activation_op.cc 42.5 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
Q
qijun 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
Q
qijun 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/activation_op.h"
T
tink2123 已提交
16
#include <memory>
D
dzhwinter 已提交
17
#include <string>
18
#include <type_traits>
T
tink2123 已提交
19
#include <unordered_map>
20
#include <vector>
21
#include "paddle/fluid/operators/mkldnn/mkldnn_activation_op.h"
D
dzhwinter 已提交
22
#include "paddle/fluid/platform/port.h"
23 24 25
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
Q
qijun 已提交
26

A
Adam 已提交
27 28
DECLARE_bool(use_mkldnn);

Q
qijun 已提交
29 30 31
namespace paddle {
namespace operators {

32 33
using paddle::framework::Tensor;

34 35 36 37 38
template <typename GradFunctor>
static constexpr bool CanInplaceAct() {
  return GradFunctor::FwdDeps() == kDepOut || GradFunctor::FwdDeps() == kNoDeps;
}

39 40 41 42 43
#define REGISTER_ACTIVATION_OP_MAKER(OP_NAME, OP_COMMENT)                    \
  class OP_NAME##OpMaker                                                     \
      : public ::paddle::framework::OpProtoAndCheckerMaker {                 \
   public:                                                                   \
    void Make() override {                                                   \
44 45 46 47 48
      AddInput("X", "Input of " #OP_NAME                                     \
                    " operator, an N-D Tensor, with data type float32, "     \
                    "float64 or float16.");                                  \
      AddOutput("Out", "Output of " #OP_NAME                                 \
                       " operator, a Tensor with shape same as input.");     \
49 50 51 52 53 54 55 56 57
      AddAttr<bool>("use_mkldnn",                                            \
                    "(bool, default false) Only used in mkldnn kernel")      \
          .SetDefault(false);                                                \
      AddAttr<bool>("use_cudnn",                                             \
                    "(bool, default false) Only used in cudnn kernel, need " \
                    "install cudnn")                                         \
          .SetDefault(false);                                                \
      AddComment(OP_COMMENT);                                                \
    }                                                                        \
D
dzhwinter 已提交
58
  }
D
dzhwinter 已提交
59

H
hong 已提交
60 61
template <ActBwdOpFwdDeps kDepValue, typename T>
class ActivationGradOpMaker : public framework::SingleGradOpMaker<T> {
62
 public:
H
hong 已提交
63
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
64 65

 protected:
66
  void Apply(GradOpPtr<T> op) const override {
H
hong 已提交
67 68 69 70
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
71

A
Adam 已提交
72 73
    if ((static_cast<int>(kDepValue) &
         static_cast<int>(ActBwdOpFwdDeps::kDepX)) ||
74 75 76
        FLAGS_use_mkldnn ||
        (op->HasAttr("use_mkldnn") &&
         BOOST_GET_CONST(bool, op->GetAttr("use_mkldnn")))) {
H
hong 已提交
77
      op->SetInput("X", this->Input("X"));
78 79 80 81
    }

    if (static_cast<int>(kDepValue) &
        static_cast<int>(ActBwdOpFwdDeps::kDepOut)) {
H
hong 已提交
82
      op->SetInput("Out", this->Output("Out"));
83
    }
D
dzhwinter 已提交
84
  }
85
};
D
dzhwinter 已提交
86

87 88 89 90
framework::OpKernelType GetKernelType(const framework::ExecutionContext& ctx,
                                      const framework::OperatorWithKernel& oper,
                                      const std::string& name) {
  framework::LibraryType library{framework::LibraryType::kPlain};
M
mozga-intel 已提交
91
  framework::DataLayout layout = framework::DataLayout::kAnyLayout;
92 93 94 95 96 97 98 99 100 101
// FIXME(liuwei1031) temporarily disable the code to unblock users
// TODO(liuwei1031) figure out the reason behind
// https://github.com/PaddlePaddle/Paddle/issues/16096
// and re-enable this in the future
// #ifdef PADDLE_WITH_CUDA
//   auto it1 = oper.Attrs().find("use_cudnn");
//   if (it1 != oper.Attrs().end() && platform::CanCUDNNBeUsed(ctx)) {
//     library = framework::LibraryType::kCUDNN;
//   }
// #endif
102 103 104 105 106
#ifdef PADDLE_WITH_MKLDNN
  auto it = oper.Attrs().find("use_mkldnn");
  if (library == framework::LibraryType::kPlain && it != oper.Attrs().end() &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
107
    layout = framework::DataLayout::kMKLDNN;
108 109
  }
#endif
110 111
  return framework::OpKernelType(oper.IndicateVarDataType(ctx, name),
                                 ctx.GetPlace(), layout, library);
112 113
}

Q
qijun 已提交
114 115 116 117
class ActivationOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

118
  void InferShape(framework::InferShapeContext* ctx) const override {
119
    ctx->ShareDim("X", /*->*/ "Out");
F
fengjiayi 已提交
120
    ctx->ShareLoD("X", /*->*/ "Out");
Q
qijun 已提交
121
  }
122

123
 protected:
124 125 126 127
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }
Q
qijun 已提交
128 129
};

C
chengduo 已提交
130 131 132
class ActivationOpInferVarType
    : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
133
  std::unordered_map<std::string, std::string>& GetInputOutputWithSameType()
C
chengduo 已提交
134
      const override {
135 136
    static std::unordered_map<std::string, std::string> m{{"X", /*->*/ "Out"}};
    return m;
137 138 139
  }
};

Q
qijun 已提交
140 141 142 143
class ActivationOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

144
  void InferShape(framework::InferShapeContext* ctx) const override {
145 146 147
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
Q
qijun 已提交
148
  }
149

150
 protected:
151 152
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
153
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
154
  }
Q
qijun 已提交
155 156
};

D
dzhwinter 已提交
157
UNUSED constexpr char SigmoidDoc[] = R"DOC(
158
Sigmoid Activation Operator
K
Kexin Zhao 已提交
159

160
$$out = \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
161

D
dzhwinter 已提交
162
)DOC";
Q
qijun 已提交
163

D
dzhwinter 已提交
164
UNUSED constexpr char LogSigmoidDoc[] = R"DOC(
165
Logsigmoid Activation Operator
K
Kexin Zhao 已提交
166

167
$$out = \\log \\frac{1}{1 + e^{-x}}$$
K
Kexin Zhao 已提交
168

D
dzhwinter 已提交
169
)DOC";
170

D
dzhwinter 已提交
171
UNUSED constexpr char ExpDoc[] = R"DOC(
172
Exp Operator. Computes exp of x element-wise with a natural number :math:`e` as the base.
K
Kexin Zhao 已提交
173

174
$$out = e^x$$
K
Kexin Zhao 已提交
175

D
dzhwinter 已提交
176
)DOC";
Q
qijun 已提交
177

D
dzhwinter 已提交
178
UNUSED constexpr char ReluDoc[] = R"DOC(
K
kexinzhao 已提交
179
Relu Activation Operator.
K
Kexin Zhao 已提交
180

181
$$out = \max(x, 0)$$
K
Kexin Zhao 已提交
182

D
dzhwinter 已提交
183
)DOC";
K
Kexin Zhao 已提交
184

D
dzhwinter 已提交
185
UNUSED constexpr char TanhDoc[] = R"DOC(
K
kexinzhao 已提交
186
Tanh Activation Operator.
K
Kexin Zhao 已提交
187

Q
update  
qiaolongfei 已提交
188
$$out = \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
189

D
dzhwinter 已提交
190
)DOC";
191

D
dzhwinter 已提交
192
UNUSED constexpr char TanhShrinkDoc[] = R"DOC(
K
kexinzhao 已提交
193
TanhShrink Activation Operator.
K
Kexin Zhao 已提交
194

Y
Yan Chunwei 已提交
195
$$out = x - \\frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$
K
Kexin Zhao 已提交
196

D
dzhwinter 已提交
197
)DOC";
K
Kexin Zhao 已提交
198

D
dzhwinter 已提交
199
UNUSED constexpr char SqrtDoc[] = R"DOC(
K
kexinzhao 已提交
200
Sqrt Activation Operator.
K
Kexin Zhao 已提交
201

202
.. math:: out=\sqrt x=x^{1/2}
203

204 205
**Note**:
  input value must be greater than or equal to zero.
K
Kexin Zhao 已提交
206

D
dzhwinter 已提交
207
)DOC";
208

Z
zhoukunsheng 已提交
209 210 211 212 213
UNUSED constexpr char RsqrtDoc[] = R"DOC(
Rsqrt Activation Operator.

Please make sure input is legal in case of numeric errors.

214
$$out = \frac{1}{\sqrt{x}}$$
Z
zhoukunsheng 已提交
215 216 217

)DOC";

D
dzhwinter 已提交
218
UNUSED constexpr char AbsDoc[] = R"DOC(
K
kexinzhao 已提交
219
Abs Activation Operator.
K
Kexin Zhao 已提交
220

221
$$out = |x|$$
K
Kexin Zhao 已提交
222

D
dzhwinter 已提交
223
)DOC";
224

D
dzhwinter 已提交
225
UNUSED constexpr char CeilDoc[] = R"DOC(
226
Ceil Operator. Computes ceil of x element-wise.
D
dzhwinter 已提交
227

228
$$out = \\left \\lceil x \\right \\rceil$$
D
dzhwinter 已提交
229

D
dzhwinter 已提交
230
)DOC";
D
dzhwinter 已提交
231

D
dzhwinter 已提交
232
UNUSED constexpr char FloorDoc[] = R"DOC(
233
Floor Activation Operator. Computes floor of x element-wise.
D
dzhwinter 已提交
234

235
$$out = \\left \\lfloor x \\right \\rfloor$$
D
dzhwinter 已提交
236

D
dzhwinter 已提交
237
)DOC";
D
dzhwinter 已提交
238

D
dzhwinter 已提交
239
UNUSED constexpr char CosDoc[] = R"DOC(
240
Cosine Operator. Computes cosine of x element-wise.
C
add cos  
chengduoZH 已提交
241

242
$$out = cos(x)$$
C
add cos  
chengduoZH 已提交
243

D
dzhwinter 已提交
244
)DOC";
C
add cos  
chengduoZH 已提交
245

D
dzhwinter 已提交
246
UNUSED constexpr char SinDoc[] = R"DOC(
C
add sin  
chengduoZH 已提交
247 248
Sine Activation Operator.

249
$$out = sin(x)$$
C
add sin  
chengduoZH 已提交
250

D
dzhwinter 已提交
251
)DOC";
C
add sin  
chengduoZH 已提交
252

253 254 255 256 257 258 259 260 261 262 263 264 265 266
UNUSED constexpr char SinhDoc[] = R"DOC(
Sinh Activation Operator.

$$out = sinh(x)$$

)DOC";

UNUSED constexpr char CoshDoc[] = R"DOC(
Cosh Activation Operator.

$$out = cosh(x)$$

)DOC";

D
dzhwinter 已提交
267
UNUSED constexpr char RoundDoc[] = R"DOC(
268
The OP rounds the values in the input to the nearest integer value.
D
dzhwinter 已提交
269

270 271 272 273 274 275 276 277 278
.. code-block:: python

  input:
    x.shape = [4]
    x.data = [1.2, -0.9, 3.4, 0.9]

  output:
    out.shape = [4]
    out.data = [1., -1., 3., 1.]
D
dzhwinter 已提交
279

D
dzhwinter 已提交
280
)DOC";
D
dzhwinter 已提交
281

D
dzhwinter 已提交
282
UNUSED constexpr char ReciprocalDoc[] = R"DOC(
K
kexinzhao 已提交
283
Reciprocal Activation Operator.
K
Kexin Zhao 已提交
284

285
$$out = \\frac{1}{x}$$
K
Kexin Zhao 已提交
286

D
dzhwinter 已提交
287
)DOC";
288

D
dzhwinter 已提交
289
UNUSED constexpr char LogDoc[] = R"DOC(
K
kexinzhao 已提交
290
Log Activation Operator.
K
Kexin Zhao 已提交
291

292
$$out = \ln(x)$$
K
Kexin Zhao 已提交
293 294 295

Natural logarithm of x.

D
dzhwinter 已提交
296 297
)DOC";

298 299 300 301 302 303 304 305 306
UNUSED constexpr char Log1pDoc[] = R"DOC(
Log Activation Operator.

$out = \ln(x+1)$

Natural logarithm of x.

)DOC";

D
dzhwinter 已提交
307
UNUSED constexpr char SquareDoc[] = R"DOC(
308
The OP square each elements of the inputs.
D
dzhwinter 已提交
309

310
$$out = x^2$$
311

D
dzhwinter 已提交
312 313
)DOC";

D
dzhwinter 已提交
314
UNUSED constexpr char SoftplusDoc[] = R"DOC(
D
dzhwinter 已提交
315 316
Softplus Activation Operator.

317
$$out = \ln(1 + e^{x})$$
D
dzhwinter 已提交
318 319 320

)DOC";

D
dzhwinter 已提交
321
UNUSED constexpr char SoftsignDoc[] = R"DOC(
D
dzhwinter 已提交
322 323
Softsign Activation Operator.

324
$$out = \\frac{x}{1 + \|x\|}$$
D
dzhwinter 已提交
325 326 327

)DOC";

T
tink2123 已提交
328 329 330 331 332 333
class AcosOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of acos operator");
    AddOutput("Out", "Output of acos operator");
    AddComment(R"DOC(
334 335
Arccosine Activation Operator.

T
tink2123 已提交
336
$$out = \cos^{-1}(x)$$
337

T
tink2123 已提交
338 339 340
)DOC");
  }
};
341

T
tink2123 已提交
342 343 344 345 346 347
class AsinOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of asin operator");
    AddOutput("Out", "Output of asin operator");
    AddComment(R"DOC(
348 349
Arcsine Activation Operator.

T
tink2123 已提交
350
$$out = \sin^{-1}(x)$$
351

T
tink2123 已提交
352 353 354
)DOC");
  }
};
355

T
tink2123 已提交
356 357 358 359 360 361
class AtanOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of atan operator");
    AddOutput("Out", "Output of atan operator");
    AddComment(R"DOC(
362 363
Arctanh Activation Operator.

T
tink2123 已提交
364
$$out = \tanh^{-1}(x)$$
365

T
tink2123 已提交
366 367 368
)DOC");
  }
};
369

D
dzhwinter 已提交
370
class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker {
371
 public:
Y
Yu Yang 已提交
372
  void Make() override {
W
Wilber 已提交
373 374 375 376 377 378 379 380
    AddInput("X",
             "A LoDTensor or Tensor representing preactivation values. Must be "
             "one of the following types: float32, float64.");
    AddOutput(
        "Out",
        "A LoDTensor or Tensor with the same type and size as that of x.");
    AddAttr<float>("alpha", "Slope of the activation function at x < 0.")
        .SetDefault(0.02f);
A
Adam 已提交
381 382 383
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
K
Kexin Zhao 已提交
384
    AddComment(R"DOC(
D
dzhwinter 已提交
385
LeakyRelu Activation Operator.
K
Kexin Zhao 已提交
386

W
Wilber 已提交
387
$$out = \max(x, \alpha * x)$$
K
Kexin Zhao 已提交
388 389

)DOC");
390 391 392
  }
};

D
dzhwinter 已提交
393
class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
K
kexinzhao 已提交
394
 public:
Y
Yu Yang 已提交
395
  void Make() override {
D
dzhwinter 已提交
396 397 398
    AddInput("X", "Input of Softshrink operator");
    AddOutput("Out", "Output of Softshrink operator");
    AddAttr<float>("lambda", "non-negative offset").SetDefault(0.5f);
K
Kexin Zhao 已提交
399
    AddComment(R"DOC(
400 401 402
:strong:`Softshrink Activation Operator`

..  math::
403
    out = \begin{cases}
404 405 406 407
         x - \lambda, \text{if } x > \lambda \\
         x + \lambda, \text{if } x < -\lambda \\
         0,  \text{otherwise}
         \end{cases}
K
Kexin Zhao 已提交
408 409

)DOC");
K
kexinzhao 已提交
410 411 412
  }
};

D
dzhwinter 已提交
413
class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker {
414
 public:
Y
Yu Yang 已提交
415
  void Make() override {
D
dzhwinter 已提交
416 417
    AddInput("X", "Input of HardShrink operator");
    AddOutput("Out", "Output of HardShrink operator");
Y
yuyang18 已提交
418 419
    AddAttr<float>("threshold",
                   "The value of threshold for HardShrink. [default: 0.5]")
D
dzhwinter 已提交
420
        .SetDefault(0.5f);
K
Kexin Zhao 已提交
421
    AddComment(R"DOC(
Y
yuyang18 已提交
422
:strong:`HardShrink activation operator`
K
Kexin Zhao 已提交
423

Y
yuyang18 已提交
424 425 426 427 428 429
..  math::
    out = \begin{cases}
            x, \text{if } x > \lambda \\
            x, \text{if } x < -\lambda \\
            0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
430 431

)DOC");
432 433 434
  }
};

435 436
class BReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
437
  void Make() override {
438 439 440 441 442 443
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32, float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``X``.");
444 445 446 447
    AddAttr<float>("t_min", "The min marginal value of BRelu")
        .SetDefault(static_cast<float>(0));
    AddAttr<float>("t_max", "The max marginal value of BRelu")
        .SetDefault(static_cast<float>(24));
K
Kexin Zhao 已提交
448
    AddComment(R"DOC(
K
kexinzhao 已提交
449
BRelu Activation Operator.
K
Kexin Zhao 已提交
450

451
$$out = \min(\max(x, t_{min}), t_{max})$$
K
Kexin Zhao 已提交
452 453

)DOC");
454 455 456 457 458
  }
};

class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
459
  void Make() override {
460
    AddInput("X", "Input of SoftRelu operator");
F
fengjiayi 已提交
461
    AddOutput("Out", "Output of SoftRelu operator");
462 463
    AddAttr<float>("threshold", "The threshold value of SoftRelu")
        .SetDefault(40.0f);
K
Kexin Zhao 已提交
464
    AddComment(R"DOC(
K
kexinzhao 已提交
465
SoftRelu Activation Operator.
K
Kexin Zhao 已提交
466

467
$$out = \ln(1 + \exp(\max(\min(x, threshold), -threshold)))$$
K
Kexin Zhao 已提交
468 469

)DOC");
470 471 472
  }
};

473 474
class ELUOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
475
  void Make() override {
476 477 478 479 480 481
    AddInput("X",
             "The input is a multi-dimensional Tensor. The data type is "
             "float32 or float64.");
    AddOutput("Out",
              "The output is a multi-dimensional Tensor which has same "
              "dimension and data type as the ``x``.");
482
    AddAttr<float>("alpha", "The alpha value of ELU").SetDefault(1.0f);
483
    AddComment(R"DOC(
K
kexinzhao 已提交
484
ELU Activation Operator.
K
Kexin Zhao 已提交
485 486 487 488

Applies the following element-wise computation on the input according to
https://arxiv.org/abs/1511.07289.

489
$$out = \max(0, x) + \min(0, \alpha * (e^x - 1))$$
K
Kexin Zhao 已提交
490 491

)DOC");
492 493 494
  }
};

495 496
class Relu6OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
497
  void Make() override {
Z
zhupengyang 已提交
498 499 500 501 502 503 504 505
    AddInput("X",
             "Input of relu6 operator, an N-D Tensor, "
             "with data type float32, float64.");
    AddOutput(
        "Out",
        "Output of relu6 operator, a Tensor with the same shape as input.");
    AddAttr<float>("threshold",
                   "The threshold value of Relu6. Default is 6.0. ")
506
        .SetDefault(6.0f);
K
Kexin Zhao 已提交
507
    AddComment(R"DOC(
K
kexinzhao 已提交
508
Relu6 Activation Operator.
K
Kexin Zhao 已提交
509

510
$$out = \min(\max(0, x), threshold)$$
K
Kexin Zhao 已提交
511 512

)DOC");
513 514 515
  }
};

516 517
class PowOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
518
  void Make() override {
519
    AddInput("X", "Input of Pow operator");
520 521 522 523 524
    AddInput("FactorTensor",
             "(Tensor<float>, optional). If provided, pow will use this"
             "The shape of FactorTensor MUST BE [1]."
             "it has higher priority than attr(factor).")
        .AsDispensable();
F
fengjiayi 已提交
525
    AddOutput("Out", "Output of Pow operator");
526
    AddAttr<float>("factor", "The exponential factor of Pow").SetDefault(1.0f);
K
Kexin Zhao 已提交
527
    AddComment(R"DOC(
K
kexinzhao 已提交
528
Pow Activation Operator.
K
Kexin Zhao 已提交
529

530
$$out = x^{factor}$$
K
Kexin Zhao 已提交
531 532

)DOC");
533 534 535 536 537
  }
};

class STanhOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
538
  void Make() override {
539 540 541 542 543 544
    AddInput("X",
             "Input of STanh operator."
             " A LoDTensor or Tensor with type float32, float64.");
    AddOutput("Out", "Output of STanh operator. A Tensor with type float32.");
    AddAttr<float>("scale_a", "The scale parameter of a for the input. ")
        .SetDefault(0.67f);
545 546
    AddAttr<float>("scale_b", "The scale parameter of b for the input")
        .SetDefault(1.7159f);
K
Kexin Zhao 已提交
547
    AddComment(R"DOC(
K
kexinzhao 已提交
548
STanh Activation Operator.
K
Kexin Zhao 已提交
549

Y
Yan Chunwei 已提交
550
$$out = b * \\frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$
K
Kexin Zhao 已提交
551 552

)DOC");
Q
qijun 已提交
553 554 555
  }
};

556 557
class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
558
  void Make() override {
559
    AddInput("X", "Input of ThresholdedRelu operator");
F
fengjiayi 已提交
560
    AddOutput("Out", "Output of ThresholdedRelu operator");
Y
yuyang18 已提交
561 562
    AddAttr<float>("threshold",
                   "The threshold location of activation. [default 1.0].")
563
        .SetDefault(1.0f);
K
Kexin Zhao 已提交
564
    AddComment(R"DOC(
Y
yuyang18 已提交
565
:strong:`ThresholdedRelu activation operator`
K
Kexin Zhao 已提交
566

Y
yuyang18 已提交
567
..  math::
K
Kexin Zhao 已提交
568

Y
yuyang18 已提交
569
    out = \begin{cases}
Y
yuyang18 已提交
570
             x,  \text{if } x > threshold \\
Y
yuyang18 已提交
571 572
             0,  \text{otherwise}
          \end{cases}
K
Kexin Zhao 已提交
573
)DOC");
574 575 576
  }
};

577 578
class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
579
  void Make() override {
580 581 582 583 584
    AddInput("X", "An N-D Tensor with data type float32, float64. ");
    AddOutput("Out", "A Tensor with the same shape as input. ");
    AddAttr<float>("slope",
                   "The slope of the linear approximation of sigmoid. Its "
                   "value MUST BE positive. Default is 0.2. ")
585
        .SetDefault(0.2f);
586 587 588
    AddAttr<float>(
        "offset",
        "The offset of the linear approximation of sigmoid. Default is 0.5. ")
589
        .SetDefault(0.5f);
590
    AddComment(R"DOC(
K
kexinzhao 已提交
591
HardSigmoid Activation Operator.
592

593
A 3-part piecewise linear approximation of sigmoid(https://arxiv.org/abs/1603.00391),
K
Kexin Zhao 已提交
594
which is much faster than sigmoid.
595

596
$$out = \max(0, \min(1, slope * x + offset))$$
597

K
Kexin Zhao 已提交
598
)DOC");
599 600 601
  }
};

A
Abhinav Arora 已提交
602 603
class SwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
604
  void Make() override {
A
Abhinav Arora 已提交
605
    AddInput("X", "Input of Swish operator");
F
fengjiayi 已提交
606
    AddOutput("Out", "Output of Swish operator");
A
Abhinav Arora 已提交
607
    AddAttr<float>("beta", "Constant beta of swish operator").SetDefault(1.0f);
608 609 610
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
A
Abhinav Arora 已提交
611 612 613
    AddComment(R"DOC(
Swish Activation Operator.

614
$$out = \\frac{x}{1 + e^{- \beta \ x}}$$
A
Abhinav Arora 已提交
615 616 617 618 619

)DOC");
  }
};

H
huangjun12 已提交
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
class HardSwishOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "Input of HardSwish operator");
    AddOutput("Out", "Output of HardSwish operator");
    AddAttr<float>("threshold", "The threshold parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("scale", "The scale parameter of HardSwish operator")
        .SetDefault(6.0f);
    AddAttr<float>("offset", "The offset parameter of HardSwish operator")
        .SetDefault(3.0f);
    AddComment(R"DOC(
HardSwish Activation Operator.

The hard version of swish(https://arxiv.org/pdf/1905.02244.pdf).

636
$$out = \frac{x * (min(max(0, x+offset), threshold))}{scale}$$
H
huangjun12 已提交
637 638 639 640 641 642 643 644 645

The threshold and scale should be positive. The offset can be either positive or negative.
The default parameters are set according to the above reference.
It is recommended to use the defaults for this activation.

)DOC");
  }
};

D
dzhwinter 已提交
646 647 648 649 650 651 652
REGISTER_ACTIVATION_OP_MAKER(Sigmoid, SigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(LogSigmoid, LogSigmoidDoc);
REGISTER_ACTIVATION_OP_MAKER(Exp, ExpDoc);
REGISTER_ACTIVATION_OP_MAKER(Relu, ReluDoc);
REGISTER_ACTIVATION_OP_MAKER(Tanh, TanhDoc);
REGISTER_ACTIVATION_OP_MAKER(TanhShrink, TanhShrinkDoc);
REGISTER_ACTIVATION_OP_MAKER(Sqrt, SqrtDoc);
Z
zhoukunsheng 已提交
653
REGISTER_ACTIVATION_OP_MAKER(Rsqrt, RsqrtDoc);
D
dzhwinter 已提交
654 655 656 657 658
REGISTER_ACTIVATION_OP_MAKER(Abs, AbsDoc);
REGISTER_ACTIVATION_OP_MAKER(Ceil, CeilDoc);
REGISTER_ACTIVATION_OP_MAKER(Floor, FloorDoc);
REGISTER_ACTIVATION_OP_MAKER(Cos, CosDoc);
REGISTER_ACTIVATION_OP_MAKER(Sin, SinDoc);
659 660
REGISTER_ACTIVATION_OP_MAKER(Sinh, SinhDoc);
REGISTER_ACTIVATION_OP_MAKER(Cosh, CoshDoc);
D
dzhwinter 已提交
661 662 663
REGISTER_ACTIVATION_OP_MAKER(Round, RoundDoc);
REGISTER_ACTIVATION_OP_MAKER(Reciprocal, ReciprocalDoc);
REGISTER_ACTIVATION_OP_MAKER(Log, LogDoc);
664
REGISTER_ACTIVATION_OP_MAKER(Log1p, Log1pDoc);
D
dzhwinter 已提交
665 666 667 668
REGISTER_ACTIVATION_OP_MAKER(Square, SquareDoc);
REGISTER_ACTIVATION_OP_MAKER(Softplus, SoftplusDoc);
REGISTER_ACTIVATION_OP_MAKER(Softsign, SoftsignDoc);

669
template <ActBwdOpFwdDeps kDepValue>
670 671 672 673 674
class ActivationOpDoubleGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
675
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
676
      if (ctx->HasOutput("DX")) {
677 678 679
        ctx->ShareDim("X", "DX");
        ctx->ShareLoD("X", "DX");
      }
680
      if (ctx->HasOutput("DDOut")) {
681 682 683
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
684
    }
685
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
686
      if (ctx->HasOutput("DOut")) {
687 688 689
        ctx->ShareDim("Out", "DOut");
        ctx->ShareLoD("Out", "DOut");
      }
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

template <ActBwdOpFwdDeps kDepValue>
class ActivationOpDoubleGrad2 : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepX)) {
      if (ctx->HasOutput("DDOut")) {
        ctx->ShareDim("X", "DDOut");
        ctx->ShareLoD("X", "DDOut");
      }
    }
    if (static_cast<int>(kDepValue) & static_cast<int>(kDepOut)) {
      if (ctx->HasOutput("DDOut")) {
718 719 720
        ctx->ShareDim("Out", "DDOut");
        ctx->ShareLoD("Out", "DDOut");
      }
721 722 723 724 725 726 727 728 729 730
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "DDX");
  }
};

731 732 733 734
//
// ReluGrad: dx = dy if y >= 0 else 0
// ReluGradGrad: ddy = ddx if y >= 0 else 0
//
H
hong 已提交
735 736
template <typename T>
class ReluDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
737
 public:
H
hong 已提交
738
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
739 740

 protected:
741
  void Apply(GradOpPtr<T> op) const override {
742 743
    op->SetType("relu_grad_grad");
    // input1: Out
H
hong 已提交
744
    op->SetInput("Out", this->Input("Out"));
Q
qingqing01 已提交
745
    // input2: ddx
H
hong 已提交
746 747
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
748
    // output: ddy
H
hong 已提交
749
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
750 751 752
  }
};

753 754
// leaky_relu Grad: dx=dy if y>=0 else alpha * dy
// leaky_relu GradGrad: ddy=ddx if y>=0 else alpha * ddx
H
hong 已提交
755
template <typename T>
756
class LeakyReluDoubleGradMaker
H
hong 已提交
757
    : public ::paddle::framework::SingleGradOpMaker<T> {
758
 public:
H
hong 已提交
759
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
760 761

 protected:
762
  void Apply(GradOpPtr<T> op) const override {
763
    op->SetType("leaky_relu_grad_grad");
Z
Zeng Jinle 已提交
764
    // input1: Out
H
hong 已提交
765
    op->SetInput("Out", this->Input("Out"));
766
    // X@GRAD@GRAD: ddx
H
hong 已提交
767 768
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
769
    // Out@GRAD@GRAD: ddy
H
hong 已提交
770
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
771 772 773
  }
};

D
Double_V 已提交
774 775 776 777 778 779 780 781
// elu grad: dx=dy if y>0 else alpha*dy*x.exp()
// elu gradgrad: ddx=ddy if y>0 else alpha*ddy*x.exp()
template <typename T>
class ELUDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
 public:
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
782
  void Apply(GradOpPtr<T> op) const override {
D
Double_V 已提交
783 784 785 786 787 788 789 790 791 792 793 794 795 796
    op->SetType("elu_grad_grad");

    op->SetInput("X", this->Input("X"));
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
    // X@GRAD@GRAD: ddx
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());

    // Out@GRAD@GRAD: ddy
    op->SetOutput("DX", this->InputGrad("X"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
  }
};

L
lvmengsi 已提交
797 798
// sqrt Grad: dx = 0.5 * dy / y
// sqrt GradGrad: ddy = 0.5 * ddx / y, dy = -1 * dx * ddx
H
hong 已提交
799 800
template <typename T>
class SqrtDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
L
lvmengsi 已提交
801
 public:
H
hong 已提交
802
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
L
lvmengsi 已提交
803 804

 protected:
805
  void Apply(GradOpPtr<T> op) const override {
L
lvmengsi 已提交
806
    op->SetType("sqrt_grad_grad");
H
hong 已提交
807 808 809 810 811 812
    op->SetInput("Out", this->Input("Out"));
    op->SetInput("DX", this->Output(framework::GradVarName("X")));
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
    op->SetAttrMap(this->Attrs());
    op->SetOutput("DOut", this->InputGrad("Out"));
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
L
lvmengsi 已提交
813 814 815
  }
};

816 817
// square Grad: dx=2x*dy
// square GradGrad: ddy=2x*ddx, dx=2dy*ddx
H
hong 已提交
818 819
template <typename T>
class SquareDoubleGradMaker : public ::paddle::framework::SingleGradOpMaker<T> {
820
 public:
H
hong 已提交
821
  using ::paddle::framework::SingleGradOpMaker<T>::SingleGradOpMaker;
822 823

 protected:
824
  void Apply(GradOpPtr<T> op) const override {
825
    op->SetType("square_grad_grad");
H
hong 已提交
826
    op->SetInput("X", this->Input("X"));
827
    // Out@GRAD: dy
H
hong 已提交
828
    op->SetInput("DOut", this->Input(framework::GradVarName("Out")));
829
    // X@GRAD@GRAD: ddx
H
hong 已提交
830
    op->SetInput("DDX", this->OutputGrad(framework::GradVarName("X")));
831

H
hong 已提交
832
    op->SetAttrMap(this->Attrs());
833 834

    // X@GRAD: dx
H
hong 已提交
835
    op->SetOutput("DX", this->InputGrad("X"));
836
    // Out@GRAD@GRAD: ddy
H
hong 已提交
837
    op->SetOutput("DDOut", this->InputGrad(framework::GradVarName("Out")));
838 839 840
  }
};

841
DECLARE_INPLACE_OP_INFERER(ActivationGradOpInplaceInferer,
842 843
                           {framework::GradVarName("Out"),
                            framework::GradVarName("X")});
844
DECLARE_INPLACE_OP_INFERER(ActivationDoubleGradOpInplaceInferer,
845
                           {"DDX", "DDOut"});
846

H
hong 已提交
847 848
template <typename T>
class PowGradOpMaker : public framework::SingleGradOpMaker<T> {
849
 public:
H
hong 已提交
850
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
851 852

 protected:
853
  void Apply(GradOpPtr<T> op) const override {
854
    op->SetType("pow_grad");
H
hong 已提交
855 856 857 858 859
    op->SetInput("X", this->Input("X"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetInput("FactorTensor", this->Input("FactorTensor"));
    op->SetAttrMap(this->Attrs());
860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
  }
};
class PowOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    ctx->ShareDim("X", /*->*/ "Out");
    ctx->ShareLoD("X", /*->*/ "Out");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, "X");
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};

class PowOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    auto out_grad_name = framework::GradVarName("Out");
    ctx->ShareDim(out_grad_name, framework::GradVarName("X"));
    ctx->ShareLoD(out_grad_name, framework::GradVarName("X"));
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return GetKernelType(ctx, *this, framework::GradVarName("Out"));
  }

  framework::OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "FactorTensor") {
      return expected_kernel_type;
    }
    return framework::OpKernelType(expected_kernel_type.data_type_,
                                   tensor.place(), tensor.layout());
  }
};
914
DECLARE_INPLACE_OP_INFERER(ActFwdInplaceInferer, {"X", "Out"});
Q
qijun 已提交
915 916 917 918
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
919
namespace plat = paddle::platform;
920

921 922 923 924
#define REGISTER_ACTIVATION_OP(KERNEL_TYPE, OP_NAME, functor, grad_functor) \
  REGISTER_OPERATOR(                                                        \
      KERNEL_TYPE, ops::ActivationOp, ops::OP_NAME##OpMaker,                \
      ops::ActivationOpInferVarType,                                        \
H
hong 已提交
925 926 927 928
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::framework::OpDesc>,                \
      ops::ActivationGradOpMaker<ops::grad_functor<float>::FwdDeps(),       \
                                 paddle::imperative::OpBase>,               \
929
      std::conditional<ops::CanInplaceAct<ops::grad_functor<float>>(),      \
930
                       ops::ActFwdInplaceInferer, void>::type);             \
931
  REGISTER_OPERATOR(KERNEL_TYPE##_grad, ops::ActivationOpGrad,              \
932
                    ops::ActivationGradOpInplaceInferer);
933 934 935

#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, op_name, functor,        \
                                       grad_functor)                      \
Q
QI JUN 已提交
936 937 938 939 940 941 942 943 944 945
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type, ops::ActivationKernel<paddle::platform::CPUDeviceContext, \
                                      ops::functor<float>>,               \
      ops::ActivationKernel<paddle::platform::CPUDeviceContext,           \
                            ops::functor<double>>);                       \
  REGISTER_OP_CPU_KERNEL(                                                 \
      act_type##_grad,                                                    \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
                                ops::grad_functor<float>>,                \
      ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,       \
Y
Yu Yang 已提交
946
                                ops::grad_functor<double>>);
947

948 949
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_OP);
FOR_EACH_ACTIVATION_OP(REGISTER_ACTIVATION_CPU_KERNEL);
950

951
/* ==========================    relu register  ============================= */
952 953
REGISTER_OPERATOR(
    relu, ops::ActivationOp, ops::ReluOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
954 955 956 957
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
958
    ops::ActFwdInplaceInferer);
959
REGISTER_OPERATOR(relu_grad, ops::ActivationOpGrad,
960
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
961 962
                  ops::ReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ReluDoubleGradMaker<paddle::imperative::OpBase>);
963 964
REGISTER_OPERATOR(
    relu_grad_grad,
965
    ops::ActivationOpDoubleGrad2<ops::ReluGradFunctor<float>::FwdDeps()>,
966
    ops::ActivationDoubleGradOpInplaceInferer);
967 968 969 970 971 972 973 974 975 976 977

REGISTER_ACTIVATION_CPU_KERNEL(relu, Relu, ReluFunctor, ReluGradFunctor);

REGISTER_OP_CPU_KERNEL(
    relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::ReluGradGradFunctor<plat::float16>>);
978
/* ========================================================================== */
979

980
/* ======================== leaky relu register  ============================ */
981 982 983
REGISTER_OPERATOR(
    leaky_relu, ops::ActivationOp, ops::LeakyReluOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
984 985 986 987
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::LeakyReluGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
988
    ops::ActFwdInplaceInferer);
989
REGISTER_OPERATOR(leaky_relu_grad, ops::ActivationOpGrad,
990
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
991 992
                  ops::LeakyReluDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::LeakyReluDoubleGradMaker<paddle::imperative::OpBase>);
993 994
REGISTER_OPERATOR(
    leaky_relu_grad_grad,
995
    ops::ActivationOpDoubleGrad2<ops::LeakyReluGradFunctor<float>::FwdDeps()>,
996
    ops::ActivationDoubleGradOpInplaceInferer);
997

998 999 1000 1001 1002 1003 1004 1005 1006 1007
REGISTER_ACTIVATION_CPU_KERNEL(leaky_relu, LeakyRelu, LeakyReluFunctor,
                               LeakyReluGradFunctor);
REGISTER_OP_CPU_KERNEL(
    leaky_relu_grad_grad,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<float>>,
    ops::ActivationDoubleGradKernel<plat::CPUDeviceContext,
                                    ops::LeakyReluGradGradFunctor<double>>,
    ops::ActivationDoubleGradKernel<
        plat::CPUDeviceContext, ops::LeakyReluGradGradFunctor<plat::float16>>);
1008 1009
/* ========================================================================== */

D
Double_V 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018
/* ========================    elu  register     ============================ */
REGISTER_OPERATOR(
    elu, ops::ActivationOp, ops::ELUOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ELUGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    ops::ActFwdInplaceInferer);
REGISTER_OPERATOR(elu_grad, ops::ActivationOpGrad,
1019
                  ops::ActivationGradOpInplaceInferer,
D
Double_V 已提交
1020 1021 1022 1023 1024
                  ops::ELUDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::ELUDoubleGradMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(
    elu_grad_grad,
    ops::ActivationOpDoubleGrad<ops::ELUGradFunctor<float>::FwdDeps()>,
1025
    ops::ActivationDoubleGradOpInplaceInferer);
D
Double_V 已提交
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037

REGISTER_ACTIVATION_CPU_KERNEL(elu, ELU, ELUFunctor, ELUGradFunctor);
REGISTER_OP_CPU_KERNEL(
    elu_grad_grad, ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                                            ops::ELUGradGradFunctor<float>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<double>>,
    ops::ELUDoubleGradKernel<plat::CPUDeviceContext,
                             ops::ELUGradGradFunctor<plat::float16>>);

/* ========================================================================== */

L
lvmengsi 已提交
1038 1039 1040
/* ===========================   sqrt register  ============================= */
REGISTER_OPERATOR(
    sqrt, ops::ActivationOp, ops::SqrtOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1041 1042 1043 1044
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SqrtGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1045
    ops::ActFwdInplaceInferer);
L
lvmengsi 已提交
1046
REGISTER_OPERATOR(sqrt_grad, ops::ActivationOpGrad,
1047
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1048 1049
                  ops::SqrtDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SqrtDoubleGradMaker<paddle::imperative::OpBase>);
L
lvmengsi 已提交
1050 1051
REGISTER_OPERATOR(
    sqrt_grad_grad,
1052
    ops::ActivationOpDoubleGrad<ops::SqrtGradGradFunctor<float>::FwdDeps()>,
1053
    ops::ActivationDoubleGradOpInplaceInferer);
1054

L
lvmengsi 已提交
1055 1056 1057 1058 1059 1060 1061 1062 1063 1064
REGISTER_ACTIVATION_CPU_KERNEL(sqrt, Sqrt, SqrtFunctor, SqrtGradFunctor);
REGISTER_OP_CPU_KERNEL(
    sqrt_grad_grad, ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                                              ops::SqrtGradGradFunctor<float>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<double>>,
    ops::SqrtDoubleGradKernel<plat::CPUDeviceContext,
                              ops::SqrtGradGradFunctor<plat::float16>>);
/* ========================================================================== */

1065 1066 1067 1068
/* ==========================   square register  ============================ */
REGISTER_OPERATOR(
    square, ops::ActivationOp, ops::SquareOpMaker,
    ops::ActivationOpInferVarType,
H
hong 已提交
1069 1070 1071 1072
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::SquareGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
1073
    ops::ActFwdInplaceInferer);
1074
REGISTER_OPERATOR(square_grad, ops::ActivationOpGrad,
1075
                  ops::ActivationGradOpInplaceInferer,
H
hong 已提交
1076 1077
                  ops::SquareDoubleGradMaker<paddle::framework::OpDesc>,
                  ops::SquareDoubleGradMaker<paddle::imperative::OpBase>);
1078 1079
REGISTER_OPERATOR(
    square_grad_grad,
1080
    ops::ActivationOpDoubleGrad<ops::SquareGradGradFunctor<float>::FwdDeps()>,
1081
    ops::ActivationDoubleGradOpInplaceInferer);
1082

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100
REGISTER_OP_CPU_KERNEL(square,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::SquareFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    square_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                           ops::SquareGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::SquareGradFunctor<int64_t>>);
1101 1102 1103 1104 1105 1106 1107 1108

REGISTER_OP_CPU_KERNEL(
    square_grad_grad,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<float>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<double>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
1109 1110 1111 1112 1113
                                ops::SquareGradGradFunctor<plat::float16>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int>>,
    ops::SquareDoubleGradKernel<plat::CPUDeviceContext,
                                ops::SquareGradGradFunctor<int64_t>>);
1114
/* ========================================================================== */
1115 1116 1117 1118 1119

/* ==========================   pow register  ============================ */

REGISTER_OPERATOR(
    pow, ops::PowOp, ops::PowOpMaker, ops::ActivationOpInferVarType,
H
hong 已提交
1120 1121
    ops::PowGradOpMaker<paddle::framework::OpDesc>,
    ops::PowGradOpMaker<paddle::imperative::OpBase>,
1122
    std::conditional<ops::CanInplaceAct<ops::PowGradFunctor<float>>(),
1123
                     ops::ActFwdInplaceInferer, void>::type);
1124
REGISTER_OPERATOR(pow_grad, ops::PowOpGrad,
1125
                  ops::ActivationGradOpInplaceInferer);
1126 1127 1128

REGISTER_OP_CPU_KERNEL(
    pow, ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<float>>,
1129 1130 1131
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<double>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int>>,
    ops::PowKernel<plat::CPUDeviceContext, ops::PowFunctor<int64_t>>);
1132 1133 1134
REGISTER_OP_CPU_KERNEL(
    pow_grad,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<float>>,
1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<double>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int>>,
    ops::PowGradKernel<plat::CPUDeviceContext, ops::PowGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   exp register  ============================ */
REGISTER_OPERATOR(
    exp, ops::ActivationOp, ops::ExpOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::ExpGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::ExpGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(exp_grad, ops::ActivationOpGrad,
1150
                  ops::ActivationGradOpInplaceInferer);
1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181

REGISTER_OP_CPU_KERNEL(exp,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::ExpFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    exp_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::ExpGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::ExpGradFunctor<int64_t>>);
/* ========================================================================== */

/* ==========================   abs register  ============================ */
REGISTER_OPERATOR(
    abs, ops::ActivationOp, ops::AbsOpMaker, ops::ActivationOpInferVarType,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::framework::OpDesc>,
    ops::ActivationGradOpMaker<ops::AbsGradFunctor<float>::FwdDeps(),
                               paddle::imperative::OpBase>,
    std::conditional<ops::CanInplaceAct<ops::AbsGradFunctor<float>>(),
                     ops::ActFwdInplaceInferer, void>::type);
REGISTER_OPERATOR(abs_grad, ops::ActivationOpGrad,
1182
                  ops::ActivationGradOpInplaceInferer);
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201

REGISTER_OP_CPU_KERNEL(abs,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<float>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<double>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int>>,
                       ops::ActivationKernel<paddle::platform::CPUDeviceContext,
                                             ops::AbsFunctor<int64_t>>);
REGISTER_OP_CPU_KERNEL(
    abs_grad, ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                                        ops::AbsGradFunctor<float>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<double>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int>>,
    ops::ActivationGradKernel<paddle::platform::CPUDeviceContext,
                              ops::AbsGradFunctor<int64_t>>);
1202
/* ========================================================================== */