initializer.py 35.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
from . import core
19
from .framework import in_dygraph_mode, default_main_program
20
import numpy as np
21
from .core import VarDesc
W
Wu Yi 已提交
22
from . import unique_name
23
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
24

25
__all__ = [
26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
27 28
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
29
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
30
]
31

32 33 34
_global_weight_initializer_ = None
_global_bias_initializer_ = None

35 36 37 38 39 40 41 42 43 44

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
45
    def __init__(self):
46 47
        pass

48
    def __call__(self, param, block=None):
49 50 51 52
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

53 54
    def _check_block(self, block):
        if block is None:
55
            block = default_main_program().global_block()
56 57 58

        return block

59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

94 95 96

class ConstantInitializer(Initializer):
    """Implements the constant initializer
97 98

    Args:
D
Double_V 已提交
99
        value (float32): constant value to initialize the variable 
100 101 102 103

    Examples:
        .. code-block:: python

104 105 106
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
107
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
108 109 110 111
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
112

113 114
    """

115
    def __init__(self, value=0.0, force_cpu=False):
116 117 118
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
119
        self._force_cpu = force_cpu
120

121 122
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
123 124

        Args:
125 126 127
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
128 129

        Returns:
130
            The initialization op
131
        """
132 133
        block = self._check_block(block)

134 135
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

151
        # fill constant should set the "str_value" to preserve precision
152
        op = block.append_op(
153
            type="fill_constant",
154
            outputs={"Out": out_var},
155 156
            attrs={
                "shape": var.shape,
157
                "dtype": int(out_dtype),
158
                "value": float(self._value),
159
                'str_value': str(float(self._value)),
160
                'force_cpu': self._force_cpu
M
minqiyang 已提交
161 162
            },
            stop_gradient=True)
163 164 165 166 167 168 169 170 171

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
172
        if not framework.in_dygraph_mode():
173
            var.op = op
174 175 176 177
        return op


class UniformInitializer(Initializer):
178
    """Implements the random uniform distribution initializer
179 180 181 182 183

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
184 185 186 187 188 189
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
190 191 192 193

    Examples:
        .. code-block:: python

X
xiaoting 已提交
194
            import paddle.fluid as fluid
195
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
196
            fc = fluid.layers.fc(input=x, size=10,
197
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
198 199
    """

200 201 202 203 204 205 206
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
207 208
        assert low is not None
        assert high is not None
209
        assert high >= low
210
        assert seed is not None
211 212 213 214 215
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
216 217 218 219
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
220 221 222
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
223

224 225
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
226 227

        Args:
228 229 230
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
231 232

        Returns:
233
            The initialization op
234
        """
235 236
        block = self._check_block(block)

237
        assert isinstance(block, framework.Block)
238 239
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
240 241
                                 "uniform_random")

D
dzhwinter 已提交
242 243
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
244

X
polish  
Xin Pan 已提交
245
        # to be compatible of fp16 initializers
246
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
247 248
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
249 250
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
251 252 253 254 255 256 257 258
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

259
        op = block.append_op(
260
            type="uniform_random",
261
            inputs={},
W
Wu Yi 已提交
262
            outputs={"Out": out_var},
263 264
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
265
                "dtype": out_dtype,
266 267
                "min": self._low,
                "max": self._high,
268 269 270 271
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
272 273
            },
            stop_gradient=True)
W
Wu Yi 已提交
274

275
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
276 277 278 279 280 281 282
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
283
        if not framework.in_dygraph_mode():
284
            var.op = op
285
        return op
286 287 288


class NormalInitializer(Initializer):
289 290 291 292 293 294 295 296 297 298
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
299
            import paddle.fluid as fluid
300
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
301 302
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
303

304 305 306 307 308 309 310 311 312 313 314
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

315 316
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
317 318

        Args:
319 320 321
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
322 323

        Returns:
324
            The initialization op
325
        """
326 327
        block = self._check_block(block)

328
        assert isinstance(block, framework.Block)
329

330 331
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
332
                                 "guassian_random")
333

D
dzhwinter 已提交
334 335
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
336 337

        # to be compatible of fp16 initalizers
338
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
339 340
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
341 342
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
343 344 345 346 347 348 349 350
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

351
        op = block.append_op(
352
            type="gaussian_random",
W
Wu Yi 已提交
353
            outputs={"Out": out_var},
354 355
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
356
                "dtype": out_dtype,
357 358
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
359 360
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
361 362
            },
            stop_gradient=True)
W
Wu Yi 已提交
363

364
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
365 366 367 368 369 370
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
371
        if not framework.in_dygraph_mode():
372
            var.op = op
373
        return op
374 375


376 377 378 379 380 381 382 383 384 385 386
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
387
            import paddle.fluid as fluid
388
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
389 390 391 392 393 394 395 396
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
397
        super(TruncatedNormalInitializer, self).__init__()
398 399 400 401
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

402 403
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
404 405

        Args:
406 407 408
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
409 410

        Returns:
411
            The initialization op
412
        """
413 414
        block = self._check_block(block)

415 416
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
417

418 419
        if self._seed == 0:
            self._seed = block.program.random_seed
420 421

        # to be compatible of fp16 initalizers
422
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
423 424 425
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
426
                    ['truncated_gaussian_random', var.name, 'tmp'])),
427 428 429 430 431 432 433 434
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

435
        op = block.append_op(
436
            type="truncated_gaussian_random",
437
            outputs={"Out": out_var},
438 439
            attrs={
                "shape": var.shape,
440
                "dtype": out_dtype,
441 442 443
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
444 445
            },
            stop_gradient=True)
446

447
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
448 449 450 451 452 453
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
454
        if not framework.in_dygraph_mode():
455
            var.op = op
456 457 458
        return op


459
class XavierInitializer(Initializer):
460
    r"""
461
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
462 463 464
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
465 466 467

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
468 469 470 471 472 473
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

474
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
475
    is
476

Q
qiaolongfei 已提交
477
    .. math::
478

Q
qiaolongfei 已提交
479
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
480 481


Q
qiaolongfei 已提交
482
    Args:
X
xiaoting 已提交
483 484
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
485
                inferred from the variable.
X
xiaoting 已提交
486
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
487 488 489 490 491 492 493 494 495
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
496
            import paddle.fluid as fluid
X
xiaoting 已提交
497
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
498 499 500 501 502 503 504
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
505 506 507 508 509 510 511 512
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

513 514
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
515 516

        Args:
517 518 519
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
520 521

        Returns:
522
            The initialization op
523
        """
524 525
        block = self._check_block(block)

526
        assert isinstance(block, framework.Block)
527 528
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
529 530
                                 "xavier_init")

531 532 533 534 535 536
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
537 538 539
        if self._seed == 0:
            self._seed = block.program.random_seed

540
        # to be compatible of fp16 initalizers
541 542
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
543 544 545 546 547 548 549 550 551 552 553 554
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

555 556
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
557
            op = block.append_op(
558
                type="uniform_random",
559
                inputs={},
560
                outputs={"Out": out_var},
561
                attrs={
562 563
                    "shape": out_var.shape,
                    "dtype": out_dtype,
564 565 566
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
567 568
                },
                stop_gradient=True)
569 570 571

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
572
            op = block.append_op(
573
                type="gaussian_random",
574
                outputs={"Out": out_var},
575
                attrs={
576 577
                    "shape": out_var.shape,
                    "dtype": out_dtype,
578 579 580
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
581 582
                },
                stop_gradient=True)
583

584 585
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
586 587 588 589 590 591 592
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
593
        if not framework.in_dygraph_mode():
594
            var.op = op
595
        return op
596 597 598


class MSRAInitializer(Initializer):
599
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
600 601

    This class implements the weight initialization from the paper
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
621 622 623
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
624 625 626 627 628 629

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
630

631
            import paddle
X
xsrobin 已提交
632
            import paddle.fluid as fluid
633
            paddle.enable_static()
D
Double_V 已提交
634
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
635 636
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
637

638 639 640 641 642 643 644 645 646 647 648 649
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

650 651
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
652 653

        Args:
654 655 656
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
657 658

        Returns:
659
            The initialization op
660
        """
661 662
        block = self._check_block(block)

663 664 665 666 667 668 669
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
670 671 672
        if self._seed == 0:
            self._seed = block.program.random_seed

673
        # to be compatible of fp16 initalizers
674 675
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
676 677 678 679 680 681 682 683 684 685 686 687
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

688 689
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
690
            op = block.append_op(
691
                type="uniform_random",
692
                inputs={},
693
                outputs={"Out": out_var},
694
                attrs={
695 696
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
697 698 699
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
700 701
                },
                stop_gradient=True)
702 703 704

        else:
            std = np.sqrt(2.0 / float(fan_in))
705
            op = block.append_op(
706
                type="gaussian_random",
707
                outputs={"Out": out_var},
708
                attrs={
709 710
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
711 712 713
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
714 715
                },
                stop_gradient=True)
716

717 718
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
719 720 721 722 723 724 725
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
726
        if not framework.in_dygraph_mode():
727
            var.op = op
728
        return op
729 730


731
class BilinearInitializer(Initializer):
732
    """
733 734 735
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
736 737 738 739 740

    Examples:

        .. code-block:: python

741
            import math
742 743 744 745 746

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
747 748
            factor = 2
            C = 2
D
Double_V 已提交
749 750
            B = 8
            H = W = 32
751 752 753 754
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
755
            conv_up = nn.Conv2DTranspose(3,
756 757 758 759 760 761 762 763 764 765 766
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
767 768 769 770
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
771 772
    interpolation unchanged during training.

773 774 775 776 777 778 779
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

780 781
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
782 783

        Args:
784 785 786
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
787 788

        Returns:
789
            The initialization op
790
        """
791 792
        block = self._check_block(block)

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

817
        # to be compatible of fp16 initalizers
818 819 820
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
821 822 823 824 825 826 827 828 829 830 831 832 833
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
834 835 836
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
837 838
            raise TypeError("Unsupported dtype %s", var.dtype)

839 840 841 842
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
843
            outputs={'Out': [out_var]},
844
            attrs={
845
                'dtype': out_dtype,
846 847 848
                'shape': list(shape),
                value_name: values
            })
849

850 851 852
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
853 854 855 856 857 858 859
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
860
        if not framework.in_dygraph_mode():
861
            var.op = op
862 863 864
        return op


865 866
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
867
    This op initialize the variable by numpy array.
868 869 870 871

    Args:
        value (numpy): numpy array to initialize the variable

872 873 874
    Returns:
        A Tensor variable initialized by numpy.

875 876 877
    Examples:
        .. code-block:: python

878
            import paddle.fluid as fluid
879 880
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
881 882 883 884 885 886 887 888 889 890
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

891 892
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
893 894

        Args:
895 896 897
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
898 899

        Returns:
900
            The initialization op
901
        """
902 903
        block = self._check_block(block)

904 905
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
906 907

        # to be compatible of fp16 initalizers
908
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
909 910 911 912 913 914 915 916 917 918 919 920 921 922 923
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
924
            value_name = "fp32_values"
925 926
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
927
            value_name = "int32_values"
928
            values = [int(v) for v in np_value.flat]
929 930
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
931
        if self._value.size > 1024 * 1024 * 1024:
932 933
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
934
        op = block.append_op(
935
            type='assign_value',
936
            outputs={'Out': out_var},
937
            attrs={
938
                'dtype': out_dtype,
939
                'shape': list(self._value.shape),
940 941 942
                value_name: values
            },
            stop_gradient=True)
943

944
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
945 946 947 948 949 950 951
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
952
        if not framework.in_dygraph_mode():
953
            var.op = op
954 955 956
        return op


957 958 959 960 961 962 963
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
964
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

984 985 986 987 988
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
989 990 991

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
992 993
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
994 995 996 997

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
998 999 1000 1001
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1002 1003

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1004
            nn.initializer.set_global_initializer(None)
1005
    """
1006

1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1044
TruncatedNormal = TruncatedNormalInitializer
1045 1046
Xavier = XavierInitializer
MSRA = MSRAInitializer
1047
Bilinear = BilinearInitializer