test_cvm_op.py 5.2 KB
Newer Older
H
heqiaozhi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from math import log
from op_test import OpTest
import unittest


T
tangwei12 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
def cvm_compute(X, item_width, use_cvm):
    cvm_offset = 0 if use_cvm else 2
    batch_size = X.shape[0]

    Y = np.ones([batch_size, item_width - cvm_offset], np.float32)

    for idx in range(batch_size):
        if use_cvm:
            Y[idx] = X[idx]
            Y[idx][0] = log(Y[idx][0] + 1)
            Y[idx][1] = log(Y[idx][1] + 1) - Y[idx][0]
        else:
            Y[idx] = X[idx][2:]

    return Y


def cvm_grad_compute(DY, CVM, item_width, use_cvm):
    batch_size = DY.shape[0]
    DX = np.ones([batch_size, item_width], np.float32)

    for idx in range(batch_size):
        DX[idx][0] = CVM[idx][0]
        DX[idx][1] = CVM[idx][1]

        if use_cvm:
            DX[idx][2:] = DY[idx][2:]
        else:
            DX[idx][2:] = DY[idx]
    return DX


class TestCVMOpWithLodTensor(OpTest):
H
heqiaozhi 已提交
54 55 56 57 58 59
    """
        Test cvm op with discrete one-hot labels.
    """

    def setUp(self):
        self.op_type = "cvm"
T
tangwei12 已提交
60 61
        self.use_cvm = True

H
hutuxian 已提交
62 63
        self.batch_size = 1
        self.item_width = 11
T
tangwei12 已提交
64

H
heqiaozhi 已提交
65 66
        lod = [[1]]
        self.inputs = {
H
hutuxian 已提交
67
            'X': (np.random.uniform(
68 69 70 71
                0, 1,
                [self.batch_size, self.item_width]).astype("float32"), lod),
            'CVM':
            np.array([[0.6, 0.4]]).astype("float32"),
H
heqiaozhi 已提交
72 73 74 75 76 77 78 79
        }
        self.attrs = {'use_cvm': False}
        out = []
        for index, emb in enumerate(self.inputs["X"][0]):
            out.append(emb[2:])
        self.outputs = {'Y': (np.array(out), lod)}

    def test_check_output(self):
H
hong 已提交
80
        self.check_output(check_dygraph=False)
H
heqiaozhi 已提交
81

H
hutuxian 已提交
82 83 84 85 86 87
    def test_check_grad(self):
        user_grads = np.array(
            [1.0 / (self.item_width - 2)] * self.item_width).reshape(
                (self.batch_size, self.item_width)).astype("float32")
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
88 89 90 91
        self.check_grad(['X'],
                        'Y',
                        user_defined_grads=user_grads,
                        check_dygraph=False)
H
hutuxian 已提交
92

H
heqiaozhi 已提交
93

T
tangwei12 已提交
94 95 96 97 98 99 100 101 102
class TestCVMOpWithOutLodTensor1(OpTest):
    """
    Test cvm op with discrete one-hot labels.
    """

    def setUp(self):
        self.op_type = "cvm"
        self.use_cvm = True

H
hutuxian 已提交
103 104
        self.batch_size = 2
        self.item_width = 11
T
tangwei12 已提交
105

H
hutuxian 已提交
106 107 108 109 110
        input = np.random.uniform(
            0, 1, (self.batch_size, self.item_width)).astype('float32')
        output = cvm_compute(input, self.item_width, self.use_cvm)
        cvm = np.array([[0.6, 0.4] * self.batch_size]).reshape(
            (self.batch_size, 2)).astype("float32")
T
tangwei12 已提交
111 112 113 114 115 116

        self.inputs = {'X': input, 'CVM': cvm}
        self.attrs = {'use_cvm': self.use_cvm}
        self.outputs = {'Y': output}

    def test_check_output(self):
H
hong 已提交
117
        self.check_output(check_dygraph=False)
T
tangwei12 已提交
118

H
hutuxian 已提交
119 120 121 122 123 124
    def test_check_grad(self):
        numel = self.batch_size * self.item_width
        user_grads = np.array([1.0 / numel] * numel).reshape(
            (self.batch_size, self.item_width)).astype("float32")
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
125 126 127 128
        self.check_grad(['X'],
                        'Y',
                        user_defined_grads=user_grads,
                        check_dygraph=False)
H
hutuxian 已提交
129

T
tangwei12 已提交
130 131 132 133 134 135 136 137 138 139

class TestCVMOpWithOutLodTensor2(OpTest):
    """
    Test cvm op with discrete one-hot labels.
    """

    def setUp(self):
        self.op_type = "cvm"
        self.use_cvm = False

H
hutuxian 已提交
140 141
        self.batch_size = 2
        self.item_width = 11
T
tangwei12 已提交
142

H
hutuxian 已提交
143 144 145 146 147
        input = np.random.uniform(
            0, 1, (self.batch_size, self.item_width)).astype('float32')
        output = cvm_compute(input, self.item_width, self.use_cvm)
        cvm = np.array([[0.6, 0.4] * self.batch_size]).reshape(
            (self.batch_size, 2)).astype("float32")
T
tangwei12 已提交
148 149 150 151 152 153

        self.inputs = {'X': input, 'CVM': cvm}
        self.attrs = {'use_cvm': self.use_cvm}
        self.outputs = {'Y': output}

    def test_check_output(self):
H
hong 已提交
154
        self.check_output(check_dygraph=False)
T
tangwei12 已提交
155

H
hutuxian 已提交
156 157 158 159 160 161 162
    def test_check_grad(self):
        numel = self.batch_size * self.item_width
        user_grads = np.array(
            [1.0 / (self.batch_size * (self.item_width - 2))] * numel).reshape(
                (self.batch_size, self.item_width)).astype("float32")
        user_grads[:, :2] = self.inputs['CVM'].reshape(self.batch_size, 2)
        user_grads = [user_grads]
163 164 165 166
        self.check_grad(['X'],
                        'Y',
                        user_defined_grads=user_grads,
                        check_dygraph=False)
H
hutuxian 已提交
167

T
tangwei12 已提交
168

H
heqiaozhi 已提交
169 170
if __name__ == '__main__':
    unittest.main()