_block = ConditionalBlock([pred], is_scalar_condition=True)
        with true_cond_block.block():
            origin_true_output = true_fn()
            if origin_true_output is not None:
2809 2810 2811
                true_output = map_structure(
                    copy_to_parent_func, origin_true_output
                )
2812 2813
    if false_fn is not None:
        if not callable(false_fn):
2814 2815
            raise TypeError(
                "The false_fn in cond must be callable, but received {}".format(
2816 2817 2818 2819 2820 2821
                    type(false_fn).__name__
                )
            )
        false_cond_block = ConditionalBlock(
            [logical_not(pred)], is_scalar_condition=True
        )
2822 2823 2824
        with false_cond_block.block():
            origin_false_output = false_fn()
            if origin_false_output is not None:
2825 2826 2827
                false_output = map_structure(
                    copy_to_parent_func, origin_false_output
                )
2828 2829 2830 2831 2832 2833 2834

    if true_output is None and false_output is None:
        return None

    if true_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2835 2836
            "true_fn returns None while false_fn returns non-None"
        )
2837 2838 2839
    if false_output is None:
        raise ValueError(
            "Incompatible return values of true_fn and false_fn in cond: "
2840 2841
            "true_fn returns non-None while false_fn returns None"
        )
2842 2843

    # Merge ture and false output if they are not None
2844
    if return_names is None:
2845 2846
        is_dy2staic = False
        return_names = ["no name"] * len(_to_sequence_except_dict(true_output))
2847
    else:
2848
        """
2849 2850
        dy2static will set the return_names and expand the return values to UndefinedVar.
        """
2851 2852 2853 2854 2855 2856 2857
        is_dy2staic = True

        # TODO:  expand_undefined_var will replace None to Undefinedvar(), to fix cases like:
        #       a = None
        #       if condition:
        #           a = 1
        # Because we can not use variable to express 'None'
2858
        true_output, false_output = expand_undefined_var(
2859 2860 2861 2862 2863 2864
            true_output, false_output, return_names
        )

    if len(_to_sequence_except_dict(true_output)) != len(
        _to_sequence_except_dict(false_output)
    ):
2865
        raise ValueError(
2866 2867 2868 2869 2870 2871 2872 2873 2874 2875
            "true fn returns {} vars, but false fn returns {} vars, which is not equals".format(
                len(_to_sequence_except_dict(true_output)),
                len(_to_sequence_except_dict(false_output)),
            )
        )
    for true_out, false_out, return_name in zip(
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
    ):
2876 2877 2878 2879
        try:
            assert_same_structure(true_out, false_out, check_types=False)
        except ValueError as e:
            raise ValueError(
2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
                "Incompatible return values of `{}` in true_fn and false_fn in cond: {}".format(
                    return_name, e
                )
            )

    def check_ret_none(seq_true, seq_false, seq_names):
        for f_true, f_false, f_name in zip(seq_true, seq_false, seq_names):
            f_true = flatten(f_true)
            f_false = flatten(f_false)
            for idx in range(len(f_true)):
                if (
                    f_true[idx] is None
                    and f_false[idx] is not None
                    or f_false[idx] is None
                    and f_true[idx] is not None
                ):
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            f_name,
                            type(f_true[idx]),
                            f_true[idx],
                            type(f_false[idx]),
                            f_false[idx],
                        )
                    )

    check_ret_none(
        _to_sequence_except_dict(true_output),
        _to_sequence_except_dict(false_output),
        _to_sequence_except_dict(return_names),
    )

    if is_dy2staic:
        true_output, false_output = change_none_to_undefinedvar(
            true_output, false_output
        )
2918 2919

    mask = cast(pred, dtype='int32')
2920 2921 2922 2923 2924
    merge_func = (
        lambda name, false_var, true_var: select_input_with_buildin_type(
            [false_var, true_var], mask, name
        )
    )
2925 2926 2927 2928 2929

    def merge_every_var_list(false_vars, true_vars, name):
        return map_structure(partial(merge_func, name), false_vars, true_vars)

    merged_output = list(
2930 2931 2932 2933 2934 2935 2936
        map(
            merge_every_var_list,
            _to_sequence_except_dict(false_output),
            _to_sequence_except_dict(true_output),
            _to_sequence_except_dict(return_names),
        )
    )
2937
    merged_output = pack_sequence_as(false_output, flatten(merged_output))
2938 2939 2940
    return merged_output


2941 2942 2943 2944
def change_none_to_undefinedvar(nest1, nest2):
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar

    def map_fn(x):
2945 2946
        if x is None:
            return UndefinedVar("padding")
2947 2948 2949 2950 2951 2952 2953
        return x

    nest1_out = pack_sequence_as(nest1, list(map(map_fn, flatten(nest1))))
    nest2_out = pack_sequence_as(nest2, list(map(map_fn, flatten(nest2))))
    return nest1_out, nest2_out


2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971
def _to_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return [x]
    return to_sequence(x)


def _is_sequence_except_dict(x):
    """
    In this function, dict is not viewed as sequence.
    """
    if isinstance(x, dict):
        return False
    return is_sequence(x)


2972
def expand_undefined_var(nest1, nest2, names):
2973 2974 2975 2976
    """TODO: make this function recursively.
    nest1: Var1, (UndefinedVar, [1,2,3])
    nest2: Var2, ([1,2,3,4], UndefinedVar)
    In this case, we should not expand recursively.
2977
    """
2978
    from paddle.fluid.dygraph.dygraph_to_static.utils import UndefinedVar
2979 2980 2981
    from paddle.fluid.dygraph.dygraph_to_static.return_transformer import (
        RETURN_VALUE_PREFIX,
    )
2982 2983

    def pack_undefined_var_as(seq):
2984 2985 2986
        return pack_sequence_as(
            seq, [UndefinedVar("padding") for i in flatten(seq)]
        )
2987

2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008
    def map_fn(n1, n2, name, order):
        if not name.startswith(RETURN_VALUE_PREFIX) and (
            isinstance(n1, UndefinedVar) or n1 is None
        ):
            if n1 is None and n2 is not None:
                if order == 0:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            name, type(n1), n1, type(n2), n2
                        )
                    )
                else:
                    warnings.warn(
                        "In cond : Var '{}' or part of it is set differently in ifelse branchs, "
                        "<{}, {}> in true branch and <{}, {}> in false branch. Set var to "
                        "'None' in ifelse block might lead to error.".format(
                            name, type(n2), n2, type(n1), n1
                        )
                    )
3009 3010 3011 3012
            return pack_undefined_var_as(n2)
        return n1

    nest1_out = list(
3013 3014 3015 3016 3017 3018 3019 3020
        map(
            map_fn,
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(names),
            [0 for i in _to_sequence_except_dict(names)],
        )
    )
3021
    nest2_out = list(
3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033
        map(
            map_fn,
            _to_sequence_except_dict(nest2),
            _to_sequence_except_dict(nest1),
            _to_sequence_except_dict(names),
            [1 for i in _to_sequence_except_dict(names)],
        )
    )
    if not _is_sequence_except_dict(nest1):
        nest1_out = nest1_out[0]
    if not _is_sequence_except_dict(nest2):
        nest2_out = nest2_out[0]
3034 3035 3036
    return nest1_out, nest2_out


L
liym27 已提交
3037
def _error_message(what, arg_name, op_name, right_value, error_value):
3038 3039
    error_message = (
        "{what} of '{arg_name}' in {op_name} must be "
L
liym27 已提交
3040
        "{right_value}, but received: {error_value}.".format(
3041 3042 3043 3044 3045 3046 3047
            what=what,
            arg_name=arg_name,
            op_name=op_name,
            right_value=right_value,
            error_value=error_value,
        )
    )
L
liym27 已提交
3048 3049 3050 3051 3052 3053

    return error_message


def case(pred_fn_pairs, default=None, name=None):
    '''
3054 3055
    :api_attr: Static Graph

L
liym27 已提交
3056 3057 3058 3059 3060 3061 3062 3063
    This operator works like an if-elif-elif-else chain.

    Args:
        pred_fn_pairs(list|tuple): A list or tuple of (pred, fn) pairs. ``pred`` is a boolean Tensor with shape [1], ``fn`` is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
3064
        Tensor|list(Tensor): Tensors returned by the callable from the first pair whose pred is True,
L
liym27 已提交
3065 3066 3067 3068 3069 3070 3071
        or Tensors returned by ``default`` if no pred in ``pred_fn_pairs`` is True and ``default`` is not None,
        or Tensors returned by the last callable in ``pred_fn_pairs``  if no pred in ``pred_fn_pairs`` is True and ``default`` is None.

    Raises:
        TypeError: If the type of ``pred_fn_pairs`` is not list or tuple.
        TypeError: If the type of elements in ``pred_fn_pairs`` is not tuple.
        TypeError: If the size of tuples in ``pred_fn_pairs`` is not 2.
3072
        TypeError: If the first element of 2-tuple in ``pred_fn_pairs`` is not a Tensor.
L
liym27 已提交
3073 3074 3075 3076 3077 3078
        TypeError: If the second element of 2-tuple in ``pred_fn_pairs`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

3079 3080 3081
            import paddle

            paddle.enable_static()
L
liym27 已提交
3082 3083

            def fn_1():
3084
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
3085 3086

            def fn_2():
3087
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
3088 3089

            def fn_3():
3090
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
3091

3092 3093 3094 3095
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()

            with paddle.static.program_guard(main_program, startup_program):
3096 3097 3098
                x = paddle.full(shape=[1], dtype='float32', fill_value=0.3)
                y = paddle.full(shape=[1], dtype='float32', fill_value=0.1)
                z = paddle.full(shape=[1], dtype='float32', fill_value=0.2)
L
liym27 已提交
3099

3100 3101 3102
                pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
                pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
                pred_3 = paddle.equal(x, y)      # false: 0.3 == 0.1
L
liym27 已提交
3103 3104

                # Call fn_1 because pred_1 is True
3105
                out_1 = paddle.static.nn.case(
L
liym27 已提交
3106 3107 3108 3109
                    pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3)

                # Argument default is None and no pred in pred_fn_pairs is True. fn_3 will be called.
                # because fn_3 is the last callable in pred_fn_pairs.
3110
                out_2 = paddle.static.nn.case(pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)])
L
liym27 已提交
3111

3112
                exe = paddle.static.Executor(paddle.CPUPlace())
L
liym27 已提交
3113 3114 3115 3116 3117 3118 3119 3120 3121 3122
                res_1, res_2 = exe.run(main_program, fetch_list=[out_1, out_2])
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [3 3 3]
    '''
    helper = LayerHelper('case', **locals())

    def _case_check_args(pred_fn_pairs, default):
        '''
        Check arguments pred_fn_pairs and default. Return canonical pre_fn_pairs and default.
        '''
3123
        check_type(pred_fn_pairs, 'pred_fn_pairs', (list, tuple), 'case')
L
liym27 已提交
3124 3125 3126 3127

        for pred_fn in pred_fn_pairs:
            if not isinstance(pred_fn, tuple):
                raise TypeError(
3128 3129 3130 3131 3132 3133 3134 3135
                    _error_message(
                        "The elements' type",
                        "pred_fn_pairs",
                        "case",
                        tuple,
                        type(pred_fn),
                    )
                )
L
liym27 已提交
3136 3137
            if len(pred_fn) != 2:
                raise TypeError(
3138 3139 3140 3141 3142 3143 3144 3145
                    _error_message(
                        "The tuple's size",
                        "pred_fn_pairs",
                        "case",
                        "2",
                        str(len(pred_fn)) + "-tuple",
                    )
                )
L
liym27 已提交
3146 3147 3148 3149
            pred, fn = pred_fn

            if not isinstance(pred, Variable):
                raise TypeError(
3150 3151 3152 3153 3154 3155 3156 3157
                    _error_message(
                        "The pred's type",
                        "pred_fn_pairs",
                        "case",
                        "boolean Variable",
                        type(pred),
                    )
                )
L
liym27 已提交
3158 3159 3160 3161

            if not callable(fn):
                raise TypeError(
                    "The fn for {} of pred_fn_pairs in Op(case) must"
3162 3163
                    " be callable.".format(pred.name)
                )
L
liym27 已提交
3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184

        if default is None:
            default_index = len(pred_fn_pairs) - 1  # pick the last one
            default = pred_fn_pairs[default_index][1]
            pred_fn_pairs = pred_fn_pairs[:default_index]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        return pred_fn_pairs, default

    pred_fn_pairs, default = _case_check_args(pred_fn_pairs, default)

    false_fn = default
    for pred, true_fn in reversed(pred_fn_pairs):
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn

    return final_fn()


3185
class Switch(object):
Q
qiaolongfei 已提交
3186
    """
3187
    :api_attr: Static Graph
Q
qiaolongfei 已提交
3188

3189 3190 3191 3192 3193
    This class is used to implement Switch branch control function.
    Switch branch contains several case branches and one default branch.
    Switch control flow checks whether the case branch conditions are satisfied in turn,
    and only executes the statement after the first case branch that satisfies the conditions.
    If there is no case branch that satisfies the condition,
3194 3195
    only the statement following the default branch is executed.

3196 3197 3198 3199
    Note:
        A new OP :ref:`api_fluid_layers_case` is highly recommended instead of ``Switch`` if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_case` is easier to use and is called with less code but does the same thing as ``Switch`` .

3200
    Member Functions:
3201
        case(condition): The case branch of Switch whose parameter cond is a scalar Variable of bool type. Only if the cond of the current case branch is True and the cond of the previous case branch is False, the statement after the case branch will be executed, and the statement after the case branch will not be executed.
3202

3203 3204 3205 3206 3207
        default(): The default branch of Switch. When cond of all case branches is False, the statement after default branch is executed.

    Case and default functions can only be used inside the scope of Switch, as shown below:

    .. code-block:: python
3208

3209 3210 3211 3212 3213 3214 3215 3216 3217
        '''
        with fluid.layers.Switch() as switch:
            with switch.case(cond1):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=1)
            with switch.case(cond2):
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=2)
            with switch.default():
                i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0)
        '''
Q
qiaolongfei 已提交
3218

3219 3220
    Args:
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
Q
qiaolongfei 已提交
3221 3222 3223

    Examples:
        .. code-block:: python
3224

3225
            import paddle.fluid as fluid
Q
qiaolongfei 已提交
3226

3227
            lr = fluid.layers.create_global_var(
Q
qiaolongfei 已提交
3228 3229 3230 3231 3232
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
3233
            zero_var = fluid.layers.fill_constant(
3234
                shape=[1], dtype='float32', value=0.0)
3235
            one_var = fluid.layers.fill_constant(
Q
qiaolongfei 已提交
3236
                shape=[1], dtype='float32', value=1.0)
3237
            two_var = fluid.layers.fill_constant(
3238
                shape=[1], dtype='float32', value=2.0)
3239

3240
            global_step = fluid.layers.autoincreased_step_counter(counter_name='@LR_DECAY_COUNTER@', begin=0, step=1)
Q
qiaolongfei 已提交
3241 3242

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
3243
                with switch.case(global_step == zero_var):
3244
                    fluid.layers.assign(input=one_var, output=lr)
Q
qiaolongfei 已提交
3245
                with switch.default():
3246
                    fluid.layers.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
3247

3248 3249 3250 3251 3252
            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(fluid.default_startup_program())

            res = exe.run(fluid.default_main_program(), feed={}, fetch_list=[lr])
            print(res) # [array([1.], dtype=float32)]
Q
qiaolongfei 已提交
3253 3254
    """

3255 3256 3257 3258 3259 3260 3261 3262 3263
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

3264
        check_variable_and_dtype(
3265 3266 3267 3268 3269
            condition,
            'condition',
            ['bool'],
            'the member function case of fluid.layers.Switch',
        )
3270

3271 3272 3273 3274 3275 3276 3277
        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
3278 3279 3280
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition)
            )
3281 3282
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
3283
                [logical_and(x=pre_not_cond, y=condition)],
3284 3285
                is_scalar_condition=True,
            )
3286 3287 3288 3289 3290 3291 3292 3293 3294

        return ConditionalBlockGuard(cond_block)

    def default(self):
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
3295 3296
            is_scalar_condition=True,
        )
3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
3336 3337 3338 3339 3340
        self.ie.status = (
            IfElse.IN_IF_ELSE_TRUE_BLOCKS
            if self.is_true
            else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        )
Y
Yu Yang 已提交
3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
3353
    """
3354 3355
    :api_attr: Static Graph

3356 3357 3358 3359
    This class is used to implement IfElse branch control function. IfElse contains two blocks, true_block and false_block. IfElse will put data satisfying True or False conditions into different blocks to run.

    Cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the execution conditions of the corresponding part of the input data.

3360 3361 3362 3363
    Note:
        A new OP :ref:`api_fluid_layers_cond` is highly recommended instead of ``IfElse``. if the shape of parameter ``cond`` is [1].
        OP :ref:`api_fluid_layers_cond` is easier to use and is called with less code but does the same thing as ``IfElse`` .

3364 3365 3366
    IfElse OP is different from other OPs in usage, which may cause some users confusion. Here is a simple example to illustrate this OP.

    .. code-block:: python
3367

3368 3369 3370 3371 3372 3373 3374 3375 3376
        # The following code completes the function: subtract 10 from the data greater than 0 in x, add 10 to the data less than 0 in x, and sum all the data.
        import numpy as np
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[4, 1], dtype='float32', append_batch_size=False)
        y = fluid.layers.data(name='y', shape=[4, 1], dtype='float32', append_batch_size=False)

        x_d = np.array([[3], [1], [-2], [-3]]).astype(np.float32)
        y_d = np.zeros((4, 1)).astype(np.float32)
3377

3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395
        # Compare the size of x, y pairs of elements, output cond, cond is shape [4, 1], data type bool 2-D tensor.
        # Based on the input data x_d, y_d, it can be inferred that the data in cond are [[true], [true], [false], [false]].
        cond = fluid.layers.greater_than(x, y)
        # Unlike other common OPs, ie below returned by the OP is an IfElse OP object
        ie = fluid.layers.IfElse(cond)

        with ie.true_block():
            # In this block, according to cond condition, the data corresponding to true dimension in X is obtained and subtracted by 10.
            out_1 = ie.input(x)
            out_1 = out_1 - 10
            ie.output(out_1)
        with ie.false_block():
            # In this block, according to cond condition, get the data of the corresponding condition in X as false dimension, and add 10
            out_1 = ie.input(x)
            out_1 = out_1 + 10
            ie.output(out_1)

        # According to cond condition, the data processed in the two blocks are merged. The output here is output, the type is List, and the element type in List is Variable.
3396
        output = ie() #  [array([[-7.], [-9.], [ 8.], [ 7.]], dtype=float32)]
3397 3398 3399 3400 3401 3402 3403 3404

        # Get the first Variable in the output List and add all elements.
        out = fluid.layers.reduce_sum(output[0])

        exe = fluid.Executor(fluid.CPUPlace())
        exe.run(fluid.default_startup_program())

        res = exe.run(fluid.default_main_program(), feed={"x":x_d, "y":y_d}, fetch_list=[out])
3405
        print(res)
3406
        # [array([-1.], dtype=float32)]
X
Xin Pan 已提交
3407 3408

    Args:
3409 3410
        cond (Variable): cond is a 2-D Tensor with shape [N, 1] and data type bool, representing the corresponding execution conditions of N input data. The data type is bool.
        name(str, optional): The default value is None.  Normally there is no need for user to set this property.  For more information, please refer to :ref:`api_guide_Name` .
X
Xin Pan 已提交
3411

3412 3413
    Returns:
        Unlike other common OPs, the OP call returns an IfElse OP object (e.g. ie in the example), which branches the input data by calling the internal functions of the object ``true_block ()``, ``false_block ()``, ``input ()``, ``output ()``, and integrates the data processed by different branches as the overall output by calling the internal ``call ()`` function. The output type is a list, and the type of each element in the list is Variable.
X
Xin Pan 已提交
3414

3415 3416
    Internal Functions:
        The block is constructed by calling the ``with ie. true_block()`` function in the object, and the computational logic under condition true is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.
3417

3418 3419 3420 3421 3422 3423 3424
        The block is constructed by calling the ``with ie. false_block()`` function in the object, and the computational logic under condition false is put into the block. If no corresponding block is constructed, the input data in the corresponding conditional dimension is unchanged.

        ``Out = ie. input (x)`` will take out the data of the corresponding conditional dimension in X and put it into out, supporting the internal processing of multiple inputs in block.

        ``ie. output (out)`` writes the result to the output of the corresponding condition.

        There is a ``call ()`` function inside the object, that is, by calling ``output = ie ()``, all the outputs inside the block of False are fused as the whole output, the output type is a list, and the type of each element in the list is Variable.
3425

X
Xin Pan 已提交
3426
    """
3427

Y
Yu Yang 已提交
3428 3429 3430 3431
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

3432
    def __init__(self, cond, name=None):
3433 3434
        check_type(cond, "cond", Variable, "fluid.layers.IfElse")
        check_type(name, "name", (str, type(None)), "fluid.layers.IfElse")
3435
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
3447
            parent_block = self._parent_block()
Y
Yu Yang 已提交
3448
            out_true = parent_block.create_var(
3449 3450 3451 3452 3453
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
Y
Yu Yang 已提交
3454 3455

            out_false = parent_block.create_var(
3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469
                name=unique_name.generate_with_ignorable_key(
                    'ifelse_input' + self.helper.name
                ),
                dtype=x.dtype,
            )
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true, 'OutFalse': out_false},
                attrs={'level': 0},
            )
Y
Yu Yang 已提交
3470 3471 3472 3473 3474 3475 3476 3477 3478
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

3479
    def _parent_block(self):
Y
Yu Yang 已提交
3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

3493 3494 3495
        out_table = self.output_table[
            1 if self.status == self.IN_IF_ELSE_TRUE_BLOCKS else 0
        ]
3496
        parent_block = self._parent_block()
Y
Yu Yang 已提交
3497
        for each_out in outs:
3498 3499 3500
            check_type(
                each_out, "each output", Variable, "fluid.layers.IfElse.output"
            )
Y
Yu Yang 已提交
3501 3502
            # create outside tensor
            outside_out = parent_block.create_var(
3503 3504 3505 3506 3507
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, 'output'])
                ),
                dtype=each_out.dtype,
            )
Y
Yu Yang 已提交
3508 3509 3510
            out_table.append(outside_out)

            # assign local var to outside
3511
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
3512 3513 3514 3515

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
3516
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
3517
        if false_len == 0 and true_len == 0:
3518 3519 3520
            raise ValueError(
                "Must invoke true_block/false_block before " "__call__"
            )
Y
Yu Yang 已提交
3521 3522 3523 3524 3525 3526 3527 3528 3529 3530
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
3531 3532 3533 3534 3535 3536 3537 3538
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
                    level=0,
                )
            )
Y
Yu Yang 已提交
3539
        return rlist
3540 3541 3542


class DynamicRNN(object):
Y
yuyang18 已提交
3543
    """
3544 3545
    :api_attr: Static Graph

3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557
    **Note: the input of this class should be LoDTensor which holds the
    information of variable-length sequences. If the input is fixed-length Tensor,
    please use StaticRNN (fluid.layers.** :ref:`api_fluid_layers_StaticRNN` **) for
    better performance.**

    DynamicRNN can process a minibatch of variable-length sequences.
    The length of each sample can be different and is recorded in LoD.
    In DynamicRNN, an input sequence will be unfolded into time steps and users
    can define how to process each time step in :code:`block()` .
    The total number of time steps is determined by the longest sequence.
    DynamicRNN will not pad all sequences to the same length, instead it will
    sort the sequences internally by the sequence length in descending order.
T
tianshuo78520a 已提交
3558
    The input sequences will be shrank because only sequences of which the
3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570
    length is larger than the time step will participate the remaining calculation.

    If defined :code:`drnn = DynamicRNN()`, then users can call :code:`drnn()`
    to obtain the result sequences. It is a LoDTensor gained by merging all
    time steps's output. When RNN's input sequence x meets :code:`x.lod_level == 1`,
    the output LoDTensor will have the same LoD with x. The result of :code:`drnn()`
    includes RNN's outputs of all time steps, users can call
    :ref:`api_fluid_layers_sequence_last_step` to extract the data of the last time step.

    Warning:
        Currently it is not supported to set :code:`is_sparse = True` of any
        layers defined within DynamicRNN's :code:`block` function.
Y
yuyang18 已提交
3571

3572 3573 3574 3575
    Args:
        name (str, optional): The default value is None.  Normally there is no
            need for user to set this property.  For more information,
            please refer to :ref:`api_guide_Name` .
3576 3577 3578 3579

    Examples:
        .. code-block:: python

3580
            import paddle.fluid as fluid
3581

3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
            sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
            encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
            decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

            drnn = fluid.layers.DynamicRNN()
            with drnn.block():
                # Set sentence as RNN's input, each time step processes a word from the sentence
                current_word = drnn.step_input(sentence)
                # Set encode_proj as RNN's static input
                encoder_word = drnn.static_input(encoder_proj)
                # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                memory = drnn.memory(init=decoder_boot, need_reorder=True)
                fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                fc_2 = fluid.layers.fc(input=current_word, size=30)
                decoder_inputs = fc_1 + fc_2
                hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                # Update memory with hidden
                drnn.update_memory(ex_mem=memory, new_mem=hidden)
                out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                # Set hidden and out as RNN's outputs
                drnn.output(hidden, out)

            # Get RNN's result
            hidden, out = drnn()
            # Get RNN's result of the last time step
            last = fluid.layers.sequence_last_step(out)
Y
yuyang18 已提交
3608
    """
3609

3610 3611 3612 3613
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

3614 3615
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
3616 3617 3618 3619
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
3620
        self.zero_idx = None
3621 3622 3623
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
3624
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
3625 3626 3627 3628 3629
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

3630
    def step_input(self, x, level=0):
3631
        r"""
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674
        This function is used to set sequence x as DynamicRNN's input.
        The maximum sequence length in x determines the number of time steps
        the RNN unit will be executed. DynamicRNN can take multiple inputs.
        When all inputs' :code:`lod_level` are 1, all inputs should hold the
        same LoD. When :code:`x.lod_level >= 2` , the input sequence will be
        unfold along specified level, and the slice of each time step is a
        LoDTensor whose lod_level is :code:`x.lod_level - level - 1` .
        In this case, the specified LoD level of multiple inputs should be the same.

        - Case 1:

        .. code-block:: text

            # input, where Si is slice data of shape [1, N]
            level = 0
            x.lod = [[2, 1, 3]]
            x.shape = [6, N]
            x.data = [[S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2],
                      [S2]]

            # output
            # step 0, time step data of 3 sequences
            out.lod = [[]]
            out.shape = [3, N]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, time step data of 2 sequences
            out.lod = [[]]
            out.shape = [2, N]
            out.data = [[S2],
                        [S0]]

            # step 2, time step data of 1 sequences
            out.lod = [[]]
            out.shape = [1, N]
            out.data = [[S2]]

H
haowang101779990 已提交
3675

Y
yuyang18 已提交
3676
        Args:
3677 3678 3679 3680 3681 3682 3683
            x (Variable): The input LoDTensor which holds information of a
                minibatch of variable-length sequences and should meet :code:`x.lod_level >= 1` .
                When RNN has multiple inputs, the first dimension should match
                across all inputs, but other shape components may differ.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
            level (int, optional): The level of lod used to split steps.
                It should be in range :math:`[0, x.lod\_level)` . The default value is 0.
Y
yuyang18 已提交
3684 3685

        Returns:
3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719
            Variable: The current time step in the input sequence. If there are :code:`num_sequences` \
                sequences in x whose length is larger than :code:`step_idx` , the returned Variable \
                will only hold the :code:`step_idx` -th time step of those `num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod_level == 1` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`step_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.

        Examples:
            ..  code-block:: python

                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 1], dtype='int64', lod_level=1)
                embedding = fluid.layers.embedding(input=sentence, size=[65536, 32], is_sparse=True)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set embedding as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(embedding)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 200],
                    # where batch_size is the number of sequences in embedding.
                    memory = drnn.memory(shape=[200])
                    hidden = fluid.layers.fc(input=[word, memory], size=200, act='relu')
                    # Update memory to hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3720
        """
3721
        self._assert_in_rnn_block_("step_input")
3722
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.step_input()')
3723 3724 3725
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
3726
                name=unique_name.generate('lod_rank_table'),
3727 3728
                type=core.VarDesc.VarType.LOD_RANK_TABLE,
            )
3729
            self.lod_rank_table.stop_gradient = True
3730 3731 3732 3733 3734 3735
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level},
            )
3736
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
3737
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
3738 3739
                dtype='int64',
            )
3740
            self.max_seq_len.stop_gradient = False
3741 3742 3743 3744 3745
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len},
            )
3746
            self.cond.stop_gradient = True
3747 3748 3749 3750 3751 3752
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx, 'Y': self.max_seq_len},
                outputs={'Out': self.cond},
                attrs={'force_cpu': True},
            )
3753 3754

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
3755
            name=unique_name.generate('dynamic_rnn_input_array'),
3756
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
3757 3758
            dtype=x.dtype,
        )
3759
        self.input_array.append((input_array, x.dtype))
3760 3761 3762 3763 3764
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x, 'RankTable': self.lod_rank_table},
            outputs={'Out': input_array},
        )
3765
        return array_read(array=input_array, i=self.step_idx)
3766

Y
yangyaming 已提交
3767
    def static_input(self, x):
3768
        r"""
3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841
        This function is used to set x as DynamicRNN's static input. It is optional.

        - Case 1, set static input with LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[3, 1, 2]]
            x.shape = [6, M]
            x.data = [[S0],
                      [S0],
                      [S0],
                      [S1],
                      [S2],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[2, 3, 1]]
            out.shape = [6, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[2, 3]]
            out.shape = [5, M]
            out.data = [[S2],
                        [S2],
                        [S0],
                        [S0],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[2]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S2]]


        - Case 2, set static input without LoD

        .. code-block:: text

            # RNN's input is the same as the case listed in step_input
            # static input, where Si is slice data of shape [1, M]
            x.lod = [[]]
            x.shape = [3, M]
            x.data = [[S0],
                      [S1],
                      [S2]]

            # step 0, batch data corresponding to the 3 input sequences
            out.lod = [[]]
            out.shape = [3, M]
            out.data = [[S2],
                        [S0],
                        [S1]]

            # step 1, batch data corresponding to the 2 input sequences
            out.lod = [[]]
            out.shape = [2, M]
            out.data = [[S2],
                        [S0]]

            # step 2, batch data corresponding to the 1 input sequences
            out.lod = [[]]
            out.shape = [1, M]
            out.data = [[S2]]

H
haowang101779990 已提交
3842

Y
yuyang18 已提交
3843
        Args:
3844 3845 3846 3847
            x (Variable): The static input LoDTensor which should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` ). If the LoD is None,
                the input x will be treated as a minibatch with :code:`x.shape[0]` sequences of length 1.
                Optional data types are: bool, float16, float32, float64, int8, int16, int32, int64, uint8.
Y
yuyang18 已提交
3848 3849

        Returns:
T
tianshuo78520a 已提交
3850
            Variable: The input LoDTensor after sorted and shrank. If there are :code:`num_sequences` \
3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
                the static input Tensor will be sorted to the same order as RNN's input and \
                will only retain data corresponding to those :code:`num_sequences` sequences. \
                The data type is the same as input. If :code:`x.lod == None` , the return value is \
                a Tensor of shape :math:`\{num\_sequences, x.shape[1], ...\}` , or it will \
                be a variable-length LoDTensor.

        Raises:
            ValueError: When :code:`static_input()` is called outside :code:`block()` .
            TypeError: When x is not a Variable.
            RuntimeError: When :code:`static_input()` is called before :code:`step_input()` .
3862 3863 3864 3865

        Examples:
            .. code-block:: python

3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                encoder_proj = fluid.data(name='encoder_proj', shape=[None, 32], dtype='float32', lod_level=1)
                decoder_boot = fluid.data(name='boot', shape=[None, 10], dtype='float32')

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    current_word = drnn.step_input(sentence)
                    # Set encode_proj as RNN's static input
                    encoder_word = drnn.static_input(encoder_proj)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=decoder_boot, need_reorder=True)
                    fc_1 = fluid.layers.fc(input=encoder_word, size=30)
                    fc_2 = fluid.layers.fc(input=current_word, size=30)
                    decoder_inputs = fc_1 + fc_2
                    hidden, _, _ = fluid.layers.gru_unit(input=decoder_inputs, hidden=memory, size=30)
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    out = fluid.layers.fc(input=hidden, size=10, bias_attr=True, act='softmax')
                    # Set out as RNN's output
                    drnn.output(out)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
3892
        """
Y
yangyaming 已提交
3893
        self._assert_in_rnn_block_("static_input")
3894
        check_type(x, 'x', Variable, 'fluid.layers.DynamicRNN.static_input()')
Y
yangyaming 已提交
3895 3896
        if self.lod_rank_table is None:
            raise RuntimeError(
3897 3898
                "static_input() must be called after step_input()."
            )
Y
yangyaming 已提交
3899 3900
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
3901
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
3902
            type=core.VarDesc.VarType.LOD_TENSOR,
3903 3904 3905 3906 3907 3908 3909
            dtype=x.dtype,
        )
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x], 'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]},
        )
Y
yangyaming 已提交
3910 3911
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
3912
    @signature_safe_contextmanager
3913
    def block(self):
Y
yuyang18 已提交
3914
        """
3915 3916 3917 3918 3919 3920
        The function is used to list the operations executed during
        each time step in RNN. The operation list will be executed :code:`max_sequence_len`
        times (where :code:`max_sequence_len` is the maximum length of RNN's input sequences).

        Raises:
            ValueError: When :code:`block()` is called multi-times.
Y
yuyang18 已提交
3921
        """
3922 3923
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
3924 3925 3926
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True
        )
3927 3928 3929 3930
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
3931
            increment(x=self.step_idx, value=1.0, in_place=True)
3932 3933

            for new_mem, mem_array in self.mem_link:
3934 3935
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

3936 3937 3938 3939 3940 3941
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond,
            )
3942 3943 3944 3945

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
3946 3947
                array_to_lod_tensor(x=each_array, table=self.lod_rank_table)
            )
3948 3949

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
3950
        """
T
tianshuo78520a 已提交
3951
        This function is used to get the output  sequences of DynamicRNN.
3952 3953 3954 3955 3956 3957 3958 3959 3960

        Args:
            None

        Returns:
            Variable or Variable list: RNN's output sequences.

        Raises:
            ValueError: When :code:`__call__()` is called before :code:`block()` .
Y
yuyang18 已提交
3961
        """
3962
        if self.status != DynamicRNN.AFTER_RNN:
3963 3964 3965 3966 3967 3968
            raise ValueError(
                (
                    "Output of the dynamic RNN can only be visited "
                    "outside the rnn block."
                )
            )
3969 3970 3971 3972 3973
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

3974 3975 3976 3977 3978 3979 3980 3981
    def memory(
        self,
        init=None,
        shape=None,
        value=0.0,
        need_reorder=False,
        dtype='float32',
    ):
3982
        r"""
3983 3984 3985
        Create a memory Variable for DynamicRNN to deliver data cross time steps.
        It can be initialized by an existing Tensor or a constant Tensor of given
        dtype and shape.
Y
yuyang18 已提交
3986

3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998
        Args:
            init (Variable, optional): LoDTensor used to initialize the memory.
                If init is not None, it should hold the same number of sequences
                as RNN's input (the input LoDTensor set by :code:`step_input()` )
                and the memory will be initialized to it. If init's LoD is None,
                it will be treated as a minibatch with :code:`init.shape[0]` sequences
                of length 1. The default value is None.
            shape (list|tuple, optional): When init is None, it is used to specify
                the memory's shape. Note that the shape does not include the batch_size.
                If setting shape to :math:`\{D_1, D_2, ...\}` , the shape of memory Tensor
                will be :math:`\{batch\_size, D_1, D_2, ...\}` , where batch_size is
                determined by RNN's input sequences. The default value is None.
T
tianshuo78520a 已提交
3999
            value (float, optional): When init is None, it is used as initialized value
4000 4001
                of memory. The default value is 0.0.
            need_reorder (bool, optional): When init is not None, it determines whether
T
tianshuo78520a 已提交
4002
                the memory needs to reorder like the RNN's input sequences. It should be
4003 4004 4005 4006 4007 4008 4009
                set to True when the initialized memory depends on the order of input samples.
                The default value is False.
            dtype (str|numpy.dtype, optional): When init is None, it is used to set the
                data type of memory. The default value is "float32". Optional data types
                are: "float32", "float64", "int32", "int64".

        Returns:
T
tianshuo78520a 已提交
4010
            Variable: The memory LoDTensor after shrank.  If there are :code:`num_sequences` \
4011
                sequences in RNN's input LoDTensor whose length is larger than :code:`step_idx` , \
T
tianshuo78520a 已提交
4012
                the memory Tensor also need to be shrank and will only retain data \
4013 4014 4015 4016 4017 4018
                corresponding to those :code:`num_sequences` sequences.

        Raises:
            ValueError: When :code:`memory()` is called outside :code:`block()` .
            TypeError: When init is set and is not a Variable.
            ValueError: When :code:`memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
4019

4020 4021 4022
        Examples:
            .. code-block:: python

4023
                import paddle.fluid as fluid
4024

4025 4026
                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)
                boot_memory = fluid.data(name='boot', shape=[None, 10], dtype='float32')
4027

4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038
                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory with boot_memory, which need reorder according to RNN's input sequences
                    memory = drnn.memory(init=boot_memory, need_reorder=True)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)
Y
yuyang18 已提交
4039

4040 4041
                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
4042 4043


4044 4045
        Examples:
            .. code-block:: python
Y
yuyang18 已提交
4046

4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065
                import paddle.fluid as fluid

                sentence = fluid.data(name='sentence', shape=[None, 32], dtype='float32', lod_level=1)

                drnn = fluid.layers.DynamicRNN()
                with drnn.block():
                    # Set sentence as RNN's input, each time step processes a word from the sentence
                    word = drnn.step_input(sentence)
                    # Initialize memory to a Tensor whose value is 0, shape=[batch_size, 10],
                    # where batch_size is the number of sequences in sentence.
                    memory = drnn.memory(shape=[10], dtype='float32', value=0)
                    hidden = fluid.layers.fc(input=[word, memory], size=10, act='tanh')
                    # Update memory with hidden
                    drnn.update_memory(ex_mem=memory, new_mem=hidden)
                    # Set hidden as RNN's output
                    drnn.output(hidden)

                # Get RNN's result
                rnn_output = drnn()
Y
yuyang18 已提交
4066
        """
4067
        self._assert_in_rnn_block_('memory')
4068
        self._init_zero_idx_()
4069
        if shape is not None:
4070 4071 4072 4073 4074 4075
            check_type(
                shape,
                'shape',
                (list, tuple),
                'fluid.layers.DynamicRNN.memory()',
            )
4076
        if init is not None:
4077 4078 4079
            check_type(
                init, 'init', Variable, 'fluid.layers.DynamicRNN.memory()'
            )
4080
            parent_block = self._parent_block_()
4081 4082 4083 4084 4085 4086
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
4087 4088
                        'memory(init=init, need_reordered=True, ...).'
                    )
4089
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
4090
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
4091
                    type=core.VarDesc.VarType.LOD_TENSOR,
4092 4093 4094 4095 4096 4097 4098 4099 4100 4101
                    dtype=init.dtype,
                )
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table],
                    },
                    outputs={'Out': [init_reordered]},
                )
4102
                init_tensor = init_reordered
4103
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
4104
                name=unique_name.generate('dynamic_rnn_mem_array'),
4105
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
4106 4107 4108 4109 4110 4111 4112
                dtype=init.dtype,
            )
            parent_block.append_op(
                type='write_to_array',
                inputs={'X': init_tensor, 'I': self.zero_idx},
                outputs={'Out': mem_array},
            )
4113
            retv = array_read(array=mem_array, i=self.step_idx)
4114 4115 4116
            retv = shrink_memory(
                x=retv, i=self.step_idx, table=self.lod_rank_table
            )
4117 4118 4119 4120 4121 4122 4123 4124 4125
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
4126 4127
                name=unique_name.generate('mem_init'), dtype=dtype
            )
4128
            arr, dtype = self.input_array[0]
4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype
            )
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr], 'I': [self.zero_idx]},
                outputs={'Out': [in0]},
            )
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype,
                },
            )
4147 4148 4149
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
4150
        """
4151 4152
        Update the memory which need to be delivered across time steps.

Y
yuyang18 已提交
4153
        Args:
4154 4155 4156
            ex_mem (Variable): The memory data of previous time step.
            new_mem (Variable): The new memory data produced in current time step.
                The shape and data type of ex_mem and new_mem should be the same.
Y
yuyang18 已提交
4157 4158 4159

        Returns:
            None
4160

4161 4162 4163 4164 4165
        Raises:
            ValueError: When :code:`update_memory()` is called outside :code:`block()` .
            TypeError: When :code:`ex_mem` or :code:`new_mem` is not a Variable.
            ValueError: When :code:`ex_mem` is defined by :code:`memory()` .
            ValueError: When :code:`update_memory()` is called before :code:`step_input()` .
Y
yuyang18 已提交
4166
        """
4167
        self._assert_in_rnn_block_('update_memory')
4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179
        check_type(
            ex_mem,
            'ex_mem',
            Variable,
            'fluid.layers.DynamicRNN.update_memory()',
        )
        check_type(
            new_mem,
            'new_mem',
            Variable,
            'fluid.layers.DynamicRNN.update_memory()',
        )
4180 4181 4182 4183 4184 4185 4186 4187 4188 4189

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
4190
        """
4191
        This function is used to set :code:`outputs` as RNN's output.
Y
yuyang18 已提交
4192 4193

        Args:
4194 4195
            *outputs (Variable ...): The output Tensor. DynamicRNN can mark multiple
                Variables as its output.
Y
yuyang18 已提交
4196 4197 4198

        Returns:
            None
4199 4200 4201

        Raises:
            ValueError: When :code:`output()` is called outside :code:`block()` .
Y
yuyang18 已提交
4202
        """
4203 4204 4205
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
4206 4207 4208
            check_type(
                each, "outputs", Variable, "fluid.layers.DynamicRNN.output"
            )
4209
            outside_array = parent_block.create_var(
4210 4211 4212
                name=unique_name.generate_with_ignorable_key(
                    "_".join([self.helper.name, "output_array", each.name])
                ),
4213
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
4214 4215
                dtype=each.dtype,
            )
4216 4217 4218
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

4219 4220 4221 4222
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235
                name=unique_name.generate('zero_idx'), dtype='int64'
            )
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True,
                },
            )
4236

4237 4238 4239 4240 4241 4242 4243 4244 4245 4246
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
4247
            raise ValueError(
4248 4249
                "{0} can only be invoked inside rnn block.".format(method)
            )
Y
Yang Yu 已提交
4250 4251


L
liym27 已提交
4252 4253
def switch_case(branch_index, branch_fns, default=None, name=None):
    '''
4254 4255
    :api_attr: Static Graph

L
liym27 已提交
4256 4257 4258
    This operator is like a C++ switch/case statement.

    Args:
4259
        branch_index(Tensor): A Tensor with shape [1] to specify which branch to execute. The data type is ``int32``, ``int64`` or ``uint8``.
L
liym27 已提交
4260 4261 4262 4263 4264
        branch_fns(dict|list|tuple): If it's a list or tuple, the elements in it could be pairs of (int, callable) or simple callables whose actual index will be used as the index of callable. If it's a dict, its key is a python integer and the value is a callable. All callables return the same structure of Tensors.
        default(callable, optional): Callable that returns a structure of Tensors.
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.

    Returns:
4265
        Tensor|list(Tensor): Tensors returned by the callable specified by ``branch_index`` in ``branch_fns``,
L
liym27 已提交
4266 4267 4268 4269
        or Tensors returned by ``default`` if ``default`` is not None and no index matches in ``branch_fns``,
        or Tensors returned by the callable with the max index in ``branch_fns`` if ``default`` is None and no index matches in ``branch_fns``.

    Raises:
4270
        TypeError: If the type of ``branch_index`` is not Tensor.
L
liym27 已提交
4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
        TypeError: If the data type of ``branch_index`` is not ``int32``, ``int64`` or ``uint8``.
        TypeError: If the type of ``branch_fns`` is not dict, list or tuple.
        TypeError: If the elements of ``branch_fns`` is not 2-tuple.
        TypeError: If the first element of 2-tuple in ``branch_fns`` is not integer.
        ValueError: If the first element of 2-tuple in ``branch_fns`` is not unique.
        TypeError: If the second element of 2-tuple in ``branch_fns`` is not callable.
        TypeError: If ``default`` is not None but it is not callable.

    Examples:
        .. code-block:: python

4282 4283 4284
            import paddle

            paddle.enable_static()
4285

L
liym27 已提交
4286
            def fn_1():
4287
                return paddle.full(shape=[1, 2], dtype='float32', fill_value=1)
L
liym27 已提交
4288 4289

            def fn_2():
4290
                return paddle.full(shape=[2, 2], dtype='int32', fill_value=2)
L
liym27 已提交
4291 4292

            def fn_3():
4293
                return paddle.full(shape=[3], dtype='int32', fill_value=3)
L
liym27 已提交
4294

4295 4296 4297
            main_program = paddle.static.default_startup_program()
            startup_program = paddle.static.default_main_program()
            with paddle.static.program_guard(main_program, startup_program):
4298 4299
                index_1 = paddle.full(shape=[1], dtype='int32', fill_value=1)
                index_2 = paddle.full(shape=[1], dtype='int32', fill_value=2)
L
liym27 已提交
4300

4301
                out_1 = paddle.static.nn.switch_case(
L
liym27 已提交
4302 4303 4304 4305
                    branch_index=index_1,
                    branch_fns={1: fn_1, 2: fn_2},
                    default=fn_3)

4306
                out_2 = paddle.static.nn.switch_case(
L
liym27 已提交
4307 4308 4309 4310 4311
                    branch_index=index_2,
                    branch_fns=[(1, fn_1), (2, fn_2)],
                    default=fn_3)

                # Argument default is None and no index matches. fn_3 will be called because of the max index 7.
4312
                out_3 = paddle.static.nn.switch_case(
L
liym27 已提交
4313 4314 4315
                    branch_index=index_2,
                    branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)])

4316
                exe = paddle.static.Executor(paddle.CPUPlace())
4317
                res_1, res_2, res_3 = exe.run(main_program, fetch_list=[out_1, out_2, out_3])
L
liym27 已提交
4318 4319 4320 4321 4322 4323 4324 4325
                print(res_1)  # [[1. 1.]]
                print(res_2)  # [[2 2] [2 2]]
                print(res_3)  # [3 3 3]
    '''
    helper = LayerHelper('switch_case', **locals())

    def _check_args(branch_index, branch_fns, default):

4326 4327 4328 4329 4330 4331
        check_variable_and_dtype(
            branch_index,
            'branch_index',
            ['uint8', 'int32', 'int64'],
            'switch_case',
        )
L
liym27 已提交
4332 4333 4334 4335

        if convert_dtype(branch_index.dtype) != "int64":
            branch_index = cast(branch_index, "int64")

4336
        check_type(branch_fns, 'branch_fns', (list, tuple, dict), 'switch_case')
L
liym27 已提交
4337

4338 4339 4340
        branch_fns = (
            branch_fns.items() if isinstance(branch_fns, dict) else branch_fns
        )
L
liym27 已提交
4341

4342 4343 4344 4345 4346
        branch_fns = (
            list(enumerate(branch_fns))
            if all(callable(fn) for fn in branch_fns)
            else branch_fns
        )
L
liym27 已提交
4347 4348 4349 4350 4351

        keys_of_fns = []
        for index_fn_pair in branch_fns:
            if not isinstance(index_fn_pair, tuple):
                raise TypeError(
4352 4353 4354 4355 4356 4357 4358 4359
                    _error_message(
                        "The elements' type",
                        "branch_fns",
                        "switch_case",
                        tuple,
                        type(branch_fns),
                    )
                )
L
liym27 已提交
4360 4361 4362

            if len(index_fn_pair) != 2:
                raise TypeError(
4363 4364 4365 4366 4367 4368 4369 4370
                    _error_message(
                        "The tuple's size",
                        "branch_fns",
                        "switch_case",
                        "2",
                        str(len(index_fn_pair)) + "-tuple",
                    )
                )
L
liym27 已提交
4371 4372 4373 4374 4375

            key, fn = index_fn_pair

            if not isinstance(key, int):
                raise TypeError(
4376 4377 4378 4379 4380 4381 4382 4383
                    _error_message(
                        "The key's type",
                        "branch_fns",
                        "switch_case",
                        int,
                        type(key),
                    )
                )
L
liym27 已提交
4384 4385 4386

            if key in keys_of_fns:
                raise ValueError(
4387 4388 4389 4390
                    "The key in 'branch_fns' must be unique, but '{}' appears more than once.".format(
                        key
                    )
                )
L
liym27 已提交
4391 4392 4393 4394 4395
            else:
                keys_of_fns.append(key)

            if not callable(fn):
                raise TypeError(
4396 4397
                    _error_message(
                        "The type of function for key {}".format(key),
4398 4399 4400 4401 4402 4403
                        "branch_fns",
                        "switch_case",
                        "callable",
                        type(fn),
                    )
                )
L
liym27 已提交
4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427

        if default is None:
            default = sorted(branch_fns)[-1][1]
            branch_fns = sorted(branch_fns)[:-1]
        elif not callable(default):
            raise TypeError("The default in Op(case) must be callable.")

        pred_fn_pairs = []
        for index, fn in branch_fns:
            new_index = fill_constant(shape=[1], dtype="int64", value=index)
            pred = equal(branch_index, new_index)
            pred_fn_pairs.append((pred, fn))

        return pred_fn_pairs, default

    pred_fn_pairs, default = _check_args(branch_index, branch_fns, default)
    false_fn = default
    for pred, true_fn in pred_fn_pairs:
        false_fn = partial(cond, pred=pred, true_fn=true_fn, false_fn=false_fn)

    final_fn = false_fn
    return final_fn()


4428
@templatedoc()
Y
Yang Yu 已提交
4429
def reorder_lod_tensor_by_rank(x, rank_table):
4430 4431 4432 4433
    """
    ${comment}

    Args:
4434 4435
        x(${x_type}): ${x_comment}.
        rank_table(${rank_table_type}): ${rank_table_comment}.
4436

4437
    Returns:
4438
        out(${out_type}): ${out_comment}.
4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451

    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          data_desc = (['input', [9], 0], ['ref', [5], 1])
          data = fluid.layers.data(name=data_desc[0][0], shape=data_desc[0][1])
          rank_data = fluid.layers.data(name=data_desc[1][0], shape=data_desc[1][1])
          table = fluid.layers.control_flow.lod_rank_table(rank_data)
          new_data = fluid.layers.reorder_lod_tensor_by_rank(
                           x=data, rank_table=table)

    """
4452 4453

    check_type(x, 'x', (Variable), 'reorder_lod_tensor_by_rank')
4454 4455 4456
    check_type(
        rank_table, 'rank_table', (Variable), 'reorder_lod_tensor_by_rank'
    )
4457 4458 4459
    if rank_table.type != core.VarDesc.VarType.LOD_RANK_TABLE:
        raise TypeError("The type of rank_table should be LOD_RANK_TABLE.")

Y
Yang Yu 已提交
4460 4461
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())

X
Xin Pan 已提交
4462
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
4463 4464 4465 4466 4467
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x], 'RankTable': [rank_table]},
        outputs={'Out': [out]},
    )
Y
Yang Yu 已提交
4468
    return out
4469 4470


4471
def is_empty(x, name=None):
4472
    """
4473

4474
    Test whether a Tensor is empty.
4475 4476

    Args:
4477 4478 4479 4480
        x (Tensor): The Tensor to be tested.
        name (str, optional): The default value is ``None`` . Normally users
                            don't have to set this parameter. For more information,
                            please refer to :ref:`api_guide_Name` .
4481 4482

    Returns:
4483
        Tensor: A bool scalar Tensor. True if 'x' is an empty Tensor.
4484 4485 4486 4487

    Examples:
        .. code-block:: python

4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498
            import paddle

            input = paddle.rand(shape=[4, 32, 32], dtype='float32')
            res = paddle.is_empty(x=input)
            print("res:", res)
            # ('res:', Tensor: eager_tmp_1
            #    - place: CPUPlace
            #    - shape: [1]
            #    - layout: NCHW
            #    - dtype: bool
            #    - data: [0])
4499

4500
    """
H
hong 已提交
4501
    if in_dygraph_mode():
W
wanghuancoder 已提交
4502
        return _C_ops.is_empty(x)
4503 4504
    if _in_legacy_dygraph():
        return _legacy_C_ops.is_empty(x)
4505

4506 4507 4508
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int32', 'int64'], 'is_empty'
    )
4509 4510
    check_type(name, "name", (str, type(None)), "is_empty")

4511
    helper = LayerHelper("is_empty", **locals())
4512 4513
    cond = helper.create_variable_for_type_inference(dtype='bool')
    cond.stop_gradient = True
4514 4515 4516 4517

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]}
    )
4518
    return cond