io.py 60.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import numpy as np

19
import paddle
20 21 22 23
from paddle import compat as cpt
from paddle.fluid import core
from paddle.fluid import framework
from paddle.fluid import backward
24
from paddle.fluid import unique_name
25 26
from paddle.fluid.dygraph import layers
from paddle.fluid.layers import nn
27
from paddle.fluid.layers.utils import _hash_with_id
28
from paddle.fluid.dygraph.base import switch_to_static_graph
J
Jiabin Yang 已提交
29
from paddle.fluid.framework import _non_static_mode
30 31 32 33 34 35 36 37
from paddle.fluid.executor import (
    _is_enable_standalone_executor,
    _is_dy2st_enable_standalone_executor,
)
from paddle.fluid.dygraph.dygraph_to_static.partial_program import (
    add_build_strategy_for,
    LazyInitialized,
)
38
from paddle import _C_ops, _legacy_C_ops
39 40 41

__all__ = ['TranslatedLayer']

42 43 44
INFER_MODEL_SUFFIX = ".pdmodel"
INFER_PARAMS_SUFFIX = ".pdiparams"
INFER_PARAMS_INFO_SUFFIX = ".pdiparams.info"
45
INFER_PROPERTY_SUFFIX = '.meta'
46

47 48 49
LOADED_VAR_SUFFIX = "load"
PARAMETER_NAME_PREFIX = "param"
BUFFER_NAME_PREFIX = "buffer"
50 51 52 53 54 55 56 57 58


def _load_program_desc(model_file_path):
    # 1. parse program desc
    with open(model_file_path, "rb") as f:
        program_desc_str = f.read()

    program_desc = core.ProgramDesc(program_desc_str)
    if not core._is_program_version_supported(program_desc._version()):
59 60 61
        raise ValueError(
            "Unsupported program version: %d\n" % program_desc._version()
        )
62 63 64 65 66

    return program_desc


def _is_persistable(var_desc):
67 68 69 70 71 72
    if (
        var_desc.type() == core.VarDesc.VarType.FEED_MINIBATCH
        or var_desc.type() == core.VarDesc.VarType.FETCH_LIST
        or var_desc.type() == core.VarDesc.VarType.READER
        or var_desc.type() == core.VarDesc.VarType.RAW
    ):
73 74 75 76 77 78 79
        return False
    return var_desc.persistable()


def _is_parameter(persistable_var_desc, program_desc):
    # 1. firstly, param should be input of op
    input_ops = []  # op can be repeated
80
    for block_idx in range(program_desc.num_blocks()):
81
        block = program_desc.block(block_idx)
82
        for op_idx in range(block.op_size()):
83 84 85 86 87
            op = block.op(op_idx)
            # NOTE: parameter is the input of a certain op
            if persistable_var_desc.name() in op.input_arg_names():
                input_ops.append(op)
    # 2. secondly, param should not be output of op or be same op's output
88
    for block_idx in range(program_desc.num_blocks()):
89
        block = program_desc.block(block_idx)
90
        for op_idx in range(block.op_size()):
91 92 93 94 95 96 97 98 99 100 101 102
            op = block.op(op_idx)
            if persistable_var_desc.name() in op.output_arg_names():
                # such as batch_norm_op
                if op in input_ops:
                    continue
                else:
                    return False
    return True


def _get_persistable_vars(program_desc):
    persistable_vars = []
103
    for i in range(program_desc.num_blocks()):
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        block = program_desc.block(i)
        persistable_vars.extend(list(filter(_is_persistable, block.all_vars())))
    return persistable_vars


def _get_persistable_var_names(program_desc):
    """
    Get all persistable variable names in ProgramDesc.
    """
    var_names = []
    persistable_vars = _get_persistable_vars(program_desc)
    for var in persistable_vars:
        var_names.append(var.name())
    return var_names


def _get_all_var_names(program_desc):
    all_var_names = set()
122
    for i in range(program_desc.num_blocks()):
123 124 125 126 127 128
        block = program_desc.block(i)
        for var in block.all_vars():
            all_var_names.add(var.name())
    return all_var_names


129
@switch_to_static_graph
130 131 132
def _append_loaded_suffix(name):
    """
    Append loaded suffix to the given variable name
133
    e.g. x ==> x.load_0, x.load_0 ==> x.load_0.load_0
134
    """
135 136 137
    suffix = LOADED_VAR_SUFFIX
    new_name = unique_name.generate_with_ignorable_key('.'.join((name, suffix)))
    return new_name
138 139


140 141 142
@switch_to_static_graph
def _generate_unique_var_name(prefix):
    return unique_name.generate_with_ignorable_key(prefix)
143 144 145


def _append_loaded_suffix_to_var(program_desc):
146
    suffix_varname_dict = dict()
147 148 149 150
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        old_name = var_desc.name()
        new_name = _append_loaded_suffix(var_desc.name())
151
        suffix_varname_dict[new_name] = old_name
152
        var_desc.set_name(new_name)
153
        for block_idx in range(program_desc.num_blocks()):
154
            block = program_desc.block(block_idx)
155
            block._rename_var(old_name.encode(), new_name.encode())
156
            for op_idx in range(block.op_size()):
157 158 159
                op = block.op(op_idx)
                op._rename_input(old_name, new_name)
                op._rename_output(old_name, new_name)
160
    return suffix_varname_dict
161 162


163 164 165 166 167 168 169 170 171 172 173 174 175 176
@switch_to_static_graph
def _generate_unique_var_name_sync_with_main_program(prefix):
    return unique_name.generate(prefix)


def _get_loaded_var_new_old(program_desc, all_new_old_dict_all):
    new_old_dict = dict()
    persistable_vars = _get_persistable_vars(program_desc)
    for var_desc in persistable_vars:
        name_new = var_desc.name()
        new_old_dict[name_new] = all_new_old_dict_all[name_new]
    return new_old_dict


W
WeiXin 已提交
177
def _rename_var_program_desc(program_desc, include=None, exclude=None):
178
    """
179 180 181 182 183 184 185 186
    Change the name of the loaded variables.Use 'unique_name.generate' to avoid duplication.
    It is used when loading multiple program during inference.

    e.g. linear_0.tmp_3 ==> linear_0.tmp_1, x ==> x_0. For double grad, x@GRAD ==> x_0@GRAD
    If 'include' is not `None`,variables in include and the corresponding
      double grad variables (if exist) are renamed.
    If 'exclude' is not `None`,variables that are in exclude and the
      corresponding double grad variables (if exist) are not renamed.
W
WeiXin 已提交
187 188 189 190 191

    Args:
        program_desc(ProgramDesc):the variables in it will be modified.
        include(List):list of names of variables.
        exclude(List):list of names of variables.
192 193 194 195 196

    Returns:
        tuple of (dict_rename_var_new_old, dict_rename_var_old_new)
        dict_rename_var_new_old is a dict mapping from new name to old name
        dict_rename_var_old_new is a dict mapping from old name to new name
197 198 199 200
    """
    dict_rename_var_old_new = dict()
    dict_rename_var_new_old = dict()
    old_names = []
201
    # Store all old names
202
    for b_idx in range(program_desc.num_blocks()):
203 204 205
        cur_block = program_desc.block(b_idx)
        for var in cur_block.all_vars():
            old_names.append(var.name())
206 207 208 209

    # Create dict_rename_var_new_old and dict_rename_var_old_new for non double
    # grad variables
    has_double_grad = False
210
    for b_idx in range(program_desc.num_blocks()):
211 212 213
        cur_block = program_desc.block(b_idx)
        for var_idx, var in enumerate(cur_block.all_vars()):
            name_old = var.name()
214 215
            is_double_grad_var = "@GRAD" in name_old
            has_double_grad = has_double_grad or is_double_grad_var
216 217 218 219 220
            should_rename = (
                (include is None or name_old in include)
                and (exclude is None or name_old not in exclude)
                and not is_double_grad_var
            )
W
WeiXin 已提交
221
            if should_rename:
222 223 224 225
                temp_name = name_old.split('_')
                if len(temp_name) > 1 and temp_name[-1].isnumeric():
                    temp_name = "_".join(temp_name[:-1])
                else:
W
WeiXin 已提交
226 227 228
                    temp_name = name_old
                while True:
                    name_new = _generate_unique_var_name_sync_with_main_program(
229 230 231 232 233 234
                        temp_name
                    )
                    if (
                        name_new
                        not in old_names[:var_idx] + old_names[var_idx + 1 :]
                    ):
W
WeiXin 已提交
235 236 237
                        break
            else:
                name_new = name_old
238
            if name_old != name_new:
239
                cur_block._rename_var(name_old.encode(), name_new.encode())
240 241 242 243 244 245 246 247
            if not is_double_grad_var:
                dict_rename_var_old_new[name_old] = name_new
                dict_rename_var_new_old[name_new] = name_old

    # Handle double grad names
    if has_double_grad:
        double_grad_rename_dict = {}
        for name_old in dict_rename_var_old_new:
248
            for b_idx in range(program_desc.num_blocks()):
249 250 251 252 253
                cur_block = program_desc.block(b_idx)
                for var_idx, var in enumerate(cur_block.all_vars()):
                    var_name = var.name()
                    if "@GRAD" in var_name and name_old in var_name:
                        new_var_name = var_name.replace(
254 255
                            name_old, dict_rename_var_old_new[name_old]
                        )
256 257 258
                        double_grad_rename_dict[var_name] = new_var_name
        for var_name in double_grad_rename_dict:
            dict_rename_var_old_new[var_name] = double_grad_rename_dict[
259 260
                var_name
            ]
261
            dict_rename_var_new_old[
262 263
                double_grad_rename_dict[var_name]
            ] = var_name
264 265

    # Rename on program desc
266
    for b_idx in range(program_desc.num_blocks()):
267
        cur_block = program_desc.block(b_idx)
268
        for op_idx in range(cur_block.op_size()):
269 270 271
            op = cur_block.op(op_idx)
            for input_arg_name in op.input_arg_names():
                if input_arg_name in dict_rename_var_old_new:
272 273 274 275
                    if (
                        input_arg_name
                        != dict_rename_var_old_new[input_arg_name]
                    ):
276 277
                        op._rename_input(
                            input_arg_name,
278 279
                            dict_rename_var_old_new[input_arg_name],
                        )
280
                        if cur_block.has_var(input_arg_name.encode()):
281
                            cur_block._rename_var(
282
                                input_arg_name.encode(),
283 284 285 286
                                dict_rename_var_old_new[
                                    input_arg_name
                                ].encode(),
                            )
287 288
            for output_arg_name in op.output_arg_names():
                if output_arg_name in dict_rename_var_old_new:
289 290 291 292
                    if (
                        output_arg_name
                        != dict_rename_var_old_new[output_arg_name]
                    ):
293 294
                        op._rename_output(
                            output_arg_name,
295 296
                            dict_rename_var_old_new[output_arg_name],
                        )
297
                        if cur_block.has_var(output_arg_name.encode()):
298
                            cur_block._rename_var(
299
                                output_arg_name.encode(),
300 301 302 303
                                dict_rename_var_old_new[
                                    output_arg_name
                                ].encode(),
                            )
304 305 306 307
    program_desc.flush()
    return dict_rename_var_new_old, dict_rename_var_old_new


308 309 310 311 312
@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
313
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
314 315 316 317 318 319 320
    ]
    prog._sync_with_cpp()
    return prog


def _change_is_test_status(program_desc, is_test):
    # change all `is_test` attributes
321
    for i in range(program_desc.num_blocks()):
322
        block = program_desc.block(i)
323
        for j in range(block.op_size()):
324 325 326 327 328 329 330 331 332
            op = block.op(j)
            if op.has_attr('is_test'):
                op._set_attr('is_test', is_test)


class _ProgramHolder(object):
    """
    Holds the execution information of a Program.

333 334
    _ProgramHolder is the execution unit of TranslatedLayer,
    if TranslatedLayer contains multiple _ProgramHolder,
335 336 337 338 339 340 341 342
    it can execute multiple methods

    _ProgramHolder is an internal concept.
    """

    def __init__(self, program_desc):
        super(_ProgramHolder, self).__init__()

343
        # input, output, persistable, double_grads var info
344
        self._input_descs = []
345
        self._output_descs = []
346
        self._double_grad_descs = []
347
        self._persistable_names = []
348 349 350 351

        # execution scope
        self._inner_scope = core.Scope()

352 353
        # append suffix var name dict
        self._suffix_varname_dict = None
354 355 356 357
        # forward program
        self._infer_program_desc = self._preprocess(program_desc)
        # forward + backward program
        self._train_program_desc = self._append_backward_desc(
358 359
            self._infer_program_desc
        )
360

361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
    # forward:
    @switch_to_static_graph
    def _create_forward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        end_op_index = self._infer_program_desc.block(0).op_size()
        if end_op_index > 0:
            return add_build_strategy_for(whole_program, 0, end_op_index)
        else:
            return whole_program

    @LazyInitialized
    def _forward_program_desc(self):
        return self._create_forward_train_program().desc

    # backward
    @switch_to_static_graph
    def _create_backward_train_program(self):
        whole_program = _build_program_by_desc(self._train_program_desc)
        start_op_index = self._infer_program_desc.block(0).op_size() + 2 * len(
380 381
            self._output_descs
        )
382
        end_op_index = whole_program.desc.block(0).op_size()
383 384 385 386
        if start_op_index < end_op_index:
            return add_build_strategy_for(
                whole_program, start_op_index, end_op_index
            )
387 388 389 390 391 392 393
        else:
            return paddle.static.Program()

    @LazyInitialized
    def _backward_program_desc(self):
        return self._create_backward_train_program().desc

394 395 396 397 398 399 400 401
    @property
    def infer_program(self):
        return self._infer_program_desc

    @property
    def train_program(self):
        return self._train_program_desc

402 403 404 405 406 407 408 409
    @property
    def forward_program(self):
        return self._forward_program_desc

    @property
    def backward_program(self):
        return self._backward_program_desc

410
    @property
411 412
    def input_descs(self):
        return self._input_descs
413 414

    @property
415
    def output_descs(self):
416 417 418 419 420 421
        return self._output_descs

    @property
    def persistable_names(self):
        return self._persistable_names

422 423 424 425
    @property
    def double_grad_descs(self):
        return self._double_grad_descs

426 427 428 429 430
    @property
    def scope(self):
        return self._inner_scope

    def _preprocess(self, program_desc):
W
WeiXin 已提交
431 432
        # rename persistable variables of 'program_desc'
        list_persistable_var = _get_persistable_var_names(program_desc)
433
        rename_new_old_dict, _ = _rename_var_program_desc(
434 435
            program_desc, list_persistable_var
        )
436 437 438 439
        # 1. Prune original program
        # remove feed, fetch and scale-1 op, remove op_callstack attr
        ops_to_remove = []
        root_block = program_desc.block(0)
440
        for i in range(root_block.op_size()):
441 442 443
            op = root_block.op(i)
            if op.type() == 'feed':
                ops_to_remove.append(i)
444
                feed_var_name = op.input('X')[0].encode()
445
                root_block._remove_var(feed_var_name)
446
                self._input_descs.append(
447 448
                    root_block.find_var(op.output('Out')[0].encode())
                )
449
            elif op.type() == 'scale' and op.output('Out')[0].startswith(
450 451
                'save_infer_model/scale_'
            ):
452
                ops_to_remove.append(i)
453
                out_var_name = op.output('Out')[0].encode()
454 455
                root_block._remove_var(out_var_name)
                self._output_descs.append(
456 457
                    root_block.find_var(op.input('X')[0].encode())
                )
458 459
            elif op.type() == 'fetch':
                ops_to_remove.append(i)
460
                fetch_var_name = op.output('Out')[0].encode()
461 462 463 464
                root_block._remove_var(fetch_var_name)
                # NOTE: some old pre-train models have no extra scale_op
                if not op.input('X')[0].startswith('save_infer_model/scale_'):
                    self._output_descs.append(
465 466
                        root_block.find_var(op.input('X')[0].encode())
                    )
467 468 469 470 471 472 473
            else:
                if op.has_attr("op_callstack"):
                    op.remove_attr("op_callstack")

        for op_idx in reversed(ops_to_remove):
            root_block._remove_op(op_idx, op_idx + 1)

474 475 476 477 478 479
        for i in range(program_desc.num_blocks()):
            block_desc = program_desc.block(i)
            for var_desc in block_desc.all_vars():
                if "@GRAD" in var_desc.name():
                    self._double_grad_descs.append(var_desc)

480
        # 2. Input processing, reverse feed vars
481
        self._input_descs.reverse()
482 483 484 485

        # 3. Output processing, add scale for outputs
        tmp_program = _build_program_by_desc(program_desc)
        # NOTE: [why need append scale for outputs]
486 487 488 489 490
        # When dealing with some more complex pre-training models, there
        # will be situations where the pre-training model has multiple
        # fetch outputs. In the scenario of multiple fetch outputs,
        # there is a special case where multiple outputs of the model
        # may be on the same branch. According to the user's subsequent
491
        # use, multiple outputs may be associated with multiple branches.
492 493 494 495
        # These subsequent operations are added in TranslatedLayer is
        # agnostic during initialization, which results in subsequent
        # gradient accumulation operations that are required on the
        # output node in the middle of the branch will not be performed,
496 497 498 499 500
        # resulting in error, details see pull request:
        # [https://github.com/PaddlePaddle/Paddle/pull/24627]
        self._append_scale_to_output(tmp_program)

        # 4. Persistable vars processing
501
        # - append loaded suffix to persistable vars
502
        # NOTE: [why need to append suffix to persistable vars]
503 504 505 506 507 508
        # Dygraph and static graph mode use the same naming mechanism.
        # If users want to load the model fine-tune, it is possible
        # to add the existing Layer in the loaded model to enhance
        # the network. For example, the original saved model has linear,
        # and later after loading, a new linear is added. At this time,
        # there will be a problem of duplicate names, so here is unified
509
        # to add the LOADED suffix to the parameters of the model loaded
510
        self._suffix_varname_dict = _get_loaded_var_new_old(
511 512
            program_desc, rename_new_old_dict
        )
513

514 515 516 517 518 519 520 521 522 523 524 525
        # - get persistable var
        self._persistable_names = _get_persistable_var_names(program_desc)

        return program_desc

    @switch_to_static_graph
    def _append_scale_to_output(self, program):
        # 1. append scale & save var
        scale_output_vars = []
        with framework.program_guard(program):
            for i, out in enumerate(self._output_descs):
                var = program.global_block().var(out.name())
526 527 528
                var = nn.scale(
                    var, 1.0, name="translated_layer/scale_{}".format(i)
                )
529 530 531 532 533 534
                scale_output_vars.append(var)
        # 2. update output names & descs
        for i, var in enumerate(scale_output_vars):
            self._output_descs[i] = var.desc

    @switch_to_static_graph
535
    def _get_train_forward_program(self, infer_program_desc):
536 537 538 539 540 541 542 543
        program_desc_copy = core.ProgramDesc(infer_program_desc)

        # 1. set all `is_test` attributes to False
        _change_is_test_status(program_desc_copy, False)

        # 2. prepare program and related var
        # NOTE: To reuse backward interfaces, build Program firstly.
        # Originally, there is no need to build a program, but need to almost
544
        # rewrite a series of methods for append_backward for program_desc.
545 546
        # Therefore, in order to reuse the method of backward.py, build the program here.
        program = _build_program_by_desc(program_desc_copy)
547 548
        # 3. Add the outputs which is only used for training and not saved in
        # inference program.
549
        for block_idx in range(program.num_blocks):
550 551 552
            block = program.block(block_idx)
            for op in block.ops:
                if op.type == "batch_norm":
553 554 555 556
                    if (
                        "ReserveSpace" not in op.output_names
                        or len(op.output("ReserveSpace")) == 0
                    ):
557 558
                        reserve_space = block.create_var(
                            name=unique_name.generate_with_ignorable_key(
559 560
                                ".".join(["reserve_space", 'tmp'])
                            ),
561 562 563
                            dtype=block.var(op.input("X")[0]).dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
564 565
                            stop_gradient=True,
                        )
566
                        op.desc.set_output("ReserveSpace", [reserve_space.name])
567 568 569 570 571
        return program

    @switch_to_static_graph
    def _append_backward_desc(self, infer_program_desc):
        program = self._get_train_forward_program(infer_program_desc)
572

573 574 575 576 577 578 579 580 581 582
        targets = []
        for out in self._output_descs:
            targets.append(program.global_block().var(out.name()))

        # 3. append backward
        backward.gradients(targets=targets, inputs=[])
        return program.desc


# [ TranslatedLayer : Run program in imperative mode ]
583
#
584 585 586 587 588 589 590
# DESIGN IDEA: using an special operator `RunProgram`, execute program inside operator.
#
# Op's Inputs:
#   - the input variable of the user feed
#   - the necessary parameters of the network
# Op's Outputs:
#   - the output variable of fetch
591
#
592 593 594
# This op receives a complete program desc, internally creates scope
# and executor, executes this program. Key points:
#
595
# 1. Data Sharing:
596 597 598 599
#   The varBase of the dynamic graph is not in the scope, so before the op
#   executes the program internally, create persistent variables with the
#   same name as feed, parameters, and fetch in the scope, and share the
#   LoDTensor of the op input.
600
#
601 602 603 604
# 2. Forward and Backward Separation:
#   Because the dynamic graph op performs the forward and backward separately,
#   in the forward op RunProgram, we only execute the forward part of whole program,
#   and in the backward op RunProgramGrad, we execute the backward part of program.
605
#   We can not separate the program into forward and backward part, which will
606 607 608 609 610
#   make some control flow execution logic wrong.


# NOTE: [compatible] deal with model saved by save_inference_model,
# which need get var info from program desc
611 612 613
def _load_persistable_vars_by_program(
    model_path, program_holder, params_filename=None
):
614 615 616 617
    # make sure the path has been checked
    persistable_vars = _get_persistable_vars(program_holder.infer_program)
    load_var_dict = {}
    for each_var in persistable_vars:
618
        orig_each_name = program_holder._suffix_varname_dict[each_var.name()]
619 620
        if _is_parameter(each_var, program_holder.infer_program):
            # create output varbase
J
Jiabin Yang 已提交
621
            if framework._in_eager_without_dygraph_check():
622 623 624 625 626 627 628
                new_var = framework.EagerParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
629
            else:
630 631 632 633 634 635 636
                new_var = framework.ParamBase(
                    shape=each_var.shape(),
                    dtype=each_var.dtype(),
                    name=each_var.name(),
                    type=each_var.type(),
                    persistable=True,
                )
637
        else:
638 639 640 641 642 643 644
            new_var = framework._varbase_creator(
                type=each_var.type(),
                name=each_var.name(),
                shape=each_var.shape(),
                dtype=each_var.dtype(),
                persistable=True,
            )
645 646 647 648 649
        if params_filename is None:
            framework._dygraph_tracer().trace_op(
                type='load',
                inputs={},
                outputs={'Out': new_var},
650 651
                attrs={'file_path': os.path.join(model_path, orig_each_name)},
            )
652 653 654 655 656
        new_var.stop_gradient = False
        load_var_dict[each_var.name()] = new_var

    if params_filename is not None:
        load_var_list = []
657
        dict_name_old_new = {
658
            v: k for k, v in program_holder._suffix_varname_dict.items()
659 660 661
        }
        for name in sorted(dict_name_old_new.keys()):
            load_var_list.append(load_var_dict[dict_name_old_new[name]])
662 663 664 665 666

        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
667 668
            attrs={'file_path': os.path.join(model_path, params_filename)},
        )
669 670 671 672 673 674 675 676

        for each_var in persistable_vars:
            if not _is_parameter(each_var, program_holder.infer_program):
                continue
            param = load_var_dict[each_var.name()]
            param.stop_gradient = False

    # NOTE: [Recovery stop gradient information based on the program]
677
    # After loading the model, the stop_gradient information
678 679 680 681 682 683 684 685 686 687 688 689
    # of the original variable is lost, but if a parameter does not
    # have a corresponding @GRAD variable in the backward program,
    # it can be said that it is also stop_gradient
    all_var_names = _get_all_var_names(program_holder.train_program)
    for var_name in load_var_dict:
        grad_var_name = var_name + core.grad_var_suffix()
        if grad_var_name not in all_var_names:
            load_var_dict[var_name].stop_gradient = True

    return load_var_dict


690 691 692
def _load_persistable_vars(
    model_path, var_info_path, program_holder, params_filename
):
693 694
    # 1. load extra var info
    with open(var_info_path, 'rb') as f:
695
        extra_var_info = pickle.load(f)
696 697 698 699

    # 2. construct var dict
    load_var_dict = dict()
    load_var_list = []
700
    inv_suffix_varname_dict = {
701
        value: key for key, value in program_holder._suffix_varname_dict.items()
702
    }
703 704 705

    # NOTE(chenweihang): we need load persistable vars based the program,
    # because the program may be pruned when `save_inference_model`, some
706
    # var in `extra_var_info` may have been pruned
707 708 709 710 711
    for name in sorted(inv_suffix_varname_dict):
        if name not in extra_var_info:
            raise RuntimeError(
                "The model to be loaded is not complete."
                "The variable `%s` of program cannot be found in loaded model.",
712 713
                name,
            )
714 715
        # get suffix var name, see [why need to append suffix to persistable vars]
        new_name = inv_suffix_varname_dict[name]
716 717 718
        # create output varbase
        if extra_var_info[name].get('trainable', None) is not None:
            # use default shape and dtype
J
Jiabin Yang 已提交
719
            if framework._in_eager_without_dygraph_check():
720 721 722 723 724 725
                new_var = framework.EagerParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
726 727
                    persistable=True,
                )
728 729 730 731 732 733 734
            else:
                new_var = framework.ParamBase(
                    shape=[
                        1
                    ],  # only to pass check, this shape is not meaningful
                    dtype=core.VarDesc.VarType.FP32,
                    name=new_name,
735 736
                    persistable=True,
                )
737
        else:
738 739 740
            new_var = framework._varbase_creator(
                name=new_name, persistable=True
            )
741 742 743 744 745 746

        new_var.stop_gradient = extra_var_info[name]['stop_gradient']
        load_var_dict[new_name] = new_var
        load_var_list.append(new_var)

    # 3. load all vars
747 748 749 750 751 752
    assert params_filename is not None, "params_filename should not be None."
    var_file_path = os.path.join(model_path, params_filename)
    if not os.path.exists(var_file_path):
        if len(extra_var_info) != 0:
            raise ValueError("The model to be loaded is incomplete.")
    else:
753 754 755 756 757 758
        framework._dygraph_tracer().trace_op(
            type='load_combine',
            inputs={},
            outputs={'Out': load_var_list},
            attrs={'file_path': var_file_path},
        )
759 760 761 762

    return load_var_dict


763 764 765 766 767 768 769 770 771
# NOTE(chenweihang): to adapt paddle.load to get state_dict
def _remove_varname_suffix(var_dict, program_holder):
    no_suffix_var_dict = dict()
    for var_name in var_dict:
        no_suffix_name = program_holder._suffix_varname_dict[var_name]
        no_suffix_var_dict[no_suffix_name] = var_dict[var_name]
    return no_suffix_var_dict


772 773 774 775 776 777 778 779
def _construct_program_holders(model_path, model_filename=None):
    # make sure the path has been checked
    program_holder_dict = dict()

    if model_filename is not None:
        # [compatible] if assign model_filename, only can load one program as Layer.forward
        model_filename = os.path.basename(model_filename)
        model_file_path = os.path.join(model_path, model_filename)
780 781
        model_name = model_filename[: -len(INFER_MODEL_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
782 783 784 785 786
        for filename in os.listdir(model_path):
            if model_filename == filename:
                func_name = 'forward'
                model_file_path = os.path.join(model_path, model_filename)
            elif filename.endswith(INFER_MODEL_SUFFIX) and filename.startswith(
787 788 789 790 791
                model_name
            ):
                parsing_names = filename[
                    len(model_name) : -len(INFER_MODEL_SUFFIX) + 1
                ].split('.')
792 793 794 795 796
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                    model_file_path = os.path.join(model_path, filename)
                else:
                    continue
797 798 799
            else:
                continue
            program_holder_dict[func_name] = _ProgramHolder(
800 801
                _load_program_desc(model_file_path)
            )
802 803 804 805 806 807 808 809 810 811 812
    else:
        for _, _, file_names in os.walk(model_path):
            for name in file_names:
                if 'model' in name:
                    model_file_path = os.path.join(model_path, name)
                    method_name = name.strip('_')
                    if method_name == 'model':
                        method_name = 'forward'
                    else:
                        method_name.replace('model', '')
                    program_holder_dict[method_name] = _ProgramHolder(
813 814
                        _load_program_desc(model_file_path)
                    )
815 816 817 818

    return program_holder_dict


819 820 821
def _construct_params_and_buffers(
    model_path, programs, params_filename=None, append_suffix=True
):
822 823
    var_info_filename = str(params_filename) + ".info"
    var_info_path = os.path.join(model_path, var_info_filename)
824
    params_path = os.path.join(model_path, str(params_filename))
825

826
    if os.path.exists(var_info_path):
827 828 829 830 831
        var_dict = _load_persistable_vars(
            model_path, var_info_path, programs['forward'], params_filename
        )
        model_name = params_filename[: -len(INFER_PARAMS_SUFFIX)]
        # Load every file that meets the requirements in the directory model_path.
832
        for file_name in os.listdir(model_path):
833
            if file_name.startswith(model_name) and file_name.endswith(
834 835 836 837 838
                INFER_PARAMS_SUFFIX
            ):
                parsing_names = file_name[
                    len(model_name) : -len(INFER_PARAMS_SUFFIX) + 1
                ].split('.')
839 840 841 842
                if len(parsing_names) == 3 and len(parsing_names[1]) > 0:
                    func_name = parsing_names[1]
                else:
                    continue
843 844 845 846
            else:
                continue
            var_info_path = os.path.join(model_path, var_info_filename)
            var_dict.update(
847 848 849 850
                _load_persistable_vars(
                    model_path, var_info_path, programs[func_name], file_name
                )
            )
851 852 853
    elif params_filename is not None and not os.path.exists(params_path):
        # When saving XX, there is only '*.pdmodel'
        return dict()
854
    else:
855 856 857
        var_dict = _load_persistable_vars_by_program(
            model_path, programs['forward'], params_filename
        )
858 859 860 861

    if not append_suffix:
        var_dict = _remove_varname_suffix(var_dict, programs['forward'])

862 863 864
    return var_dict


0
0x45f 已提交
865 866 867
def _valid_vars(vars):
    if vars:
        return vars
J
Jiabin Yang 已提交
868
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
869
        return [
870 871 872 873 874 875 876
            core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
0
0x45f 已提交
877 878 879
        ]
    else:
        return [
880 881 882 883 884 885 886
            core.VarBase(
                core.VarDesc.VarType.FP32,
                [],
                "Fake_var",
                core.VarDesc.VarType.RAW,
                False,
            )
0
0x45f 已提交
887 888 889
        ]


W
WeiXin 已提交
890 891 892 893 894
def _run_dygraph(instance, input, program_holder):

    # 1. prepare inputs, outputs, attrs
    input_vars = []
    for i, value in enumerate(input):
895
        if not isinstance(value, (np.ndarray, core.VarBase, core.eager.Tensor)):
W
WeiXin 已提交
896 897
            raise TypeError(
                "The type of input in TranslatedLayer must be numpy array or Variable(VarBase), but received %s."
898 899
                % type(value)
            )
W
WeiXin 已提交
900 901
        # NOTE: In order to unify the API, firstly convert the input to VarBase
        if isinstance(value, np.ndarray):
J
Jiabin Yang 已提交
902
            if framework._in_eager_without_dygraph_check():
903 904 905 906 907
                var = core.eager.Tensor(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
908 909
                    zero_copy=True,
                )
910
            else:
911 912 913 914 915 916 917
                var = core.VarBase(
                    value=value,
                    name=program_holder.input_descs[i].name(),
                    persistable=False,
                    place=framework._current_expected_place(),
                    zero_copy=True,
                )
W
WeiXin 已提交
918 919
        else:
            var = value
920
            # NOTE: we changed var name here,
W
WeiXin 已提交
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
            # but it may be an important name set by user
            var.name = program_holder.input_descs[i].name()
        input_vars.append(var)
    if instance._input_args_names is None:
        instance._input_args_names = [
            ins.name() for ins in program_holder.input_descs
        ]

    persistable_vars = []
    for var_name in program_holder.persistable_names:
        dy_var_name = instance._persistable_var_name_dict[var_name]
        if dy_var_name in instance._parameters:
            persistable_vars.append(instance._parameters[dy_var_name])
        elif dy_var_name in instance._buffers:
            persistable_vars.append(instance._buffers[dy_var_name])
        else:
            raise ValueError(
                "The persistable variable %s does not exist in current TranslatedLayer."
939 940
                % var_name
            )
W
WeiXin 已提交
941 942 943

    output_vars = []
    for var_desc in program_holder.output_descs:
J
Jiabin Yang 已提交
944
        if framework._in_eager_without_dygraph_check():
945 946 947 948 949 950 951
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
952
        else:
953 954 955 956 957 958 959
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
W
WeiXin 已提交
960 961 962
        output_vars.append(var)

    # hold forward variables
J
Jiabin Yang 已提交
963
    if framework._in_eager_without_dygraph_check():
0
0x45f 已提交
964
        tmp_scope_vec = [program_holder.scope]
965
    else:
966 967 968 969 970 971 972
        tmp_scope_vec = core.VarBase(
            core.VarDesc.VarType.FP32,
            [],
            "program_out_scope",
            core.VarDesc.VarType.STEP_SCOPES,
            True,
        )
0
0x45f 已提交
973
        tmp_scope_vec.value().set_scope(program_holder.scope)
W
WeiXin 已提交
974

975 976
    double_grad_vars = []
    for var_desc in program_holder.double_grad_descs:
J
Jiabin Yang 已提交
977
        if framework._in_eager_without_dygraph_check():
978 979 980 981 982 983 984
            var = core.eager.Tensor(
                dtype=var_desc.dtype(),
                dims=var_desc.shape(),
                name=var_desc.name(),
                type=var_desc.type(),
                persistable=False,
            )
985
        else:
986 987 988 989 990 991 992
            var = core.VarBase(
                var_desc.dtype(),
                var_desc.shape(),
                var_desc.name(),
                var_desc.type(),
                False,
            )
993 994
        double_grad_vars.append(var)

W
WeiXin 已提交
995
    # 2. run program by op
996 997 998 999 1000 1001 1002 1003 1004 1005
    trace_program = (
        program_holder.infer_program
        if instance._is_test
        else program_holder.train_program
    )
    forward_program = (
        program_holder._infer_program_desc
        if instance._is_test
        else program_holder.forward_program
    )
W
WeiXin 已提交
1006
    end_op_index = program_holder.infer_program.block(0).op_size()
1007 1008 1009

    attrs = [
        'global_block',
1010 1011 1012 1013 1014 1015 1016 1017 1018
        trace_program.block(0),
        'start_op_index',
        0,
        'end_op_index',
        end_op_index,
        'is_test',
        instance._is_test,
        'program_id',
        _hash_with_id(trace_program, instance),
1019 1020
    ]

1021 1022 1023 1024
    use_interpretorcore = (
        _is_enable_standalone_executor()
        and _is_dy2st_enable_standalone_executor()
    )
1025 1026 1027
    attrs.extend(('use_interpretorcore', use_interpretorcore))
    if use_interpretorcore:
        attrs.extend(
1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044
            (
                'forward_global_block',
                forward_program.block(0),
                'backward_global_block',
                program_holder.backward_program.block(0),
            )
        )

    _legacy_C_ops.run_program(
        _valid_vars(input_vars),
        _valid_vars(persistable_vars),
        _valid_vars(output_vars),
        tmp_scope_vec,
        _valid_vars(double_grad_vars),
        None,
        *attrs
    )
1045

W
WeiXin 已提交
1046 1047 1048 1049 1050 1051 1052 1053
    # NOTE: [ why need set param's gradient type here ]
    # if user set sparse gradient mode, the param's gradient
    # will be SelectedRows, not LoDTensor. But tracer will just
    # set param grad VarBase by forward VarBase(LoDTensor)
    # If we don't change grad_var type here, RunProgramOp need
    # transform SelectedRows to LoDTensor forcibly, it may not
    # be user wanted result.
    for persistable_var in persistable_vars:
0
0x45f 已提交
1054
        grad_var_name = persistable_var.name + core.grad_var_suffix()
1055
        grad_var = trace_program.block(0).find_var(grad_var_name.encode())
1056
        # NOTE: cannot find var desc maybe not problem,
W
WeiXin 已提交
1057 1058 1059 1060 1061
        # such as in batch_norm
        if grad_var is None:
            continue
        persistable_var._set_grad_type(grad_var.type())

1062 1063
    drop_scope_if_no_grad(instance, tmp_scope_vec)

W
WeiXin 已提交
1064 1065 1066 1067 1068 1069 1070
    # 3. prepare output, keep same form with inputs
    outs = output_vars
    if len(output_vars) == 1:
        outs = output_vars[0]
    return outs


1071 1072
def drop_scope_if_no_grad(instance, scope_vec):
    tracer = framework._dygraph_tracer()
1073 1074 1075 1076 1077
    scope = (
        scope_vec.value().get_scope()
        if isinstance(scope_vec, (core.VarBase))
        else scope_vec[0]
    )
1078
    if (not instance._is_test) and (not tracer._has_grad):
0
0x45f 已提交
1079
        scope.drop_kids()
1080 1081


W
WeiXin 已提交
1082 1083 1084 1085
def _run_static_graph(input, program_holder, trace_program):
    main_program = framework.default_main_program()
    param_var_names = _get_persistable_var_names(trace_program)
    _, dict_rename_var_old_new = _rename_var_program_desc(
1086 1087
        trace_program, exclude=param_var_names
    )
W
WeiXin 已提交
1088 1089 1090
    trace_program.flush()
    output_names = [var.name() for var in program_holder.output_descs]
    # append blocks from 'trace_program'
1091 1092 1093 1094 1095 1096 1097
    _append_block(
        main_program,
        trace_program,
        program_holder,
        input,
        dict_rename_var_old_new,
    )
W
WeiXin 已提交
1098
    main_program._sync_with_cpp()
1099 1100 1101
    outs = _get_output_from_program(
        main_program, program_holder, dict_rename_var_old_new
    )
W
WeiXin 已提交
1102 1103 1104 1105 1106 1107 1108 1109
    if len(outs) == 1:
        outs = outs[0]
    return outs


def _collect_current_and_parent_var(program, block_idx):
    '''
    Get variables in current block and its parent block.
1110

W
WeiXin 已提交
1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
    Args:
        program(Program): The program containing the current block.
        block_idx(int): index of current block.

    Returns:
        List: list of variables.
    '''
    vars = []
    if block_idx < 0:
        return vars
    for var in program.block(block_idx).vars:
        vars.append(var)
    parent_idx = program.block(block_idx).parent_idx
    if parent_idx > -1:
        vars += _collect_current_and_parent_var(program, parent_idx)
    return vars


1129 1130 1131 1132 1133 1134 1135
def _append_block(
    dest_program,
    src_program_desc,
    program_holder,
    input_variables,
    dict_rename_var_old_new=None,
):
W
WeiXin 已提交
1136 1137
    '''
    Append Variables and Operators in 'src_program_desc' to dest_program.
1138

W
WeiXin 已提交
1139 1140 1141 1142 1143
    Args:
        dest_program(Program): Variables and Operators are appended to it.
        src_program_desc(ProgramDesc): Variables in it will be appended to 'dest_program'.
        program_holder(_ProgramHolder): program_holder of TranslatedLayer
        input_variables(list): list of input variables
1144
        dict_rename_var_old_new(None|dict): When using '_rename_var_program_desc',
W
WeiXin 已提交
1145 1146 1147 1148
        use it to map the name of the variable before it was modified and the new name.
    '''

    origin_block_idx = dest_program.current_block_idx
1149 1150 1151 1152 1153 1154 1155 1156
    param_var_names = _collect_current_and_parent_var(
        dest_program, origin_block_idx
    )
    append_var_from_block_desc_static(
        dest_program.block(origin_block_idx),
        src_program_desc.block(0),
        exclude=param_var_names,
    )
W
WeiXin 已提交
1157 1158 1159 1160 1161

    name_inp_desc = [inp.name() for inp in program_holder.input_descs]
    input_names = [inp.name for inp in input_variables]
    if len(name_inp_desc) != len(input_names):
        raise ValueError(
1162 1163 1164 1165
            "The number of input is invalid, expected {}, but received {}.".format(
                len(name_inp_desc), len(input_names)
            )
        )
W
WeiXin 已提交
1166 1167 1168 1169 1170 1171
    for i, out_name in enumerate(name_inp_desc):
        if dict_rename_var_old_new:
            out_name = dict_rename_var_old_new[out_name]
        dest_program.block(origin_block_idx).append_op(
            type='assign',
            inputs={'X': [input_names[i]]},
1172 1173
            outputs={'Out': [out_name]},
        )
W
WeiXin 已提交
1174 1175

    append_ops = append_op_from_block_desc_static(
1176 1177
        dest_program.block(origin_block_idx), src_program_desc.block(0)
    )
W
WeiXin 已提交
1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190
    dest_program._sync_with_cpp()

    offset_block_idx = dest_program.num_blocks - 1

    if src_program_desc.num_blocks() > 1:
        for src_block_idx in range(1, src_program_desc.num_blocks()):
            src_block = src_program_desc.block(src_block_idx)
            src_parent_idx = src_block.parent
            if src_parent_idx > 0:
                parent_idx = offset_block_idx + parent_idx
            else:
                parent_idx = origin_block_idx
            dest_block = dest_program._create_block(parent_idx=parent_idx)
1191 1192 1193
            append_var_from_block_desc_static(
                dest_block, src_block, exclude=param_var_names
            )
1194
            append_ops += append_op_from_block_desc_static(
1195 1196
                dest_block, src_block
            )
W
WeiXin 已提交
1197 1198 1199 1200 1201 1202 1203 1204 1205

    dest_program._sync_with_cpp()
    for op in append_ops:
        if op.has_attr('sub_block'):
            sub = op.attr('sub_block')
            if isinstance(sub, framework.core.BlockDesc):
                origin_id = sub.id
            if isinstance(sub, framework.Block):
                origin_id = sub.idx
1206 1207 1208
            op._set_attr(
                'sub_block', dest_program.block(offset_block_idx + origin_id)
            )
W
WeiXin 已提交
1209 1210 1211 1212
    dest_program._sync_with_cpp()
    dest_program.current_block_idx = origin_block_idx


1213 1214 1215
def _get_output_from_program(
    program, program_holder, dict_rename_var_old_new=None
):
W
WeiXin 已提交
1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263
    """
    Get output name of 'program' according to program_holder
    """
    outs = list()
    for var in program_holder.output_descs:
        for idx in range(program.num_blocks):
            vars = program.block(idx).vars
            var_name = var.name()
            if dict_rename_var_old_new:
                var_name = dict_rename_var_old_new[var_name]
            if var_name in vars:
                out = vars[var_name]
                if out not in outs:
                    outs.append(out)
    return outs


def append_op_from_block_desc_static(block, src_block_desc):
    """
    Append Operators of 'src_block_desc' to current block.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'

    Returns:
        List: list of the OP that are append to current block.
    """
    ops = []
    for i in range(src_block_desc.op_size()):
        ops.append(append_op_from_desc_static(block, src_block_desc.op(i)))
    return ops


def append_op_from_desc_static(block, op_desc):
    """
    Append Operators to 'block' according to 'op_desc'.

    Args:
        block(Block): append OP of  'src_block_desc' to it.
        op_desc(OpDesc): create OP according to it.

    Returns:
        Operator: OP appended to 'block'.
    """
    op_type = op_desc.type()
    op_append = block.desc.append_op()
    op_append.copy_from(op_desc)
1264 1265 1266 1267 1268 1269 1270 1271
    op = framework.Operator(
        block=block,
        desc=op_append,
        type=op_type,
        inputs=None,
        outputs=None,
        attrs=None,
    )
W
WeiXin 已提交
1272 1273 1274 1275
    block.ops.append(op)
    return op


1276 1277 1278
def append_var_from_block_desc_static(
    block, src_block_desc, include=None, exclude=None
):
W
WeiXin 已提交
1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
    """
    Append Variables of 'src_block_desc' to current block.
    If 'include' is not `None`,variables that are not in include are not append.
    If 'exclude' is not `None`,variables that are in exclude will are not append.

    Args:
        block(Block): append Variables of  'src_block_desc' to it.
        src_block_desc(BlockDesc): append var of  'src_block_desc'
        include(List):list of names of variables
        exclude(List):list of names of variables

    Returns:
        List: list of the variables that are append to current block.
    """
    vars_append = []
    for var_desc in src_block_desc.all_vars():
        var_desc_name = var_desc.name()
        should_append = (include is None or var_desc_name in include) and (
1297 1298
            exclude is None or var_desc_name not in exclude
        )
W
WeiXin 已提交
1299 1300 1301
        if not block.has_var(var_desc_name) and should_append:
            var_type = var_desc.type()
            if var_type in [
1302 1303 1304
                core.VarDesc.VarType.SELECTED_ROWS,
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1305 1306 1307 1308 1309 1310 1311
            ]:
                data_type = var_desc.dtype()
                var_shape = var_desc.shape()
            else:
                data_type = None
                var_shape = None
            if var_type in [
1312 1313
                core.VarDesc.VarType.LOD_TENSOR,
                core.VarDesc.VarType.LOD_TENSOR_ARRAY,
W
WeiXin 已提交
1314 1315 1316 1317 1318
            ]:
                lod_level = var_desc.lod_level()
            else:
                lod_level = None

1319 1320 1321 1322 1323
            if var_desc.persistable():
                current_block = block.program.global_block()
            else:
                current_block = block

W
WeiXin 已提交
1324
            vars_append.append(
1325
                current_block.create_var(
W
WeiXin 已提交
1326 1327 1328 1329 1330 1331
                    name=var_desc.name(),
                    dtype=data_type,
                    type=var_type,
                    shape=var_shape,
                    lod_level=lod_level,
                    persistable=var_desc.persistable(),
1332 1333 1334
                    set_need_check_feed=var_desc.need_check_feed(),
                )
            )
W
WeiXin 已提交
1335 1336 1337
    return vars_append


1338 1339
class TranslatedLayer(layers.Layer):
    """
1340 1341
    TranslatedLayer is a ``paddle.nn.Layer`` for holding the model
    loaded by :ref:`api_paddle_jit_load` . It can be used like a
1342
    general Layer object in eval or train mode.
1343

1344
    .. note:
1345
        The TranslatedLayer objects should not be created by constructor, it only can be loaded and constructed by :ref:`api_paddle_jit_load` .
1346 1347 1348 1349 1350

    Examples:
        .. code-block:: python

            import numpy as np
1351 1352 1353
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
1354

1355 1356 1357
            BATCH_SIZE = 16
            BATCH_NUM = 4
            EPOCH_NUM = 4
1358

1359 1360 1361 1362 1363 1364 1365
            IMAGE_SIZE = 784
            CLASS_NUM = 10

            # define a random dataset
            class RandomDataset(paddle.io.Dataset):
                def __init__(self, num_samples):
                    self.num_samples = num_samples
1366

1367 1368 1369 1370
                def __getitem__(self, idx):
                    image = np.random.random([IMAGE_SIZE]).astype('float32')
                    label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                    return image, label
1371

1372 1373
                def __len__(self):
                    return self.num_samples
1374

1375 1376
            class LinearNet(nn.Layer):
                def __init__(self):
1377
                    super(LinearNet, self).__init__()
1378
                    self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
1379

1380
                @paddle.jit.to_static
1381 1382 1383
                def forward(self, x):
                    return self._linear(x)

1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
            def train(layer, loader, loss_fn, opt):
                for epoch_id in range(EPOCH_NUM):
                    for batch_id, (image, label) in enumerate(loader()):
                        out = layer(image)
                        loss = loss_fn(out, label)
                        loss.backward()
                        opt.step()
                        opt.clear_grad()
                        print("Epoch {} batch {}: loss = {}".format(
                            epoch_id, batch_id, np.mean(loss.numpy())))

1395 1396
            # 1. train & save model.

1397 1398 1399 1400
            # create network
            layer = LinearNet()
            loss_fn = nn.CrossEntropyLoss()
            adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
1401

1402 1403 1404 1405 1406 1407 1408
            # create data loader
            dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
            loader = paddle.io.DataLoader(dataset,
                batch_size=BATCH_SIZE,
                shuffle=True,
                drop_last=True,
                num_workers=2)
1409

1410 1411
            # train
            train(layer, loader, loss_fn, adam)
1412

1413
            # save
1414
            model_path = "linear.example.model"
1415
            paddle.jit.save(layer, model_path)
1416 1417

            # 2. load model as TranslatedLayer
1418 1419 1420 1421

            # load
            translated_layer = paddle.jit.load(model_path)

1422 1423
            # inference
            translated_layer.eval()
1424
            x = paddle.randn([1, IMAGE_SIZE], 'float32')
1425
            pred = translated_layer(x)
1426

1427 1428
            # fine-tune
            translated_layer.train()
1429 1430
            adam = opt.Adam(learning_rate=0.001, parameters=translated_layer.parameters())
            train(translated_layer, loader, loss_fn, adam)
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442

    """

    def __init__(self, programs, persistable_vars):
        super(TranslatedLayer, self).__init__()

        if not isinstance(programs, dict):
            raise TypeError(
                "TranslatedLayer need to use _ProgramHolder's dict for initialization."
            )
        if not isinstance(persistable_vars, dict):
            raise TypeError(
1443
                "TranslatedLayer need to use persistable variable dict for initialization."
1444 1445 1446 1447
            )

        self._program_holder_dict = programs

1448 1449 1450 1451 1452 1453 1454 1455
        # NOTE(chenweihang): [ why not use var name directly? ]
        # When add parameter or buffer to Layer by follow apis,
        # the variable name can't contain `.`, beccause which may cause
        # AttributeError when access the newly added parameter or buffer
        # in the form of `self.**.**``, but the ParamBase or BarBase
        # name contains `.` originally, such as `linear_0.w_0`, so here
        # need to generate new var name for each var
        self._persistable_var_name_dict = dict()
1456 1457 1458
        # the TranslatedLayer object holded var names count started from 0
        with unique_name.guard():
            for name, var in persistable_vars.items():
1459 1460 1461
                if isinstance(
                    var, (framework.ParamBase, framework.EagerParamBase)
                ):
1462 1463 1464
                    dy_name = _generate_unique_var_name(PARAMETER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.add_parameter(dy_name, var)
1465
                elif isinstance(var, (core.VarBase, core.eager.Tensor)):
1466 1467 1468 1469 1470 1471 1472
                    dy_name = _generate_unique_var_name(BUFFER_NAME_PREFIX)
                    self._persistable_var_name_dict[name] = dy_name
                    self.register_buffer(dy_name, var)
                else:
                    raise TypeError(
                        "Adding persistent variable which  to layer is not supported now"
                    )
1473 1474

        self._is_test = True
W
WeiXin 已提交
1475
        self._input_args_names = None
1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492

    @staticmethod
    @framework.dygraph_only
    def _construct(model_path, configs=None):
        # 0. dir and filename check
        model_path = os.path.normpath(model_path)
        if not os.path.isdir(model_path):
            raise ValueError("There is no directory named '%s'" % model_path)
        model_filename = None
        params_filename = None
        if configs is not None:
            model_filename = configs.model_filename
            params_filename = configs.params_filename

        # 1. load program desc & construct _ProgramHolder
        programs = _construct_program_holders(model_path, model_filename)

1493
        # 2. load layer parameters & buffers
1494
        persistable_vars = _construct_params_and_buffers(
1495 1496
            model_path, programs, params_filename
        )
1497 1498 1499 1500 1501 1502

        # 3. construct TranslatedLayer object
        translated_layer = TranslatedLayer(programs, persistable_vars)

        # 4. create TranslatedLayer's execution method
        for method_name, program_holder in programs.items():
1503 1504 1505 1506
            if translated_layer._input_args_names is None:
                translated_layer._input_args_names = [
                    ins.name() for ins in program_holder.input_descs
                ]
1507
            setattr(
1508 1509
                TranslatedLayer,
                method_name,
1510
                TranslatedLayer._execution_method_creator(
1511 1512 1513
                    method_name, program_holder
                ),
            )
1514 1515 1516 1517 1518 1519 1520 1521

        # 5. set TranslatedLayer's default mode to eval
        translated_layer.eval()

        return translated_layer

    @staticmethod
    def _execution_method_creator(method_name, program_holder):
W
WeiXin 已提交
1522 1523 1524 1525
        def __i_m_p_l__(self, *input):
            program_holder = self._program_holder_dict[__i_m_p_l__.__name__]
            # When using jit.save, it runs in static graph mode.
            # Run in dynamic graph mode when the model is inferring.
J
Jiabin Yang 已提交
1526
            if _non_static_mode():
W
WeiXin 已提交
1527 1528 1529 1530 1531 1532 1533
                return _run_dygraph(self, input, program_holder)
            else:
                # NOTE(weixin): [ why not use 'program_holder.infer_program' directly? ]
                # When use '_run_static_graph(input, program_holder, program_holder.infer_program)',
                # because '_run_static_graph' modifies 'ProgramDesc', 'OpDesc.op_size()' will return a very large wrong number.
                # A Segmentation fault error may occur if used 'p=ProgramDesc(program_holder.infer_program)'.
                p = framework.Program._construct_from_desc(
1534 1535
                    core.ProgramDesc(program_holder.infer_program)
                )
W
WeiXin 已提交
1536 1537 1538 1539
                return _run_static_graph(input, program_holder, p.desc)

        __i_m_p_l__.__name__ = method_name
        return __i_m_p_l__
1540 1541 1542

    def train(self):
        self._is_test = False
1543
        self.training = True
1544 1545 1546

    def eval(self):
        self._is_test = True
1547
        self.training = False
1548 1549 1550 1551 1552 1553 1554 1555

    def program(self, method_name='forward'):
        """
        Gets translated program of specified method.

        Args:
            - method_name (string): mehtod name corresponding to the program
                to be obtained. Default: 'forward'.
1556

1557 1558 1559 1560 1561
        Returns:
            Program

        Examples:
            .. code-block:: python
1562

1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634
                import numpy as np
                import paddle
                import paddle.nn as nn
                import paddle.optimizer as opt

                BATCH_SIZE = 16
                BATCH_NUM = 4
                EPOCH_NUM = 4

                IMAGE_SIZE = 784
                CLASS_NUM = 10

                # define a random dataset
                class RandomDataset(paddle.io.Dataset):
                    def __init__(self, num_samples):
                        self.num_samples = num_samples

                    def __getitem__(self, idx):
                        image = np.random.random([IMAGE_SIZE]).astype('float32')
                        label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
                        return image, label

                    def __len__(self):
                        return self.num_samples

                class LinearNet(nn.Layer):
                    def __init__(self):
                        super(LinearNet, self).__init__()
                        self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)

                    @paddle.jit.to_static
                    def forward(self, x):
                        return self._linear(x)

                def train(layer, loader, loss_fn, opt):
                    for epoch_id in range(EPOCH_NUM):
                        for batch_id, (image, label) in enumerate(loader()):
                            out = layer(image)
                            loss = loss_fn(out, label)
                            loss.backward()
                            opt.step()
                            opt.clear_grad()
                            print("Epoch {} batch {}: loss = {}".format(
                                epoch_id, batch_id, np.mean(loss.numpy())))

                # create network
                layer = LinearNet()
                loss_fn = nn.CrossEntropyLoss()
                adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())

                # create data loader
                dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
                loader = paddle.io.DataLoader(dataset,
                    batch_size=BATCH_SIZE,
                    shuffle=True,
                    drop_last=True,
                    num_workers=2)

                # train
                train(layer, loader, loss_fn, adam)

                # save
                model_path = "linear.example.model"
                paddle.jit.save(layer, model_path)

                # load
                translated_layer = paddle.jit.load(model_path)

                # get program
                program = translated_layer.program()
        """
        # 1. get program holder
1635
        program_holder = self._get_program_holder(method_name)
1636 1637 1638 1639 1640 1641 1642

        # 2. get inference program desc
        program_desc = program_holder.infer_program

        # 3. construct program
        program = _build_program_by_desc(program_desc)
        return program
1643 1644 1645 1646 1647

    def _get_program_holder(self, method_name='forward'):
        program_holder = self._program_holder_dict.get(method_name, None)
        if program_holder is None:
            raise ValueError(
1648 1649 1650
                "The method `%s` does not exist in loaded TranslatedLayer."
                % method_name
            )
1651 1652 1653 1654 1655 1656 1657 1658 1659
        return program_holder

    def _input_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build input spec by input desc
        input_spec = []
        for var_desc in program_holder.input_descs:
1660 1661 1662 1663 1664
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675
            input_spec.append(spec)

        return input_spec

    def _output_spec(self, method_name='forward'):
        # 1. get program holder
        program_holder = self._get_program_holder(method_name)

        # 2. build output spec by output desc
        output_spec = []
        for var_desc in program_holder.output_descs:
1676 1677
            # NOTE(chenweihang): InputSpec describes a tensor, not just input.
            # Maybe the name is not good enough. Here we use InputSpec to
1678
            # construct the description of Output tensor
1679 1680 1681 1682 1683
            spec = paddle.static.InputSpec(
                shape=var_desc.shape(),
                dtype=var_desc.dtype(),
                name=var_desc.name(),
            )
1684 1685 1686
            output_spec.append(spec)

        return output_spec