# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from math import log from op_test import OpTest import unittest def cvm_compute(X, item_width, use_cvm): cvm_offset = 0 if use_cvm else 2 batch_size = X.shape[0] Y = np.ones([batch_size, item_width - cvm_offset], np.float32) for idx in range(batch_size): if use_cvm: Y[idx] = X[idx] Y[idx][0] = log(Y[idx][0] + 1) Y[idx][1] = log(Y[idx][1] + 1) - Y[idx][0] else: Y[idx] = X[idx][2:] return Y def cvm_grad_compute(DY, CVM, item_width, use_cvm): batch_size = DY.shape[0] DX = np.ones([batch_size, item_width], np.float32) for idx in range(batch_size): DX[idx][0] = CVM[idx][0] DX[idx][1] = CVM[idx][1] if use_cvm: DX[idx][2:] = DY[idx][2:] else: DX[idx][2:] = DY[idx] return DX class TestCVMOpWithLodTensor(OpTest): """ Test cvm op with discrete one-hot labels. """ def setUp(self): self.op_type = "cvm" self.use_cvm = True self.batch_size = 1 self.item_width = 11 lod = [[1]] self.inputs = { 'X': ( np.random.uniform( 0, 1, [self.batch_size, self.item_width] ).astype("float32"), lod, ), 'CVM': np.array([[0.6, 0.4]]).astype("float32"), } self.attrs = {'use_cvm': False} out = [] for index, emb in enumerate(self.inputs["X"][0]): out.append(emb[2:]) self.outputs = {'Y': (np.array(out), lod)} def test_check_output(self): self.check_output(check_dygraph=False) def test_check_grad(self): user_grads = ( np.array([1.0 / (self.item_width - 2)] * self.item_width) .reshape((self.batch_size, self.item_width)) .astype("float32") ) user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2) user_grads = [user_grads] self.check_grad( ['X'], 'Y', user_defined_grads=user_grads, check_dygraph=False ) class TestCVMOpWithOutLodTensor1(OpTest): """ Test cvm op with discrete one-hot labels. """ def setUp(self): self.op_type = "cvm" self.use_cvm = True self.batch_size = 2 self.item_width = 11 input = np.random.uniform( 0, 1, (self.batch_size, self.item_width) ).astype('float32') output = cvm_compute(input, self.item_width, self.use_cvm) cvm = ( np.array([[0.6, 0.4] * self.batch_size]) .reshape((self.batch_size, 2)) .astype("float32") ) self.inputs = {'X': input, 'CVM': cvm} self.attrs = {'use_cvm': self.use_cvm} self.outputs = {'Y': output} def test_check_output(self): self.check_output(check_dygraph=False) def test_check_grad(self): numel = self.batch_size * self.item_width user_grads = ( np.array([1.0 / numel] * numel) .reshape((self.batch_size, self.item_width)) .astype("float32") ) user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2) user_grads = [user_grads] self.check_grad( ['X'], 'Y', user_defined_grads=user_grads, check_dygraph=False ) class TestCVMOpWithOutLodTensor2(OpTest): """ Test cvm op with discrete one-hot labels. """ def setUp(self): self.op_type = "cvm" self.use_cvm = False self.batch_size = 2 self.item_width = 11 input = np.random.uniform( 0, 1, (self.batch_size, self.item_width) ).astype('float32') output = cvm_compute(input, self.item_width, self.use_cvm) cvm = ( np.array([[0.6, 0.4] * self.batch_size]) .reshape((self.batch_size, 2)) .astype("float32") ) self.inputs = {'X': input, 'CVM': cvm} self.attrs = {'use_cvm': self.use_cvm} self.outputs = {'Y': output} def test_check_output(self): self.check_output(check_dygraph=False) def test_check_grad(self): numel = self.batch_size * self.item_width user_grads = ( np.array([1.0 / (self.batch_size * (self.item_width - 2))] * numel) .reshape((self.batch_size, self.item_width)) .astype("float32") ) user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2) user_grads = [user_grads] self.check_grad( ['X'], 'Y', user_defined_grads=user_grads, check_dygraph=False ) if __name__ == '__main__': unittest.main()