test_cvm_op.py 5.2 KB
Newer Older
H
heqiaozhi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from math import log
from op_test import OpTest
import unittest


T
tangwei12 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
def cvm_compute(X, item_width, use_cvm):
    cvm_offset = 0 if use_cvm else 2
    batch_size = X.shape[0]

    Y = np.ones([batch_size, item_width - cvm_offset], np.float32)

    for idx in range(batch_size):
        if use_cvm:
            Y[idx] = X[idx]
            Y[idx][0] = log(Y[idx][0] + 1)
            Y[idx][1] = log(Y[idx][1] + 1) - Y[idx][0]
        else:
            Y[idx] = X[idx][2:]

    return Y


def cvm_grad_compute(DY, CVM, item_width, use_cvm):
    batch_size = DY.shape[0]
    DX = np.ones([batch_size, item_width], np.float32)

    for idx in range(batch_size):
        DX[idx][0] = CVM[idx][0]
        DX[idx][1] = CVM[idx][1]

        if use_cvm:
            DX[idx][2:] = DY[idx][2:]
        else:
            DX[idx][2:] = DY[idx]
    return DX


class TestCVMOpWithLodTensor(OpTest):
H
heqiaozhi 已提交
54
    """
55
    Test cvm op with discrete one-hot labels.
H
heqiaozhi 已提交
56 57 58 59
    """

    def setUp(self):
        self.op_type = "cvm"
T
tangwei12 已提交
60 61
        self.use_cvm = True

H
hutuxian 已提交
62 63
        self.batch_size = 1
        self.item_width = 11
T
tangwei12 已提交
64

H
heqiaozhi 已提交
65 66
        lod = [[1]]
        self.inputs = {
67 68 69 70 71 72 73
            'X': (
                np.random.uniform(
                    0, 1, [self.batch_size, self.item_width]
                ).astype("float32"),
                lod,
            ),
            'CVM': np.array([[0.6, 0.4]]).astype("float32"),
H
heqiaozhi 已提交
74 75 76 77 78 79 80 81
        }
        self.attrs = {'use_cvm': False}
        out = []
        for index, emb in enumerate(self.inputs["X"][0]):
            out.append(emb[2:])
        self.outputs = {'Y': (np.array(out), lod)}

    def test_check_output(self):
H
hong 已提交
82
        self.check_output(check_dygraph=False)
H
heqiaozhi 已提交
83

H
hutuxian 已提交
84
    def test_check_grad(self):
85 86 87 88 89
        user_grads = (
            np.array([1.0 / (self.item_width - 2)] * self.item_width)
            .reshape((self.batch_size, self.item_width))
            .astype("float32")
        )
H
hutuxian 已提交
90 91
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
92 93 94
        self.check_grad(
            ['X'], 'Y', user_defined_grads=user_grads, check_dygraph=False
        )
H
hutuxian 已提交
95

H
heqiaozhi 已提交
96

T
tangwei12 已提交
97 98 99 100 101 102 103 104 105
class TestCVMOpWithOutLodTensor1(OpTest):
    """
    Test cvm op with discrete one-hot labels.
    """

    def setUp(self):
        self.op_type = "cvm"
        self.use_cvm = True

H
hutuxian 已提交
106 107
        self.batch_size = 2
        self.item_width = 11
T
tangwei12 已提交
108

H
hutuxian 已提交
109
        input = np.random.uniform(
110 111
            0, 1, (self.batch_size, self.item_width)
        ).astype('float32')
H
hutuxian 已提交
112
        output = cvm_compute(input, self.item_width, self.use_cvm)
113 114 115 116 117
        cvm = (
            np.array([[0.6, 0.4] * self.batch_size])
            .reshape((self.batch_size, 2))
            .astype("float32")
        )
T
tangwei12 已提交
118 119 120 121 122 123

        self.inputs = {'X': input, 'CVM': cvm}
        self.attrs = {'use_cvm': self.use_cvm}
        self.outputs = {'Y': output}

    def test_check_output(self):
H
hong 已提交
124
        self.check_output(check_dygraph=False)
T
tangwei12 已提交
125

H
hutuxian 已提交
126 127
    def test_check_grad(self):
        numel = self.batch_size * self.item_width
128 129 130 131 132
        user_grads = (
            np.array([1.0 / numel] * numel)
            .reshape((self.batch_size, self.item_width))
            .astype("float32")
        )
H
hutuxian 已提交
133 134
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
135 136 137
        self.check_grad(
            ['X'], 'Y', user_defined_grads=user_grads, check_dygraph=False
        )
H
hutuxian 已提交
138

T
tangwei12 已提交
139 140 141 142 143 144 145 146 147 148

class TestCVMOpWithOutLodTensor2(OpTest):
    """
    Test cvm op with discrete one-hot labels.
    """

    def setUp(self):
        self.op_type = "cvm"
        self.use_cvm = False

H
hutuxian 已提交
149 150
        self.batch_size = 2
        self.item_width = 11
T
tangwei12 已提交
151

H
hutuxian 已提交
152
        input = np.random.uniform(
153 154
            0, 1, (self.batch_size, self.item_width)
        ).astype('float32')
H
hutuxian 已提交
155
        output = cvm_compute(input, self.item_width, self.use_cvm)
156 157 158 159 160
        cvm = (
            np.array([[0.6, 0.4] * self.batch_size])
            .reshape((self.batch_size, 2))
            .astype("float32")
        )
T
tangwei12 已提交
161 162 163 164 165 166

        self.inputs = {'X': input, 'CVM': cvm}
        self.attrs = {'use_cvm': self.use_cvm}
        self.outputs = {'Y': output}

    def test_check_output(self):
H
hong 已提交
167
        self.check_output(check_dygraph=False)
T
tangwei12 已提交
168

H
hutuxian 已提交
169 170
    def test_check_grad(self):
        numel = self.batch_size * self.item_width
171 172 173 174 175
        user_grads = (
            np.array([1.0 / (self.batch_size * (self.item_width - 2))] * numel)
            .reshape((self.batch_size, self.item_width))
            .astype("float32")
        )
H
hutuxian 已提交
176 177
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
178 179 180
        self.check_grad(
            ['X'], 'Y', user_defined_grads=user_grads, check_dygraph=False
        )
H
hutuxian 已提交
181

T
tangwei12 已提交
182

H
heqiaozhi 已提交
183 184
if __name__ == '__main__':
    unittest.main()