metrics.py 27.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import abc
import numpy as np

S
Steffy-zxf 已提交
18 19
from ..fluid.data_feeder import check_variable_and_dtype
from ..fluid.layer_helper import LayerHelper
20
from ..fluid.framework import _non_static_mode, _varbase_creator
21
import paddle
22
from paddle import _legacy_C_ops
23

24
__all__ = []
25 26 27 28 29 30


def _is_numpy_(var):
    return isinstance(var, (np.ndarray, np.generic))


31
class Metric(metaclass=abc.ABCMeta):
32
    r"""
33 34
    Base class for metric, encapsulates metric logic and APIs
    Usage:
35 36 37 38 39 40 41

        .. code-block:: text

            m = SomeMetric()
            for prediction, label in ...:
                m.update(prediction, label)
            m.accumulate()
42

43 44 45 46 47 48 49 50
    Advanced usage for :code:`compute`:

    Metric calculation can be accelerated by calculating metric states
    from model outputs and labels by build-in operators not by Python/NumPy
    in :code:`compute`, metric states will be fetched as NumPy array and
    call :code:`update` with states in NumPy format.
    Metric calculated as follows (operations in Model and Metric are
    indicated with curly brackets, while data nodes not):
51 52 53

        .. code-block:: text

54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
                 inputs & labels              || ------------------
                       |                      ||
                    {model}                   ||
                       |                      ||
                outputs & labels              ||
                       |                      ||    tensor data
                {Metric.compute}              ||
                       |                      ||
              metric states(tensor)           ||
                       |                      ||
                {fetch as numpy}              || ------------------
                       |                      ||
              metric states(numpy)            ||    numpy data
                       |                      ||
                {Metric.update}               \/ ------------------
69

70
    Examples:
71

72 73 74 75 76 77 78 79 80 81
        For :code:`Accuracy` metric, which takes :code:`pred` and :code:`label`
        as inputs, we can calculate the correct prediction matrix between
        :code:`pred` and :code:`label` in :code:`compute`.
        For examples, prediction results contains 10 classes, while :code:`pred`
        shape is [N, 10], :code:`label` shape is [N, 1], N is mini-batch size,
        and we only need to calculate accurary of top-1 and top-5, we could
        calculate the correct prediction matrix of the top-5 scores of the
        prediction of each sample like follows, while the correct prediction
        matrix shape is [N, 5].

82 83 84 85 86 87 88 89
          .. code-block:: text

              def compute(pred, label):
                  # sort prediction and slice the top-5 scores
                  pred = paddle.argsort(pred, descending=True)[:, :5]
                  # calculate whether the predictions are correct
                  correct = pred == label
                  return paddle.cast(correct, dtype='float32')
90 91 92 93 94 95

        With the :code:`compute`, we split some calculations to OPs (which
        may run on GPU devices, will be faster), and only fetch 1 tensor with
        shape as [N, 5] instead of 2 tensors with shapes as [N, 10] and [N, 1].
        :code:`update` can be define as follows:

96 97 98 99 100 101 102 103 104 105 106
          .. code-block:: text

              def update(self, correct):
                  accs = []
                  for i, k in enumerate(self.topk):
                      num_corrects = correct[:, :k].sum()
                      num_samples = len(correct)
                      accs.append(float(num_corrects) / num_samples)
                      self.total[i] += num_corrects
                      self.count[i] += num_samples
                  return accs
107 108 109 110 111 112 113 114 115 116
    """

    def __init__(self):
        pass

    @abc.abstractmethod
    def reset(self):
        """
        Reset states and result
        """
117 118
        raise NotImplementedError(
            "function 'reset' not implemented in {}.".format(
119 120 121
                self.__class__.__name__
            )
        )
122 123 124 125 126 127 128 129 130 131 132 133 134

    @abc.abstractmethod
    def update(self, *args):
        """
        Update states for metric

        Inputs of :code:`update` is the outputs of :code:`Metric.compute`,
        if :code:`compute` is not defined, the inputs of :code:`update`
        will be flatten arguments of **output** of mode and **label** from data:
        :code:`update(output1, output2, ..., label1, label2,...)`

        see :code:`Metric.compute`
        """
135 136
        raise NotImplementedError(
            "function 'update' not implemented in {}.".format(
137 138 139
                self.__class__.__name__
            )
        )
140 141 142 143 144 145 146 147

    @abc.abstractmethod
    def accumulate(self):
        """
        Accumulates statistics, computes and returns the metric value
        """
        raise NotImplementedError(
            "function 'accumulate' not implemented in {}.".format(
148 149 150
                self.__class__.__name__
            )
        )
151 152 153 154 155 156

    @abc.abstractmethod
    def name(self):
        """
        Returns metric name
        """
157 158
        raise NotImplementedError(
            "function 'name' not implemented in {}.".format(
159 160 161
                self.__class__.__name__
            )
        )
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189

    def compute(self, *args):
        """
        This API is advanced usage to accelerate metric calculating, calulations
        from outputs of model to the states which should be updated by Metric can
        be defined here, where Paddle OPs is also supported. Outputs of this API
        will be the inputs of "Metric.update".

        If :code:`compute` is defined, it will be called with **outputs**
        of model and **labels** from data as arguments, all outputs and labels
        will be concatenated and flatten and each filed as a separate argument
        as follows:
        :code:`compute(output1, output2, ..., label1, label2,...)`

        If :code:`compute` is not defined, default behaviour is to pass
        input to output, so output format will be:
        :code:`return output1, output2, ..., label1, label2,...`

        see :code:`Metric.update`
        """
        return args


class Accuracy(Metric):
    """
    Encapsulates accuracy metric logic.

    Args:
J
Jiaqi Liu 已提交
190
        topk (list[int]|tuple[int]): Number of top elements to look at
191 192 193 194 195
            for computing accuracy. Default is (1,).
        name (str, optional): String name of the metric instance. Default
            is `acc`.

    Example by standalone:
196

197 198
        .. code-block:: python

199 200
          import numpy as np
          import paddle
201

202 203 204 205 206 207
          x = paddle.to_tensor(np.array([
              [0.1, 0.2, 0.3, 0.4],
              [0.1, 0.4, 0.3, 0.2],
              [0.1, 0.2, 0.4, 0.3],
              [0.1, 0.2, 0.3, 0.4]]))
          y = paddle.to_tensor(np.array([[0], [1], [2], [3]]))
208

209 210 211 212 213
          m = paddle.metric.Accuracy()
          correct = m.compute(x, y)
          m.update(correct)
          res = m.accumulate()
          print(res) # 0.75
214 215 216


    Example with Model API:
217

218 219
        .. code-block:: python

220 221 222 223
          import paddle
          from paddle.static import InputSpec
          import paddle.vision.transforms as T
          from paddle.vision.datasets import MNIST
224

225 226 227 228 229
          input = InputSpec([None, 1, 28, 28], 'float32', 'image')
          label = InputSpec([None, 1], 'int64', 'label')
          transform = T.Compose([T.Transpose(), T.Normalize([127.5], [127.5])])
          train_dataset = MNIST(mode='train', transform=transform)

230
          model = paddle.Model(paddle.vision.models.LeNet(), input, label)
231 232 233 234 235 236 237 238
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=paddle.nn.CrossEntropyLoss(),
              metrics=paddle.metric.Accuracy())

          model.fit(train_dataset, batch_size=64)
239 240 241

    """

242
    def __init__(self, topk=(1,), name=None, *args, **kwargs):
243 244 245 246 247 248 249 250
        super(Accuracy, self).__init__(*args, **kwargs)
        self.topk = topk
        self.maxk = max(topk)
        self._init_name(name)
        self.reset()

    def compute(self, pred, label, *args):
        """
251
        Compute the top-k (maximum value in `topk`) indices.
252 253

        Args:
254 255 256 257 258
            pred (Tensor): The predicted value is a Tensor with dtype
                float32 or float64. Shape is [batch_size, d0, ..., dN].
            label (Tensor): The ground truth value is Tensor with dtype
                int64. Shape is [batch_size, d0, ..., 1], or
                [batch_size, d0, ..., num_classes] in one hot representation.
259

260
        Return:
261
            Tensor: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
262
        """
263
        pred = paddle.argsort(pred, descending=True)
264 265 266 267 268 269
        pred = paddle.slice(
            pred, axes=[len(pred.shape) - 1], starts=[0], ends=[self.maxk]
        )
        if (len(label.shape) == 1) or (
            len(label.shape) == 2 and label.shape[-1] == 1
        ):
270 271 272 273 274 275 276
            # In static mode, the real label data shape may be different
            # from shape defined by paddle.static.InputSpec in model
            # building, reshape to the right shape.
            label = paddle.reshape(label, (-1, 1))
        elif label.shape[-1] != 1:
            # one-hot label
            label = paddle.argmax(label, axis=-1, keepdim=True)
277 278 279 280 281 282 283 284
        correct = pred == label
        return paddle.cast(correct, dtype='float32')

    def update(self, correct, *args):
        """
        Update the metrics states (correct count and total count), in order to
        calculate cumulative accuracy of all instances. This function also
        returns the accuracy of current step.
285

286
        Args:
287
            correct: Correct mask, a tensor with shape [batch_size, d0, ..., topk].
288 289 290 291

        Return:
            Tensor: the accuracy of current step.
        """
H
hong 已提交
292
        if isinstance(correct, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
293
            correct = correct.numpy()
294
        num_samples = np.prod(np.array(correct.shape[:-1]))
295 296
        accs = []
        for i, k in enumerate(self.topk):
297
            num_corrects = correct[..., :k].sum()
298 299 300 301 302 303 304 305 306 307
            accs.append(float(num_corrects) / num_samples)
            self.total[i] += num_corrects
            self.count[i] += num_samples
        accs = accs[0] if len(self.topk) == 1 else accs
        return accs

    def reset(self):
        """
        Resets all of the metric state.
        """
308
        self.total = [0.0] * len(self.topk)
309 310 311 312 313 314 315 316
        self.count = [0] * len(self.topk)

    def accumulate(self):
        """
        Computes and returns the accumulated metric.
        """
        res = []
        for t, c in zip(self.total, self.count):
317
            r = float(t) / c if c > 0 else 0.0
318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
            res.append(r)
        res = res[0] if len(self.topk) == 1 else res
        return res

    def _init_name(self, name):
        name = name or 'acc'
        if self.maxk != 1:
            self._name = ['{}_top{}'.format(name, k) for k in self.topk]
        else:
            self._name = [name]

    def name(self):
        """
        Return name of metric instance.
        """
        return self._name


class Precision(Metric):
    """
    Precision (also called positive predictive value) is the fraction of
    relevant instances among the retrieved instances. Refer to
    https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

    Noted that this class manages the precision score only for binary
    classification task.

    Args:
        name (str, optional): String name of the metric instance.
            Default is `precision`.

    Example by standalone:
350

351 352
        .. code-block:: python

353 354
          import numpy as np
          import paddle
355

356 357
          x = np.array([0.1, 0.5, 0.6, 0.7])
          y = np.array([0, 1, 1, 1])
358

359 360 361 362
          m = paddle.metric.Precision()
          m.update(x, y)
          res = m.accumulate()
          print(res) # 1.0
363 364 365


    Example with Model API:
366

367 368
        .. code-block:: python

369
          import numpy as np
370

371 372
          import paddle
          import paddle.nn as nn
373

374 375 376 377 378 379
          class Data(paddle.io.Dataset):
              def __init__(self):
                  super(Data, self).__init__()
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
380

381 382
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
383

384 385
              def __len__(self):
                  return self.n
386

387 388 389 390 391 392 393 394 395 396
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 1),
              nn.Sigmoid()
          ))
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=nn.BCELoss(),
              metrics=paddle.metric.Precision())
397

398 399
          data = Data()
          model.fit(data, batch_size=16)
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    """

    def __init__(self, name='precision', *args, **kwargs):
        super(Precision, self).__init__(*args, **kwargs)
        self.tp = 0  # true positive
        self.fp = 0  # false positive
        self._name = name

    def update(self, preds, labels):
        """
        Update the states based on the current mini-batch prediction results.

        Args:
            preds (numpy.ndarray): The prediction result, usually the output
                of two-class sigmoid function. It should be a vector (column
                vector or row vector) with data type: 'float64' or 'float32'.
            labels (numpy.ndarray): The ground truth (labels),
                the shape should keep the same as preds.
                The data type is 'int32' or 'int64'.
        """
H
hong 已提交
420
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
421 422 423 424
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

H
hong 已提交
425
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

        sample_num = labels.shape[0]
        preds = np.floor(preds + 0.5).astype("int32")

        for i in range(sample_num):
            pred = preds[i]
            label = labels[i]
            if pred == 1:
                if pred == label:
                    self.tp += 1
                else:
                    self.fp += 1

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.tp = 0
        self.fp = 0

    def accumulate(self):
        """
        Calculate the final precision.

        Returns:
            A scaler float: results of the calculated precision.
        """
        ap = self.tp + self.fp
457
        return float(self.tp) / ap if ap != 0 else 0.0
458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482

    def name(self):
        """
        Returns metric name
        """
        return self._name


class Recall(Metric):
    """
    Recall (also known as sensitivity) is the fraction of
    relevant instances that have been retrieved over the
    total amount of relevant instances

    Refer to:
    https://en.wikipedia.org/wiki/Precision_and_recall

    Noted that this class manages the recall score only for
    binary classification task.

    Args:
        name (str, optional): String name of the metric instance.
            Default is `recall`.

    Example by standalone:
483

484 485
        .. code-block:: python

486 487
          import numpy as np
          import paddle
488

489 490
          x = np.array([0.1, 0.5, 0.6, 0.7])
          y = np.array([1, 0, 1, 1])
491

492 493 494 495
          m = paddle.metric.Recall()
          m.update(x, y)
          res = m.accumulate()
          print(res) # 2.0 / 3.0
496 497 498


    Example with Model API:
499

500 501
        .. code-block:: python

502
          import numpy as np
503

504 505
          import paddle
          import paddle.nn as nn
506

507 508 509 510 511 512
          class Data(paddle.io.Dataset):
              def __init__(self):
                  super(Data, self).__init__()
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('float32')
513

514 515
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
516

517 518
              def __len__(self):
                  return self.n
519

520 521 522 523 524 525 526 527 528 529
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 1),
              nn.Sigmoid()
          ))
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
          model.prepare(
              optim,
              loss=nn.BCELoss(),
              metrics=[paddle.metric.Precision(), paddle.metric.Recall()])
530

531 532
          data = Data()
          model.fit(data, batch_size=16)
533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
    """

    def __init__(self, name='recall', *args, **kwargs):
        super(Recall, self).__init__(*args, **kwargs)
        self.tp = 0  # true positive
        self.fn = 0  # false negative
        self._name = name

    def update(self, preds, labels):
        """
        Update the states based on the current mini-batch prediction results.

        Args:
            preds(numpy.array): prediction results of current mini-batch,
                the output of two-class sigmoid function.
                Shape: [batch_size, 1]. Dtype: 'float64' or 'float32'.
            labels(numpy.array): ground truth (labels) of current mini-batch,
                the shape should keep the same as preds.
                Shape: [batch_size, 1], Dtype: 'int32' or 'int64'.
        """
H
hong 已提交
553
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
554 555 556 557
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

H
hong 已提交
558
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

        sample_num = labels.shape[0]
        preds = np.rint(preds).astype("int32")

        for i in range(sample_num):
            pred = preds[i]
            label = labels[i]
            if label == 1:
                if pred == label:
                    self.tp += 1
                else:
                    self.fn += 1

    def accumulate(self):
        """
        Calculate the final recall.

        Returns:
            A scaler float: results of the calculated Recall.
        """
        recall = self.tp + self.fn
583
        return float(self.tp) / recall if recall != 0 else 0.0
584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626

    def reset(self):
        """
        Resets all of the metric state.
        """
        self.tp = 0
        self.fn = 0

    def name(self):
        """
        Returns metric name
        """
        return self._name


class Auc(Metric):
    """
    The auc metric is for binary classification.
    Refer to https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve.
    Please notice that the auc metric is implemented with python, which may be a little bit slow.

    The `auc` function creates four local variables, `true_positives`,
    `true_negatives`, `false_positives` and `false_negatives` that are used to
    compute the AUC. To discretize the AUC curve, a linearly spaced set of
    thresholds is used to compute pairs of recall and precision values. The area
    under the ROC-curve is therefore computed using the height of the recall
    values by the false positive rate, while the area under the PR-curve is the
    computed using the height of the precision values by the recall.

    Args:
        curve (str): Specifies the mode of the curve to be computed,
            'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
        num_thresholds (int): The number of thresholds to use when
            discretizing the roc curve. Default is 4095.
            'ROC' or 'PR' for the Precision-Recall-curve. Default is 'ROC'.
        name (str, optional): String name of the metric instance. Default
            is `auc`.

    "NOTE: only implement the ROC curve type via Python now."

    Example by standalone:
        .. code-block:: python

627 628
          import numpy as np
          import paddle
629

630
          m = paddle.metric.Auc()
631

632 633 634
          n = 8
          class0_preds = np.random.random(size = (n, 1))
          class1_preds = 1 - class0_preds
635

636 637
          preds = np.concatenate((class0_preds, class1_preds), axis=1)
          labels = np.random.randint(2, size = (n, 1))
638

639 640
          m.update(preds=preds, labels=labels)
          res = m.accumulate()
641 642 643


    Example with Model API:
644

645 646
        .. code-block:: python

647 648 649
          import numpy as np
          import paddle
          import paddle.nn as nn
650

651 652 653 654 655 656
          class Data(paddle.io.Dataset):
              def __init__(self):
                  super(Data, self).__init__()
                  self.n = 1024
                  self.x = np.random.randn(self.n, 10).astype('float32')
                  self.y = np.random.randint(2, size=(self.n, 1)).astype('int64')
657

658 659
              def __getitem__(self, idx):
                  return self.x[idx], self.y[idx]
660

661 662
              def __len__(self):
                  return self.n
663

664 665 666 667 668
          model = paddle.Model(nn.Sequential(
              nn.Linear(10, 2), nn.Softmax())
          )
          optim = paddle.optimizer.Adam(
              learning_rate=0.001, parameters=model.parameters())
669

670 671
          def loss(x, y):
              return nn.functional.nll_loss(paddle.log(x), y)
672

673 674 675 676 677 678
          model.prepare(
              optim,
              loss=loss,
              metrics=paddle.metric.Auc())
          data = Data()
          model.fit(data, batch_size=16)
679 680
    """

681 682 683
    def __init__(
        self, curve='ROC', num_thresholds=4095, name='auc', *args, **kwargs
    ):
684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704
        super(Auc, self).__init__(*args, **kwargs)
        self._curve = curve
        self._num_thresholds = num_thresholds

        _num_pred_buckets = num_thresholds + 1
        self._stat_pos = np.zeros(_num_pred_buckets)
        self._stat_neg = np.zeros(_num_pred_buckets)
        self._name = name

    def update(self, preds, labels):
        """
        Update the auc curve with the given predictions and labels.

        Args:
            preds (numpy.array): An numpy array in the shape of
                (batch_size, 2), preds[i][j] denotes the probability of
                classifying the instance i into the class j.
            labels (numpy.array): an numpy array in the shape of
                (batch_size, 1), labels[i] is either o or 1,
                representing the label of the instance i.
        """
H
hong 已提交
705
        if isinstance(labels, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
706 707 708 709
            labels = labels.numpy()
        elif not _is_numpy_(labels):
            raise ValueError("The 'labels' must be a numpy ndarray or Tensor.")

H
hong 已提交
710
        if isinstance(preds, (paddle.Tensor, paddle.fluid.core.eager.Tensor)):
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
            preds = preds.numpy()
        elif not _is_numpy_(preds):
            raise ValueError("The 'preds' must be a numpy ndarray or Tensor.")

        for i, lbl in enumerate(labels):
            value = preds[i, 1]
            bin_idx = int(value * self._num_thresholds)
            assert bin_idx <= self._num_thresholds
            if lbl:
                self._stat_pos[bin_idx] += 1.0
            else:
                self._stat_neg[bin_idx] += 1.0

    @staticmethod
    def trapezoid_area(x1, x2, y1, y2):
        return abs(x1 - x2) * (y1 + y2) / 2.0

    def accumulate(self):
        """
        Return the area (a float score) under auc curve

        Return:
            float: the area under auc curve
        """
        tot_pos = 0.0
        tot_neg = 0.0
        auc = 0.0

        idx = self._num_thresholds
        while idx >= 0:
            tot_pos_prev = tot_pos
            tot_neg_prev = tot_neg
            tot_pos += self._stat_pos[idx]
            tot_neg += self._stat_neg[idx]
745 746 747
            auc += self.trapezoid_area(
                tot_neg, tot_neg_prev, tot_pos, tot_pos_prev
            )
748 749
            idx -= 1

750 751 752
        return (
            auc / tot_pos / tot_neg if tot_pos > 0.0 and tot_neg > 0.0 else 0.0
        )
753 754 755 756 757 758 759 760 761 762 763 764 765 766

    def reset(self):
        """
        Reset states and result
        """
        _num_pred_buckets = self._num_thresholds + 1
        self._stat_pos = np.zeros(_num_pred_buckets)
        self._stat_neg = np.zeros(_num_pred_buckets)

    def name(self):
        """
        Returns metric name
        """
        return self._name
S
Steffy-zxf 已提交
767 768 769 770 771


def accuracy(input, label, k=1, correct=None, total=None, name=None):
    """
    accuracy layer.
772 773
    Refer to the https://en.wikipedia.org/wiki/Precision_and_recall

S
Steffy-zxf 已提交
774 775 776
    This function computes the accuracy using the input and label.
    If the correct label occurs in top k predictions, then correct will increment by one.
    Note: the dtype of accuracy is determined by input. the input and label dtype can be different.
777

S
Steffy-zxf 已提交
778 779 780
    Args:
        input(Tensor): The input of accuracy layer, which is the predictions of network. A Tensor with type float32,float64.
            The shape is ``[sample_number, class_dim]`` .
781
        label(Tensor): The label of dataset. Tensor with type int64 or int32. The shape is ``[sample_number, 1]`` .
S
Steffy-zxf 已提交
782 783 784 785 786
        k(int, optional): The top k predictions for each class will be checked. Data type is int64 or int32.
        correct(Tensor, optional): The correct predictions count. A Tensor with type int64 or int32.
        total(Tensor, optional): The total entries count. A tensor with type int64 or int32.
        name(str, optional): The default value is None. Normally there is no need for
            user to set this property. For more information, please refer to :ref:`api_guide_Name`
787

S
Steffy-zxf 已提交
788 789
    Returns:
        Tensor, the correct rate. A Tensor with type float32.
790

S
Steffy-zxf 已提交
791 792
    Examples:
        .. code-block:: python
793

S
Steffy-zxf 已提交
794
            import paddle
795

S
Steffy-zxf 已提交
796 797 798 799 800
            predictions = paddle.to_tensor([[0.2, 0.1, 0.4, 0.1, 0.1], [0.2, 0.3, 0.1, 0.15, 0.25]], dtype='float32')
            label = paddle.to_tensor([[2], [0]], dtype="int64")
            result = paddle.metric.accuracy(input=predictions, label=label, k=1)
            # [0.5]
    """
801 802
    if label.dtype == paddle.int32:
        label = paddle.cast(label, paddle.int64)
J
Jiabin Yang 已提交
803
    if _non_static_mode():
S
Steffy-zxf 已提交
804 805 806 807 808
        if correct is None:
            correct = _varbase_creator(dtype="int32")
        if total is None:
            total = _varbase_creator(dtype="int32")

809
        topk_out, topk_indices = paddle.topk(input, k=k)
810 811 812
        _acc, _, _ = _legacy_C_ops.accuracy(
            topk_out, topk_indices, label, correct, total
        )
H
hong 已提交
813

S
Steffy-zxf 已提交
814 815 816
        return _acc

    helper = LayerHelper("accuracy", **locals())
817 818 819
    check_variable_and_dtype(
        input, 'input', ['float16', 'float32', 'float64'], 'accuracy'
    )
820
    topk_out, topk_indices = paddle.topk(input, k=k)
S
Steffy-zxf 已提交
821 822 823 824 825
    acc_out = helper.create_variable_for_type_inference(dtype="float32")
    if correct is None:
        correct = helper.create_variable_for_type_inference(dtype="int32")
    if total is None:
        total = helper.create_variable_for_type_inference(dtype="int32")
826 827 828 829 830 831 832 833 834
    helper.append_op(
        type="accuracy",
        inputs={"Out": [topk_out], "Indices": [topk_indices], "Label": [label]},
        outputs={
            "Accuracy": [acc_out],
            "Correct": [correct],
            "Total": [total],
        },
    )
S
Steffy-zxf 已提交
835
    return acc_out