learning_rate_scheduler.py 45.0 KB
Newer Older
M
minqiyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
minqiyang 已提交
15
import math
16
import warnings
M
minqiyang 已提交
17

M
minqiyang 已提交
18
from .. import unique_name
19 20
from ..framework import Variable
from ..data_feeder import check_type
M
minqiyang 已提交
21

22
__all__ = [
23 24 25 26 27 28 29 30 31 32 33 34
    'NoamDecay',
    'PiecewiseDecay',
    'NaturalExpDecay',
    'ExponentialDecay',
    'InverseTimeDecay',
    'PolynomialDecay',
    'CosineDecay',
    'LinearLrWarmup',
    'ReduceLROnPlateau',
    'StepDecay',
    'MultiStepDecay',
    'LambdaDecay',
35
]
M
minqiyang 已提交
36 37 38 39 40


class LearningRateDecay(object):
    """
    Base class of learning rate decay
41

42 43 44
    Define the common interface of an LearningRateDecay.
    User should not use this class directly,
    but need to use one of it's implementation.
M
minqiyang 已提交
45 46
    """

M
minqiyang 已提交
47 48 49
    def __init__(self, begin=0, step=1, dtype='float32'):
        self.step_num = begin
        self.step_size = step
M
minqiyang 已提交
50 51 52 53 54
        self.dtype = dtype

    def __call__(self):
        lr = self.step()
        if isinstance(lr, float):
M
minqiyang 已提交
55
            lr = self.create_lr_var(lr)
M
minqiyang 已提交
56
        self.step_num += self.step_size
M
minqiyang 已提交
57 58
        return lr

M
minqiyang 已提交
59
    def create_lr_var(self, lr):
60 61 62
        """
        convert lr from float to variable

63
        Args:
64 65 66 67
            lr: learning rate
        Returns:
            learning rate variable
        """
M
minqiyang 已提交
68
        from .. import layers
69

M
minqiyang 已提交
70 71 72 73 74
        lr = layers.create_global_var(
            name=unique_name.generate("learning_rate"),
            shape=[1],
            value=float(lr),
            dtype=self.dtype,
75 76
            persistable=False,
        )
M
minqiyang 已提交
77
        return lr
M
minqiyang 已提交
78

79
    # Note: If you want to change what optimizer.state_dict stores, just overwrite this functions,
80
    # "self.step_num" will be stored by default.
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    def state_dict(self):
        """
        Returns the state of the scheduler as a :class:`dict`.

        It is a subset of self.__dict__ .
        """
        self._state_keys()
        state_dict = {}
        for key in self.keys:
            if key not in self.__dict__:
                continue
            value = self.__dict__[key]
            if isinstance(value, Variable):
                assert value.shape == [
                    1
                ], "shape of Variable in state_dict must be [1] {}".format(
97 98
                    value.shape
                )
99 100 101 102 103 104 105 106 107 108 109
                value = value.numpy()[0]
            state_dict[key] = value

        return state_dict

    def _state_keys(self):
        """
        set the keys in self.__dict__ that are needed to be saved.
        """
        self.keys = ['step_num']

110
    def set_state_dict(self, state_dict):
111 112 113 114 115 116 117 118 119
        """
        Loads the schedulers state.
        """
        self._state_keys()
        for key in self.keys:
            if key in state_dict:
                self.__dict__[key] = state_dict[key]
            else:
                raise RuntimeError(
120 121 122 123
                    "Please check whether state_dict is correct for optimizer. Can't find [ {} ] in state_dict".format(
                        key
                    )
                )
124 125 126 127 128
        if len(state_dict) > len(self.keys):
            warnings.warn(
                "There are some unused values in state_dict. Maybe the optimizer have different 'LearningRateDecay' when invoking state_dict and set_dict"
            )

129 130 131
    # [aliases] Compatible with old method names
    set_dict = set_state_dict

M
minqiyang 已提交
132 133 134 135
    def step(self):
        raise NotImplementedError()


M
minqiyang 已提交
136
class PiecewiseDecay(LearningRateDecay):
137
    """
138
    :api_attr: imperative
139

D
DuYao 已提交
140
    Piecewise decay scheduler.
141 142 143 144 145

    The algorithm can be described as the code below.

    .. code-block:: text

D
DuYao 已提交
146 147 148 149 150 151 152 153 154 155
        boundaries = [10000, 20000]
        values = [1.0, 0.5, 0.1]
        if global_step < 10000:
            learning_rate = 1.0
        elif 10000 <= global_step < 20000:
            learning_rate = 0.5
        else:
            learning_rate = 0.1

    Parameters:
156
        boundaries(list): A list of steps numbers. The type of element in the list is python int.
D
DuYao 已提交
157 158
        values(list): A list of learning rate values that will be picked during
            different step boundaries. The type of element in the list is python float.
T
tianshuo78520a 已提交
159
        begin(int): The begin step to initialize the global_step in the description above.
D
DuYao 已提交
160
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
161
            The default value is 1.
D
DuYao 已提交
162 163
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
164

165
    Returns:
D
DuYao 已提交
166
        None.
167

168 169 170 171 172 173 174
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          boundaries = [10000, 20000]
          values = [1.0, 0.5, 0.1]
          with fluid.dygraph.guard():
175
              emb = fluid.dygraph.Embedding( [10, 10] )
176
              optimizer = fluid.optimizer.SGD(
177 178
                 learning_rate=fluid.dygraph.PiecewiseDecay(boundaries, values, 0),
                 parameter_list = emb.parameters() )
179 180
    """

M
minqiyang 已提交
181 182
    def __init__(self, boundaries, values, begin, step=1, dtype='float32'):
        super(PiecewiseDecay, self).__init__(begin, step, dtype)
M
minqiyang 已提交
183 184 185 186 187
        self.boundaries = boundaries
        self.values = values

        self.vars = []
        for value in values:
188
            self.vars.append(value)
M
minqiyang 已提交
189 190

    def step(self):
M
minqiyang 已提交
191 192
        for i in range(len(self.boundaries)):
            if self.step_num < self.boundaries[i]:
M
minqiyang 已提交
193
                return self.vars[i]
194
        return self.create_lr_var(self.vars[len(self.values) - 1])
195 196 197


class NaturalExpDecay(LearningRateDecay):
198
    r"""
199 200
    :api_attr: imperative

201
    Applies natural exponential decay to the initial learning rate.
202

D
DuYao 已提交
203
    The algorithm can be described as following.
204

D
DuYao 已提交
205 206
    .. math::

207
        decayed\_learning\_rate = learning\_rate * e^{y}
D
DuYao 已提交
208 209 210 211 212 213 214 215 216 217 218

    If staircase is set to False, then:

    .. math::

        y = - decay\_rate * \\frac{global\_step}{decay\_steps}

    If staircase is set to True, then:

    .. math::

219
        y = - decay\_rate * math.floor(\\frac{global\_step}{decay\_steps})
D
DuYao 已提交
220 221

    Parameters:
222 223
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
224 225 226
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(int): The decay rate.
227
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
228 229 230
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
231
            The default value is 1.
D
DuYao 已提交
232 233
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
234

235
    Returns:
D
DuYao 已提交
236
        None.
237

238 239 240
    Examples:
        .. code-block:: python

241 242 243 244 245 246 247 248 249 250 251
            import paddle.fluid as fluid
            base_lr = 0.1
            with fluid.dygraph.guard():
                emb = fluid.dygraph.Embedding([10, 10])
                sgd_optimizer = fluid.optimizer.SGD(
                        learning_rate=fluid.dygraph.NaturalExpDecay(
                            learning_rate=base_lr,
                            decay_steps=10000,
                            decay_rate=0.5,
                            staircase=True),
                        parameter_list=emb.parameters())
252 253 254

    """

255 256 257 258 259 260 261 262 263 264
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
265 266 267 268 269 270 271 272
        super(NaturalExpDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
273

274 275 276
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)
277
        decayed_lr = self.learning_rate * layers.exp(
278 279
            -1 * self.decay_rate * div_res
        )
280 281 282 283 284

        return decayed_lr


class ExponentialDecay(LearningRateDecay):
285
    r"""
286 287
    :api_attr: imperative

288 289
    Applies exponential decay to the learning rate.

D
DuYao 已提交
290
    The algorithm can be described as following.
291

D
DuYao 已提交
292
    .. math::
293

294
        decayed\_learning\_rate = learning\_rate * decay\_rate ^ y
D
DuYao 已提交
295 296 297 298 299

    If staircase is set to False, then:

    .. math::

300
        y = \\frac{global\_step}{decay\_steps}
D
DuYao 已提交
301 302 303 304 305 306 307 308 309

    If staircase is set to True, then:

    .. math::

        y = math.floor(\\frac{global\_step}{decay\_steps})


    Parameters:
310 311
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
312 313 314
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
315
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
316 317 318
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
319
            The default value is 1.
D
DuYao 已提交
320 321
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
322

323
    Returns:
D
DuYao 已提交
324
        None.
325

326 327 328 329 330 331 332
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
              sgd_optimizer = fluid.optimizer.SGD(
333 334 335 336 337
                    learning_rate=fluid.dygraph.ExponentialDecay(
                        learning_rate=base_lr,
                        decay_steps=10000,
                        decay_rate=0.5,
                        staircase=True))
338 339 340

    """

341 342 343 344 345 346 347 348 349 350
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
351 352 353 354 355 356 357 358
        super(ExponentialDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
359

360 361 362 363 364 365 366 367 368 369
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate * (self.decay_rate**div_res)

        return decayed_lr


class InverseTimeDecay(LearningRateDecay):
370
    r"""
371 372
    :api_attr: imperative

373 374
    Applies inverse time decay to the initial learning rate.

D
DuYao 已提交
375 376 377 378 379
    The algorithm can be described as following.
    If staircase is set to False, then:

    .. math::

380
        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * \\frac{global\_step}{decay\_step}}
D
DuYao 已提交
381 382 383 384 385 386 387 388

    If staircase is set to True, then:

    .. math::

        decayed\_learning\_rate = \\frac{learning\_rate}{1 + decay\_rate * math.floor(\\frac{global\_step}{decay\_step})}

    Parameters:
389 390
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
391 392 393
            float32 or float64. It also can be set to python int number.
        decay_steps(int): The decay step size. It determines the decay cycle.
        decay_rate(float): The decay rate.
394
        staircase(bool, optional): If set to True, decay the learning rate at discrete intervals. The
D
DuYao 已提交
395 396 397
            default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
398
            The default value is 1.
399
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be
D
DuYao 已提交
400
            'float32', 'float64'. The default value is 'float32'.
401

402
    Returns:
D
DuYao 已提交
403
        None.
404

405 406 407 408 409 410
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          base_lr = 0.1
          with fluid.dygraph.guard():
411
              emb = fluid.dygraph.Embedding([10, 10])
412
              sgd_optimizer = fluid.optimizer.SGD(
413 414 415 416 417
                  learning_rate=fluid.dygraph.InverseTimeDecay(
                        learning_rate=base_lr,
                        decay_steps=10000,
                        decay_rate=0.5,
                        staircase=True),
418
                  parameter_list = emb.parameters())
419 420 421

    """

422 423 424 425 426 427 428 429 430 431
    def __init__(
        self,
        learning_rate,
        decay_steps,
        decay_rate,
        staircase=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
432 433 434 435 436 437 438 439
        super(InverseTimeDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.decay_rate = decay_rate
        self.staircase = staircase

    def step(self):
        from .. import layers
440

441 442 443 444 445 446 447 448 449 450
        div_res = self.create_lr_var(self.step_num / self.decay_steps)
        if self.staircase:
            div_res = layers.floor(div_res)

        decayed_lr = self.learning_rate / (1 + self.decay_rate * div_res)

        return decayed_lr


class PolynomialDecay(LearningRateDecay):
451
    r"""
452 453
    :api_attr: imperative

454 455
    Applies polynomial decay to the initial learning rate.

D
DuYao 已提交
456 457 458 459 460 461
    The algorithm can be described as following.

    If cycle is set to True, then:

    .. math::

462
        decay\_steps & = decay\_steps * math.ceil(\\frac{global\_step}{decay\_steps})
463

D
DuYao 已提交
464 465 466 467 468 469
        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    If cycle is set to False, then:

    .. math::

470
        global\_step & = min(global\_step, decay\_steps)
D
DuYao 已提交
471 472 473 474

        decayed\_learning\_rate & = (learning\_rate-end\_learning\_rate)*(1-\\frac{global\_step}{decay\_steps})^{power}+end\_learning\_rate

    Parameters:
475 476
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
477
            float32 or float64. It also can be set to python int number.
478
        decay_steps(int): The decay step size. It determines the decay cycle.
D
DuYao 已提交
479 480 481 482 483
        end_learning_rate(float, optional): The minimum final learning rate. The default value is 0.0001.
        power(float, optional): Power of polynomial. The default value is 1.0.
        cycle(bool, optional): If set true, decay the learning rate every decay_steps. The default value is False.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
484
            The default value is 1.
D
DuYao 已提交
485 486
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
487

488
    Returns:
D
DuYao 已提交
489
        None.
490

491 492 493 494 495 496 497 498
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          start_lr = 0.01
          total_step = 5000
          end_lr = 0
          with fluid.dygraph.guard():
499
              emb = fluid.dygraph.Embedding( [10, 10])
500 501
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.PolynomialDecay(
502 503
                  start_lr, total_step, end_lr, power=1.0),
                  parameter_list = emb.parameters())
504 505 506

    """

507 508 509 510 511 512 513 514 515 516 517
    def __init__(
        self,
        learning_rate,
        decay_steps,
        end_learning_rate=0.0001,
        power=1.0,
        cycle=False,
        begin=0,
        step=1,
        dtype='float32',
    ):
518 519 520 521 522 523 524 525 526
        super(PolynomialDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.decay_steps = decay_steps
        self.end_learning_rate = end_learning_rate
        self.power = power
        self.cycle = cycle

    def step(self):
        from .. import layers
527

M
minqiyang 已提交
528 529
        tmp_step_num = self.step_num
        tmp_decay_steps = self.decay_steps
530 531
        if self.cycle:
            div_res = layers.ceil(
532 533
                self.create_lr_var(tmp_step_num / float(self.decay_steps))
            )
534

M
minqiyang 已提交
535 536
            if tmp_step_num == 0:
                div_res = self.create_lr_var(1.0)
M
minqiyang 已提交
537
            tmp_decay_steps = self.decay_steps * div_res
538
        else:
539
            tmp_step_num = self.create_lr_var(
540 541 542 543
                tmp_step_num
                if tmp_step_num < self.decay_steps
                else self.decay_steps
            )
M
minqiyang 已提交
544

545 546 547
        decayed_lr = (self.learning_rate - self.end_learning_rate) * (
            (1 - tmp_step_num / tmp_decay_steps) ** self.power
        ) + self.end_learning_rate
M
minqiyang 已提交
548
        return decayed_lr
549

M
minqiyang 已提交
550 551

class CosineDecay(LearningRateDecay):
552
    r"""
553 554
    :api_attr: imperative

555 556
    Applies cosine decay to the learning rate.

D
DuYao 已提交
557
    The algorithm can be described as following.
558 559 560

    .. math::

D
DuYao 已提交
561
        decayed\_learning\_rate = learning\_rate * 0.5 * (math.cos(global\_step * \\frac{math.pi}{step\_each\_epoch} ) + 1)
562

D
DuYao 已提交
563
    Parameters:
564 565
        learning_rate(Variable|float): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
D
DuYao 已提交
566 567 568 569 570
            float32 or float64. It also can be set to python int number.
        step_each_epoch(int): The number of steps in an epoch.
        epochs(int): The number of epochs.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
571
            The default value is 1.
D
DuYao 已提交
572 573
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
574

575
    Returns:
D
DuYao 已提交
576
        None.
577

578
    Examples:
579
        .. code-block:: python
580

581
            base_lr = 0.1
582 583
            with fluid.dygraph.guard():
                optimizer  = fluid.optimizer.SGD(
584 585
                    learning_rate = fluid.dygraph.CosineDecay(
                            base_lr, 10000, 120) )
586 587
    """

588 589 590 591 592 593 594 595 596
    def __init__(
        self,
        learning_rate,
        step_each_epoch,
        epochs,
        begin=0,
        step=1,
        dtype='float32',
    ):
M
minqiyang 已提交
597 598 599 600 601 602 603
        super(CosineDecay, self).__init__(begin, step, dtype)
        self.learning_rate = learning_rate
        self.step_each_epoch = step_each_epoch
        self.epochs = epochs

    def step(self):
        from .. import layers
604

M
minqiyang 已提交
605
        cur_epoch = layers.floor(
606 607 608 609 610 611 612
            self.create_lr_var(self.step_num / self.step_each_epoch)
        )
        decayed_lr = (
            self.learning_rate
            * 0.5
            * (layers.cos(cur_epoch * math.pi / self.epochs) + 1)
        )
M
minqiyang 已提交
613 614 615 616
        return decayed_lr


class NoamDecay(LearningRateDecay):
617
    r"""
618 619
    :api_attr: imperative

620
    Applies Noam decay to the initial learning rate.
D
DuYao 已提交
621 622 623 624 625

    The algorithm can be described as following.

    .. math::

626
        decayed\_learning\_rate = learning\_rate * d_{model}^{-0.5} * min(global\_step^{-0.5}, global\_step * warmup\_steps^{-1.5})
D
DuYao 已提交
627

628
    Please reference `attention is all you need <https://arxiv.org/pdf/1706.03762.pdf>`_
D
DuYao 已提交
629 630

    Parameters:
631
        d$_{model}$(Variable|int): The dimensionality of input and output feature vector of model. If type is Variable,
D
DuYao 已提交
632
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
633
        warmup_steps(Variable|int): The number of warmup steps. A super parameter. If type is Variable,
D
DuYao 已提交
634 635 636
            it's a tensor with shape [1] and the data type can be int32 or int64. The type can also be python int.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
637
            The default value is 1.
D
DuYao 已提交
638 639
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
640 641 642
        learning_rate(Variable|float|int): The initial learning rate. If the type
            is Variable, it's a tensor with shape [1], the data type can be
            float32 or float64. It also can be set to python int number. Default 1.0
643

644
    Returns:
D
DuYao 已提交
645
        None.
646

647 648 649 650 651 652 653
    Examples:
        .. code-block:: python

          import paddle.fluid as fluid
          warmup_steps = 100
          learning_rate = 0.01
          with fluid.dygraph.guard():
654
              emb = fluid.dygraph.Embedding([10, 10])
655 656 657
              optimizer  = fluid.optimizer.SGD(
                  learning_rate = fluid.dygraph.NoamDecay(
                         1/(warmup_steps *(learning_rate ** 2)),
658 659
                         warmup_steps),
                  parameter_list = emb.parameters())
660 661
    """

662 663 664 665 666 667 668 669 670
    def __init__(
        self,
        d_model,
        warmup_steps,
        begin=1,
        step=1,
        dtype='float32',
        learning_rate=1.0,
    ):
M
minqiyang 已提交
671
        super(NoamDecay, self).__init__(begin, step, dtype)
672
        self.learning_rate = learning_rate
M
minqiyang 已提交
673 674 675 676 677
        self.d_model = d_model
        self.warmup_steps = warmup_steps

    def step(self):
        from .. import layers
678

M
minqiyang 已提交
679 680
        a = self.create_lr_var(self.step_num**-0.5)
        b = self.create_lr_var((self.warmup_steps**-1.5) * self.step_num)
681 682 683 684 685
        lr_value = (
            self.learning_rate
            * (self.d_model**-0.5)
            * layers.elementwise_min(a, b)
        )
M
minqiyang 已提交
686
        return lr_value
H
hong 已提交
687 688 689 690


class LinearLrWarmup(LearningRateDecay):
    """
691 692
    :api_attr: imperative

H
hong 已提交
693 694
    This operator use the linear learning rate warm up strategy to adjust the learning rate preliminarily before the normal learning rate scheduling.
    For more information, please refer to `Bag of Tricks for Image Classification with Convolutional Neural Networks <https://arxiv.org/abs/1812.01187>`_
695

H
hong 已提交
696
    When global_step < warmup_steps, learning rate is updated as:
697

H
hong 已提交
698
    .. code-block:: text
699

H
hong 已提交
700 701
            linear_step = end_lr - start_lr
            lr = start_lr + linear_step * (global_step / warmup_steps)
702

H
hong 已提交
703
    where start_lr is the initial learning rate, and end_lr is the final learning rate;
704

H
hong 已提交
705
    When global_step >= warmup_steps, learning rate is updated as:
706

H
hong 已提交
707
    .. code-block:: text
708

H
hong 已提交
709
            lr = learning_rate
710

H
hong 已提交
711
    where lr is the learning_rate after warm-up.
712

H
hong 已提交
713 714 715 716 717 718 719
    Args:
        learning_rate (Variable|float): Learning_rate after warm-up, it could be 1D-Tensor or single value with the data type of float32.
        warmup_steps (int): Steps for warm up.
        start_lr (float): Initial learning rate of warm up.
        end_lr (float): Final learning rate of warm up.
        begin(int, optional): The begin step. The initial value of global_step described above. The default value is 0.
        step(int, optional): The step size used to calculate the new global_step in the description above.
T
tianshuo78520a 已提交
720
            The default value is 1.
H
hong 已提交
721 722
        dtype(str, optional): The data type used to create the learning rate variable. The data type can be set as
            'float32', 'float64'. The default value is 'float32'.
723

H
hong 已提交
724 725
    Returns:
        Variable: Warm-up learning rate with the same data type as learning_rate.
726 727


H
hong 已提交
728
    Examples:
729

H
hong 已提交
730
    .. code-block:: python
731

H
hong 已提交
732
        import paddle.fluid as fluid
733 734

        learning_rate = 0.1
H
hong 已提交
735
        warmup_steps = 50
736
        start_lr = 0
H
hong 已提交
737 738
        end_lr = 0.1

739
        with fluid.dygraph.guard():
H
hong 已提交
740
            lr_decay = fluid.dygraph.LinearLrWarmup( learning_rate, warmup_steps, start_lr, end_lr)
741 742


H
hong 已提交
743 744
    """

745 746 747 748 749 750 751 752 753 754
    def __init__(
        self,
        learning_rate,
        warmup_steps,
        start_lr,
        end_lr,
        begin=1,
        step=1,
        dtype='float32',
    ):
H
hong 已提交
755
        super(LinearLrWarmup, self).__init__(begin, step, dtype)
756 757 758 759 760
        type_check = (
            isinstance(learning_rate, float)
            or isinstance(learning_rate, int)
            or isinstance(learning_rate, LearningRateDecay)
        )
H
hong 已提交
761 762
        if not type_check:
            raise TypeError(
763 764 765 766
                "the type of learning_rate should be [int, float or LearningRateDecay], the current type is {}".format(
                    learning_rate
                )
            )
H
hong 已提交
767 768
        self.learning_rate = learning_rate
        self.warmup_steps = warmup_steps
769
        self.start_lr = start_lr
770 771 772 773 774 775
        assert (
            end_lr > start_lr
        ), "end_lr {} must be greater than start_lr {}".format(end_lr, start_lr)
        self.lr_ratio_before_warmup = (float(end_lr) - float(start_lr)) / float(
            warmup_steps
        )
H
hong 已提交
776 777 778 779 780 781 782

    def step(self):
        base_lr = self.learning_rate
        if isinstance(self.learning_rate, LearningRateDecay):
            base_lr = base_lr()

        from .. import layers
783

H
hong 已提交
784
        if self.step_num < self.warmup_steps:
785
            return self.lr_ratio_before_warmup * self.step_num + self.start_lr
H
hong 已提交
786 787
        else:
            return base_lr
788 789 790 791


class ReduceLROnPlateau(LearningRateDecay):
    """
792 793
    :api_attr: imperative

794
    Reduce learning rate when ``loss`` has stopped descending. Models often benefit from reducing the learning rate
795 796
    by 2 to 10 times once model performance has no longer improvement.

797 798 799
    The ``loss`` is the one which has been pass into ``step`` , it must be 1-D Tensor with shape [1]. When ``loss``
    stop descending for a ``patience`` number of epochs, the learning rate will be reduced to ``learning_rate * decay_rate`` .
    (Specially, ``mode`` can also be set to ``'max`` , in this case, when ``loss`` stop ascending for a ``patience`` number
800 801 802 803 804 805 806
    of epochs, the learning rate will be reduced.)

    In addition, After each reduction, it will wait a ``cooldown`` number of epochs before resuming normal operation.

    Args:
        learning_rate (Variable|float|int): The initial learning rate. It can be set to python float or int number.
            If the type is Variable, it should be 1-D Tensor with shape [1], the data type can be 'float32' or 'float64'.
807 808
        mode (str, optional): ``'min'`` or ``'max'`` can be selected. Normally, it is ``'min'`` , which means that the
            learning rate will reduce when ``loss`` stops descending. Specially, if it's set to ``'max'`` ,  the learning
809
            rate will reduce when ``loss`` stops ascending. Default: ``'min'`` .
810
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
811
            It should be less than 1.0. Default: 0.1.
812
        patience (int, optional): When ``loss`` doesn't improve for this number of epochs, learing rate will be reduced.
813 814
            Default: 10.
        verbose (bool, optional): If ``True``, prints a message to stdout for each update. Default: ``False``.
815
        threshold (float, optional): ``threshold`` and ``threshold_mode`` will determine the minimum change of ``loss`` .
816 817
            This make tiny changes of ``loss`` will be ignored. Default: 1e-4.
        threshold_mode (str, optional): ``'rel'`` or ``'abs'`` can be selected. In ``'rel'`` mode, the minimum change of ``loss``
818
            is ``last_loss * threshold`` , where ``last_loss`` is ``loss`` in last epoch. In ``'abs'`` mode, the minimum
819 820 821 822 823 824
            change of ``loss`` is ``threshold`` . Default: ``'rel'`` .
        cooldown (int, optional): The number of epochs to wait before resuming normal operation. Default: 0.
        min_lr (float, optional): The lower bound of the learning rate after reduction. Default: 0.
        eps (float, optional): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is
            ignored. Default: 1e-8.
        dtype (str, optional): The data type used to create the learning rate variable. The data type can be set as
825 826
            'float32', 'float64'. Default: 'float32'.

827 828 829 830
    Returns:
        Reduced learning rate.

    Examples:
831

832 833 834 835 836 837 838 839 840 841 842 843 844 845
    .. code-block:: python

        import paddle.fluid as fluid
        import numpy as np

        with fluid.dygraph.guard():
            x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
            linear = fluid.dygraph.Linear(10, 10)
            input = fluid.dygraph.to_variable(x)

            reduce_lr = fluid.dygraph.ReduceLROnPlateau(
                                    learning_rate = 1.0,
                                    decay_rate = 0.5,
                                    patience = 5,
846
                                    verbose = True,
847 848 849 850 851 852 853 854 855 856 857 858
                                    cooldown = 3)
            adam = fluid.optimizer.Adam(
                learning_rate = reduce_lr,
                parameter_list = linear.parameters())

            for epoch in range(10):
                total_loss = 0
                for bath_id in range(5):
                    out = linear(input)
                    loss = fluid.layers.reduce_mean(out)
                    total_loss += loss
                    adam.minimize(loss)
859

860 861 862 863 864 865 866 867 868
                avg_loss = total_loss/5

                # adjust learning rate according to avg_loss
                reduce_lr.step(avg_loss)
                lr = adam.current_step_lr()
                print("current avg_loss is %s, current lr is %s" % (avg_loss.numpy()[0], lr))

    """

869 870 871 872 873 874 875 876 877 878 879 880 881 882
    def __init__(
        self,
        learning_rate,
        mode='min',
        decay_rate=0.1,
        patience=10,
        verbose=False,
        threshold=1e-4,
        threshold_mode='rel',
        cooldown=0,
        min_lr=0,
        eps=1e-8,
        dtype='float32',
    ):
883 884 885 886 887 888 889 890 891 892
        super(ReduceLROnPlateau, self).__init__(dtype=dtype)
        mode = mode.lower()
        if mode not in ['min', 'max']:
            raise ValueError('mode ' + mode + ' is unknown!')
        self.mode = mode

        if decay_rate >= 1.0:
            raise ValueError(
                'new_lr = origin_lr * decay_rate and decay_rate should be < 1.0.'
            )
893
        self.decay_rate = self.create_lr_var(decay_rate)
894 895 896

        threshold_mode = threshold_mode.lower()
        if threshold_mode not in ['rel', 'abs']:
897 898 899
            raise ValueError(
                'threshold mode ' + threshold_mode + ' is unknown!'
            )
900
        self.threshold_mode = threshold_mode
901 902 903 904 905 906
        check_type(
            learning_rate,
            'learning_rate',
            (float, int, Variable),
            'ReduceLROnPlateau',
        )
907 908 909
        if not isinstance(learning_rate, (float, int, Variable)):
            raise TypeError(
                "The type of 'learning_rate' in 'ReduceLROnPlateau' must be 'float, int, Variable', but received %s."
910 911
                % type(learning_rate)
            )
912 913 914 915 916 917 918 919 920 921 922 923 924

        self.learning_rate = learning_rate
        self.verbose = verbose
        self.patience = patience
        self.threshold = threshold
        self.threshold_mode = threshold_mode
        self.cooldown = cooldown
        self.min_lr = self.create_lr_var(min_lr)
        self.eps = eps

        self.cooldown_counter = 0
        self.best_loss = None
        self.num_bad_epochs = 0
925 926
        self.epoch_num = 0

927
    # "cooldown_counter / best_loss / num_bad_epochs / epoch_num / learning_rate" will be stored.
928 929
    def _state_keys(self):
        self.keys = [
930 931 932 933 934
            'cooldown_counter',
            'best_loss',
            'num_bad_epochs',
            'epoch_num',
            'learning_rate',
935
        ]
936 937

    def __call__(self):
938 939
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
940 941 942 943
        return self.learning_rate

    def step(self, loss):
        """
944
        It should be invoked on each epoch. Update the learning rate in optimizer according to ``loss`` .
945 946 947
        The new learning rate will take effect on next call to ``optimizer.minimize`` .

        Args:
948 949 950
            loss (Variable): A ``Variable`` that will be monitored to determine whether the learning rate will reduce.
                If it stop descending for a ``patience`` number of epochs, the learning rate will reduce. It should
                be 1-D Tensor with shape [1].
951 952 953
                Specially, if ``mode`` has been set to ``'max'`` ,  the learning rate will reduce when it stops ascending.
        Returns:
            None
954

955 956 957 958 959 960
        Examples:
            Please refer to the example of current LearningRateDecay.
        """

        # loss must be 1-D Tensor with shape [1]
        check_type(loss, 'loss', Variable, 'ReduceLROnPlateau.step')
961 962 963 964 965 966 967
        assert len(loss.shape) == 1 and loss.shape[0] == 1, (
            "the loss.shape "
            "should be (1L,), but the current loss.shape is {}. Maybe that "
            "you should call paddle.mean to process it first.".format(
                loss.shape
            )
        )
968

969
        self.epoch_num += 1
970 971 972 973 974 975 976 977 978 979 980
        if self.cooldown_counter > 0:
            self.cooldown_counter -= 1
        else:
            if self.best_loss is None or self._is_better(loss, self.best_loss):
                self.best_loss = loss
                self.num_bad_epochs = 0
            else:
                self.num_bad_epochs += 1

            if self.num_bad_epochs > self.patience:
                from .. import layers
981

982 983
                self.cooldown_counter = self.cooldown
                self.num_bad_epochs = 0
984
                new_lr = layers.elementwise_max(
985 986
                    self.learning_rate * self.decay_rate, self.min_lr
                )
987 988
                if self.learning_rate - new_lr > self.eps:
                    if self.verbose:
989 990 991 992 993 994 995 996 997 998
                        old_lr = (
                            self.learning_rate.numpy()[0]
                            if isinstance(self.learning_rate, Variable)
                            else self.learning_rate
                        )
                        print(
                            'Epoch {}: reducing learning rate from {} to {}.'.format(
                                self.epoch_num, old_lr, new_lr.numpy()[0]
                            )
                        )
999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012
                    self.learning_rate = new_lr

    def _is_better(self, current, best):
        if self.mode == 'min' and self.threshold_mode == 'rel':
            return current < best - best * self.threshold

        elif self.mode == 'min' and self.threshold_mode == 'abs':
            return current < best - self.threshold

        elif self.mode == 'max' and self.threshold_mode == 'rel':
            return current > best + best * self.threshold

        else:
            return current > best + self.threshold
1013 1014 1015 1016 1017 1018 1019


class _LearningRateEpochDecay(LearningRateDecay):
    """
    :api_attr: imperative

    Base class of learning rate decay, which is updated each epoch.
1020

1021 1022 1023 1024 1025 1026 1027 1028 1029
    Define the common interface of an _LearningRateEpochDecay.
    User should not use this class directly,
    but need to use one of it's implementation. And invoke method: `epoch()` each epoch.
    """

    def __init__(self, learning_rate, dtype=None):
        if not isinstance(learning_rate, (float, int)):
            raise TypeError(
                "The type of 'learning_rate' must be 'float, int', but received %s."
1030 1031
                % type(learning_rate)
            )
1032 1033
        if learning_rate < 0:
            raise ValueError("Invalid learning rate: {}".format(learning_rate))
1034 1035 1036 1037

        self.base_lr = float(learning_rate)

        self.epoch_num = -1
1038
        self.dtype = dtype
1039 1040 1041 1042 1043 1044
        if dtype is None:
            self.dtype = "float32"
        self.learning_rate = self.create_lr_var(self.base_lr)

        self.epoch()

1045 1046
    # For those subclass who overload _LearningRateEpochDecay, "self.epoch_num/learning_rate" will be stored by default.
    # you can change it for your subclass.
1047 1048 1049
    def _state_keys(self):
        self.keys = ['epoch_num', 'learning_rate']

1050
    def __call__(self):
1051
        """
1052 1053
        Return last computed learning rate on current epoch.
        """
1054 1055
        if not isinstance(self.learning_rate, Variable):
            self.learning_rate = self.create_lr_var(self.learning_rate)
1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078
        return self.learning_rate

    def epoch(self, epoch=None):
        """
        compueted learning_rate and update it when invoked.
        """
        if epoch is None:
            self.epoch_num += 1
        else:
            self.epoch_num = epoch

        self.learning_rate = self.get_lr()

    def get_lr(self):
        raise NotImplementedError


class StepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` every ``step_size`` number of epoch.

1079
    The algorithm can be described as the code below.
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093

    .. code-block:: text

        learning_rate = 0.5
        step_size = 30
        decay_rate = 0.1

        learning_rate = 0.5     if epoch < 30
        learning_rate = 0.05    if 30 <= epoch < 60
        learning_rate = 0.005   if 60 <= epoch < 90
        ...

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1094
        step_size (int): Period of learning rate decay.
1095
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1096 1097 1098 1099 1100 1101 1102
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1103

1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(9):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
1117
                        adam.minimize(loss)
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.05
                    # epoch:6, current lr is 0.005
                    # epoch:7, current lr is 0.005
                    # epoch:8, current lr is 0.005

    """

    def __init__(self, learning_rate, step_size, decay_rate=0.1):
        if not isinstance(step_size, int):
            raise TypeError(
1136 1137 1138
                "The type of 'step_size' must be 'int', but received %s."
                % type(step_size)
            )
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.step_size = step_size
        self.decay_rate = decay_rate
        super(StepDecay, self).__init__(learning_rate)

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        i = self.epoch_num // self.step_size
        return self.base_lr * (decay_rate**i)


class MultiStepDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Decays the learning rate of ``optimizer`` by ``decay_rate`` once ``epoch`` reaches one of the milestones.

1158
    The algorithm can be described as the code below.
1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172

    .. code-block:: text

        learning_rate = 0.5
        milestones = [30, 50]
        decay_rate = 0.1
        if epoch < 30:
            learning_rate = 0.5
        elif epoch < 50:
            learning_rate = 0.05
        else:
            learning_rate = 0.005

    Parameters:
1173
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1174
        milestones (tuple|list): List or tuple of each boundaries. Must be increasing.
1175
        decay_rate (float, optional): The Ratio that the learning rate will be reduced. ``new_lr = origin_lr * decay_rate`` .
1176 1177 1178 1179 1180 1181 1182
            It should be less than 1.0. Default: 0.1.

    Returns:
        None.

    Examples:
        .. code-block:: python
1183

1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.MultiStepDecay(0.5, milestones=[3, 5])
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.5
                    # epoch:2, current lr is 0.5
                    # epoch:3, current lr is 0.05
                    # epoch:4, current lr is 0.05
                    # epoch:5, current lr is 0.005

    """

    def __init__(self, learning_rate, milestones, decay_rate=0.1):
        if not isinstance(milestones, (tuple, list)):
            raise TypeError(
                "The type of 'milestones' in 'MultiStepDecay' must be 'tuple, list', but received %s."
1214 1215
                % type(milestones)
            )
1216

1217 1218
        if not all(
            [
1219 1220
                milestones[i] < milestones[i + 1]
                for i in range(len(milestones) - 1)
1221 1222
            ]
        ):
1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
            raise ValueError('The elements of milestones must be incremented')
        if decay_rate >= 1.0:
            raise ValueError('decay_rate should be < 1.0.')

        self.milestones = milestones
        self.decay_rate = decay_rate
        super(MultiStepDecay, self).__init__(learning_rate)

    def get_lr(self):
        decay_rate = self.create_lr_var(self.decay_rate)
        for i in range(len(self.milestones)):
            if self.epoch_num < self.milestones[i]:
                return self.base_lr * (decay_rate**i)

1237
        return self.base_lr * (decay_rate ** len(self.milestones))
1238 1239 1240 1241 1242 1243 1244 1245 1246


class LambdaDecay(_LearningRateEpochDecay):
    """
    :api_attr: imperative

    Sets the learning rate of ``optimizer`` to the initial lr times a multiplicative factor, and this multiplicative
    factor is computed by function ``lr_lambda`` . ``lr_lambda`` is funciton which receives ``epoch`` .

1247
    The algorithm can be described as the code below.
1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259

    .. code-block:: text

        learning_rate = 0.5        # init learning_rate
        lr_lambda = lambda epoch: 0.95 ** epoch

        learning_rate = 0.5        # epoch 0
        learning_rate = 0.475      # epoch 1
        learning_rate = 0.45125    # epoch 2

    Parameters:
        learning_rate (float|int): The initial learning rate. It can be set to python float or int number.
1260
        lr_lambda (function): A function which computes a multiplicative factor given an integer parameter ``epoch`` , and
1261
            then multiply the initial learning rate by this multiplicative factor.
1262

1263 1264 1265 1266 1267
    Returns:
        None.

    Examples:
        .. code-block:: python
1268

1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
            import paddle.fluid as fluid
            import numpy as np
            with fluid.dygraph.guard():
                x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
                linear = fluid.dygraph.Linear(10, 10)
                input = fluid.dygraph.to_variable(x)
                scheduler = fluid.dygraph.LambdaDecay(0.5, lr_lambda=lambda x: 0.95**x)
                adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())

                for epoch in range(6):
                    for batch_id in range(5):
                        out = linear(input)
                        loss = fluid.layers.reduce_mean(out)
                        adam.minimize(loss)
                    scheduler.epoch()

                    print("epoch:%d, current lr is %f" .format(epoch, adam.current_step_lr()))
                    # epoch:0, current lr is 0.5
                    # epoch:1, current lr is 0.475
                    # epoch:2, current lr is 0.45125

    """

    def __init__(self, learning_rate, lr_lambda):
        if not callable(lr_lambda):
            raise TypeError(
                "The type of 'lr_lambda' in 'LambdaDecay' must be 'function', but received %s."
1296 1297
                % type(lr_lambda)
            )
1298 1299 1300 1301 1302 1303 1304 1305

        self.lr_lambda = lr_lambda
        super(LambdaDecay, self).__init__(learning_rate)

    def get_lr(self):
        base_lr = self.create_lr_var(self.base_lr)

        return self.base_lr * self.lr_lambda(self.epoch_num)