test_var_base.py 62.6 KB
Newer Older
L
Leo Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import copy
L
Leo Chen 已提交
16
import unittest
17

18 19
import numpy as np

20
import paddle
21
import paddle.nn.functional as F
22 23
from paddle import base
from paddle.base import core
L
Leo Chen 已提交
24 25 26 27 28 29 30 31


class TestVarBase(unittest.TestCase):
    def setUp(self):
        self.shape = [512, 1234]
        self.dtype = np.float32
        self.array = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)

32
    def test_to_tensor(self):
33
        def check_with_place(place):
34
            with base.dygraph.guard():
35
                paddle.set_default_dtype('float32')
36
                # set_default_dtype should not take effect on int
37
                x = paddle.to_tensor(1, place=place, stop_gradient=False)
38
                np.testing.assert_array_equal(x.numpy(), [1])
39 40
                self.assertNotEqual(x.dtype, core.VarDesc.VarType.FP32)

41 42 43
                y = paddle.to_tensor(2, place=x.place)
                self.assertEqual(str(x.place), str(y.place))

44
                # set_default_dtype should not take effect on numpy
45 46 47 48 49 50 51 52
                x = paddle.to_tensor(
                    np.array([1.2]).astype('float16'),
                    place=place,
                    stop_gradient=False,
                )
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2], 'float16')
                )
53 54
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP16)

55 56 57 58
                # set_default_dtype take effect on int
                x = paddle.to_tensor(1, place=place)
                self.assertTrue(x.dtype, core.VarDesc.VarType.INT64)

59
                # set_default_dtype take effect on float
60
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
61 62 63
                np.testing.assert_array_equal(
                    x.numpy(), np.array([1.2]).astype('float32')
                )
64
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
Z
Zhou Wei 已提交
65
                clone_x = x.clone()
66 67 68
                np.testing.assert_array_equal(
                    clone_x.numpy(), np.array([1.2]).astype('float32')
                )
Z
Zhou Wei 已提交
69 70 71
                self.assertEqual(clone_x.dtype, core.VarDesc.VarType.FP32)
                y = clone_x**2
                y.backward()
72 73 74
                np.testing.assert_array_equal(
                    x.grad.numpy(), np.array([2.4]).astype('float32')
                )
75
                y = x.cpu()
76
                self.assertEqual(y.place.__repr__(), "Place(cpu)")
77 78
                if core.is_compiled_with_cuda():
                    y = x.pin_memory()
79
                    self.assertEqual(y.place.__repr__(), "Place(gpu_pinned)")
80
                    y = x.cuda()
81
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
82
                    y = x.cuda(None)
83
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
84
                    y = x.cuda(device_id=0)
85
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
86
                    y = x.cuda(blocking=False)
87
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
88
                    y = x.cuda(blocking=True)
89
                    self.assertEqual(y.place.__repr__(), "Place(gpu:0)")
90 91
                    with self.assertRaises(ValueError):
                        y = x.cuda("test")
92

93 94 95 96 97
                # support 'dtype' is core.VarType
                x = paddle.rand((2, 2))
                y = paddle.to_tensor([2, 2], dtype=x.dtype)
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP32)

98
                # set_default_dtype take effect on complex
99
                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
100
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
101
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX64)
102 103 104

                paddle.set_default_dtype('float64')
                x = paddle.to_tensor(1.2, place=place, stop_gradient=False)
105
                np.testing.assert_array_equal(x.numpy(), [1.2])
106 107 108
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP64)

                x = paddle.to_tensor(1 + 2j, place=place, stop_gradient=False)
109
                np.testing.assert_array_equal(x.numpy(), [1 + 2j])
C
chentianyu03 已提交
110
                self.assertEqual(x.dtype, core.VarDesc.VarType.COMPLEX128)
111

112 113 114
                x = paddle.to_tensor(
                    1, dtype='float32', place=place, stop_gradient=False
                )
115
                np.testing.assert_array_equal(x.numpy(), [1.0])
116
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
117
                self.assertEqual(x.shape, [])
118 119 120
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

121 122 123 124 125 126
                x = paddle.to_tensor(
                    (1, 2), dtype='float32', place=place, stop_gradient=False
                )
                x = paddle.to_tensor(
                    [1, 2], dtype='float32', place=place, stop_gradient=False
                )
127
                np.testing.assert_array_equal(x.numpy(), [1.0, 2.0])
128
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
129
                self.assertIsNone(x.grad)
130 131 132 133
                self.assertEqual(x.shape, [2])
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

134 135 136 137 138 139
                x = paddle.to_tensor(
                    self.array,
                    dtype='float32',
                    place=place,
                    stop_gradient=False,
                )
140
                np.testing.assert_array_equal(x.numpy(), self.array)
141 142 143 144 145 146 147
                self.assertEqual(x.dtype, core.VarDesc.VarType.FP32)
                self.assertEqual(x.shape, self.shape)
                self.assertEqual(x.stop_gradient, False)
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

                y = paddle.to_tensor(x)
                y = paddle.to_tensor(y, dtype='float64', place=place)
148
                np.testing.assert_array_equal(y.numpy(), self.array)
149 150 151 152 153
                self.assertEqual(y.dtype, core.VarDesc.VarType.FP64)
                self.assertEqual(y.shape, self.shape)
                self.assertEqual(y.stop_gradient, True)
                self.assertEqual(y.type, core.VarDesc.VarType.LOD_TENSOR)
                z = x + y
154
                np.testing.assert_array_equal(z.numpy(), 2 * self.array)
155

156 157 158
                x = paddle.to_tensor(
                    [1 + 2j, 1 - 2j], dtype='complex64', place=place
                )
159
                y = paddle.to_tensor(x)
160
                np.testing.assert_array_equal(x.numpy(), [1 + 2j, 1 - 2j])
C
chentianyu03 已提交
161
                self.assertEqual(y.dtype, core.VarDesc.VarType.COMPLEX64)
162 163
                self.assertEqual(y.shape, [2])

164 165 166 167 168
                paddle.set_default_dtype('float32')
                x = paddle.randn([3, 4])
                x_array = np.array(x)
                self.assertEqual(x_array.shape, x.numpy().shape)
                self.assertEqual(x_array.dtype, x.numpy().dtype)
169
                np.testing.assert_array_equal(x_array, x.numpy())
170

171
                x = paddle.to_tensor(1.0, place=place)
172 173 174 175 176 177 178
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.randn([3, 2, 2])
                self.assertTrue(isinstance(x.item(5), float))
                self.assertTrue(isinstance(x.item(1, 0, 1), float))
                self.assertEqual(x.item(5), x.item(1, 0, 1))
179 180 181
                np.testing.assert_array_equal(
                    x.item(1, 0, 1), x.numpy().item(1, 0, 1)
                )
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

                x = paddle.to_tensor([[1.111111, 2.222222, 3.333333]])
                self.assertEqual(x.item(0, 2), x.item(2))
                self.assertAlmostEqual(x.item(2), 3.333333)
                self.assertTrue(isinstance(x.item(0, 2), float))

                x = paddle.to_tensor(1.0, dtype='float64')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1.0, dtype='float16')
                self.assertEqual(x.item(), 1.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor(1, dtype='uint8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int8')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int16')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int32')
                self.assertEqual(x.item(), 1)
                self.assertTrue(isinstance(x.item(), int))

                x = paddle.to_tensor(1, dtype='int64')
                self.assertEqual(x.item(), 1)
T
tianshuo78520a 已提交
214
                self.assertTrue(isinstance(x.item(), int))
215 216 217 218 219 220 221 222 223

                x = paddle.to_tensor(True)
                self.assertEqual(x.item(), True)
                self.assertTrue(isinstance(x.item(), bool))

                x = paddle.to_tensor(1 + 1j)
                self.assertEqual(x.item(), 1 + 1j)
                self.assertTrue(isinstance(x.item(), complex))

224 225 226 227 228
                # empty tensor
                x = paddle.to_tensor([])
                self.assertEqual(x.shape, [0])
                expected_result = np.array([], dtype='float32')
                self.assertEqual(x.numpy().shape, expected_result.shape)
229
                np.testing.assert_array_equal(x.numpy(), expected_result)
230

231 232
                numpy_array = np.random.randn(3, 4)
                # covert core.LoDTensor to paddle.Tensor
233 234
                lod_tensor = paddle.base.core.LoDTensor()
                place = paddle.base.framework._current_expected_place()
235 236
                lod_tensor.set(numpy_array, place)
                x = paddle.to_tensor(lod_tensor)
237
                np.testing.assert_array_equal(x.numpy(), numpy_array)
238 239 240 241 242 243
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)
                self.assertEqual(str(x.place), str(place))

                # covert core.Tensor to paddle.Tensor
                x = paddle.to_tensor(numpy_array)
                dlpack = x.value().get_tensor()._to_dlpack()
244
                tensor_from_dlpack = paddle.base.core.from_dlpack(dlpack)
245
                x = paddle.to_tensor(tensor_from_dlpack)
246
                np.testing.assert_array_equal(x.numpy(), numpy_array)
247 248
                self.assertEqual(x.type, core.VarDesc.VarType.LOD_TENSOR)

249
                # test dtype=bfloat16
250 251 252
                x = paddle.to_tensor(-1e6, dtype=paddle.bfloat16)
                self.assertEqual(x.dtype, core.VarDesc.VarType.BF16)
                self.assertTrue(x == -999424.0)
253 254
                self.assertTrue(x.item() == -999424.0)
                self.assertTrue(isinstance(x.item(), float))
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270

                x = paddle.to_tensor([-1e6, -1e6, -1e6], dtype='bfloat16')
                self.assertEqual(x.dtype, core.VarDesc.VarType.BF16)
                self.assertTrue(x[0] == -999424.0)
                self.assertTrue(x[1] == -999424.0)
                self.assertTrue(x[2] == -999424.0)

                x = paddle.to_tensor(
                    -1e6, dtype=paddle.bfloat16, stop_gradient=False
                )
                self.assertEqual(x.dtype, core.VarDesc.VarType.BF16)
                self.assertTrue(x == -999424.0)
                y = x * x
                y.backward()
                self.assertTrue(x.grad == -999424.0 * 2)

271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
                # test default_type=bfloat16
                paddle.set_default_dtype('bfloat16')
                x = paddle.to_tensor(-1e6)
                self.assertEqual(x.dtype, core.VarDesc.VarType.BF16)
                self.assertTrue(x == -999424.0)
                self.assertTrue(x.item() == -999424.0)
                self.assertTrue(isinstance(x.item(), float))

                x = paddle.to_tensor([-1e6, -1e6, -1e6])
                self.assertEqual(x.dtype, core.VarDesc.VarType.BF16)
                self.assertTrue(x[0] == -999424.0)
                self.assertTrue(x[1] == -999424.0)
                self.assertTrue(x[2] == -999424.0)

                x = paddle.to_tensor(-1e6, stop_gradient=False)
                self.assertEqual(x.dtype, core.VarDesc.VarType.BF16)
                self.assertTrue(x == -999424.0)
                y = x * x
                y.backward()
                self.assertTrue(x.grad == -999424.0 * 2)
                paddle.set_default_dtype('float32')

293 294 295 296 297 298 299 300
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item()
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(18)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(1, 2)
                with self.assertRaises(ValueError):
                    paddle.randn([3, 2, 2]).item(2, 1, 2)
301 302 303 304 305 306 307 308 309 310 311
                with self.assertRaises(TypeError):
                    paddle.to_tensor('test')
                with self.assertRaises(TypeError):
                    paddle.to_tensor(1, dtype='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]])
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place='test')
                with self.assertRaises(ValueError):
                    paddle.to_tensor([[1], [2, 3]], place=1)

312 313
        check_with_place(core.CPUPlace())
        check_with_place("cpu")
314
        if core.is_compiled_with_cuda():
315 316 317 318
            check_with_place(core.CUDAPinnedPlace())
            check_with_place("gpu_pinned")
            check_with_place(core.CUDAPlace(0))
            check_with_place("gpu:0")
319

320
    def test_to_tensor_not_change_input_stop_gradient(self):
321
        with paddle.base.dygraph.guard(core.CPUPlace()):
322 323 324 325 326 327
            a = paddle.zeros([1024])
            a.stop_gradient = False
            b = paddle.to_tensor(a)
            self.assertEqual(a.stop_gradient, False)
            self.assertEqual(b.stop_gradient, True)

328
    def test_to_tensor_change_place(self):
329 330
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
331
            with paddle.base.dygraph.guard(core.CPUPlace()):
332 333
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
334
                self.assertEqual(a.place.__repr__(), "Place(cpu)")
335

336
            with paddle.base.dygraph.guard(core.CUDAPlace(0)):
337 338
                a = paddle.to_tensor(a_np, place=paddle.CUDAPinnedPlace())
                a = paddle.to_tensor(a)
339
                self.assertEqual(a.place.__repr__(), "Place(gpu:0)")
340

341
            with paddle.base.dygraph.guard(core.CUDAPlace(0)):
342 343
                a = paddle.to_tensor(a_np, place=paddle.CPUPlace())
                a = paddle.to_tensor(a, place=paddle.CUDAPinnedPlace())
344
                self.assertEqual(a.place.__repr__(), "Place(gpu_pinned)")
345

346
    def test_to_tensor_with_lodtensor(self):
347 348
        if core.is_compiled_with_cuda():
            a_np = np.random.rand(1024, 1024)
349
            with paddle.base.dygraph.guard(core.CPUPlace()):
350 351 352
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CPUPlace())
                a = paddle.to_tensor(lod_tensor)
353
                np.testing.assert_array_equal(a_np, a.numpy())
354

355
            with paddle.base.dygraph.guard(core.CUDAPlace(0)):
356 357
                lod_tensor = core.LoDTensor()
                lod_tensor.set(a_np, core.CUDAPlace(0))
358
                a = paddle.to_tensor(lod_tensor, place=core.CPUPlace())
359
                np.testing.assert_array_equal(a_np, a.numpy())
360
                self.assertTrue(a.place.__repr__(), "Place(cpu)")
361

362
    def test_to_variable(self):
363 364
        with base.dygraph.guard():
            var = base.dygraph.to_variable(self.array, name="abc")
365
            np.testing.assert_array_equal(var.numpy(), self.array)
L
Leo Chen 已提交
366 367 368 369 370 371 372
            self.assertEqual(var.name, 'abc')
            # default value
            self.assertEqual(var.persistable, False)
            self.assertEqual(var.stop_gradient, True)
            self.assertEqual(var.shape, self.shape)
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)
373 374
            # The type of input must be 'ndarray' or 'Variable', it will raise TypeError
            with self.assertRaises(TypeError):
375
                var = base.dygraph.to_variable("test", name="abc")
376 377
            # test to_variable of LayerObjectHelper(LayerHelperBase)
            with self.assertRaises(TypeError):
378
                linear = paddle.nn.Linear(32, 64)
379
                var = linear._helper.to_variable("test", name="abc")
L
Leo Chen 已提交
380

381
    def test_list_to_variable(self):
382
        with base.dygraph.guard():
383
            array = [[[1, 2], [1, 2], [1.0, 2]], [[1, 2], [1, 2], [1, 2]]]
384
            var = base.dygraph.to_variable(array, dtype='int32')
385
            np.testing.assert_array_equal(var.numpy(), array)
386 387 388 389
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.INT32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

390
    def test_tuple_to_variable(self):
391
        with base.dygraph.guard():
392
            array = (((1, 2), (1, 2), (1, 2)), ((1, 2), (1, 2), (1, 2)))
393
            var = base.dygraph.to_variable(array, dtype='float32')
394
            np.testing.assert_array_equal(var.numpy(), array)
395 396 397 398
            self.assertEqual(var.shape, [2, 3, 2])
            self.assertEqual(var.dtype, core.VarDesc.VarType.FP32)
            self.assertEqual(var.type, core.VarDesc.VarType.LOD_TENSOR)

399
    def test_tensor_to_variable(self):
400 401 402 403
        with base.dygraph.guard():
            t = base.Tensor()
            t.set(np.random.random((1024, 1024)), base.CPUPlace())
            var = base.dygraph.to_variable(t)
404
            np.testing.assert_array_equal(t, var.numpy())
405

406
    def test_leaf_tensor(self):
407
        with base.dygraph.guard():
408 409 410 411 412
            x = paddle.to_tensor(np.random.uniform(-1, 1, size=[10, 10]))
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertTrue(y.is_leaf)

413 414 415
            x = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]), stop_gradient=False
            )
416 417 418 419 420
            self.assertTrue(x.is_leaf)
            y = x + 1
            self.assertFalse(y.is_leaf)

            linear = paddle.nn.Linear(10, 10)
421 422 423 424
            input = paddle.to_tensor(
                np.random.uniform(-1, 1, size=[10, 10]).astype('float32'),
                stop_gradient=False,
            )
425 426 427 428 429 430 431
            self.assertTrue(input.is_leaf)

            out = linear(input)
            self.assertTrue(linear.weight.is_leaf)
            self.assertTrue(linear.bias.is_leaf)
            self.assertFalse(out.is_leaf)

432
    def test_detach(self):
433
        with base.dygraph.guard():
434
            x = paddle.to_tensor([1.0], dtype="float64", stop_gradient=False)
Z
Zhou Wei 已提交
435 436 437
            detach_x = x.detach()
            self.assertTrue(detach_x.stop_gradient, True)

438 439 440
            cmp_float = (
                np.allclose if core.is_compiled_with_rocm() else np.array_equal
            )
Z
Zhou Wei 已提交
441
            detach_x[:] = 10.0
Z
zhulei 已提交
442
            self.assertTrue(cmp_float(x.numpy(), [10.0]))
Z
Zhou Wei 已提交
443 444 445

            y = x**2
            y.backward()
Z
zhulei 已提交
446
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
447
            self.assertIsNone(detach_x.grad)
Z
Zhou Wei 已提交
448

449 450 451
            detach_x.stop_gradient = (
                False  # Set stop_gradient to be False, supported auto-grad
            )
Z
Zhou Wei 已提交
452 453
            z = 3 * detach_x**2
            z.backward()
Z
zhulei 已提交
454 455
            self.assertTrue(cmp_float(x.grad.numpy(), [20.0]))
            self.assertTrue(cmp_float(detach_x.grad.numpy(), [60.0]))
456

457 458 459 460 461
            with self.assertRaises(ValueError):
                detach_x[:] = 5.0

            detach_x.stop_gradient = True

Z
Zhou Wei 已提交
462
            # Due to sharing of data with origin Tensor, There are some unsafe operations:
463 464 465 466
            with self.assertRaises(RuntimeError):
                y = 2**x
                detach_x[:] = 5.0
                y.backward()
Z
Zhou Wei 已提交
467

468
    def test_write_property(self):
469 470
        with base.dygraph.guard():
            var = base.dygraph.to_variable(self.array)
L
Leo Chen 已提交
471

472
            self.assertEqual(var.name, 'generated_tensor_0')
L
Leo Chen 已提交
473 474 475 476 477 478 479 480 481 482 483
            var.name = 'test'
            self.assertEqual(var.name, 'test')

            self.assertEqual(var.persistable, False)
            var.persistable = True
            self.assertEqual(var.persistable, True)

            self.assertEqual(var.stop_gradient, True)
            var.stop_gradient = False
            self.assertEqual(var.stop_gradient, False)

484
    def test_deep_copy(self):
485
        with base.dygraph.guard():
姜永久 已提交
486
            empty_var = core.eager.Tensor()
487
            empty_var_copy = copy.deepcopy(empty_var)
488 489 490
            self.assertEqual(
                empty_var.stop_gradient, empty_var_copy.stop_gradient
            )
491 492 493 494
            self.assertEqual(empty_var.persistable, empty_var_copy.persistable)
            self.assertEqual(empty_var.type, empty_var_copy.type)
            self.assertEqual(empty_var.dtype, empty_var_copy.dtype)

495 496
            x = paddle.to_tensor([2.0], stop_gradient=False)
            y = paddle.to_tensor([3.0], stop_gradient=False)
497 498 499 500 501 502 503 504 505
            z = x * y
            memo = {}
            x_copy = copy.deepcopy(x, memo)
            y_copy = copy.deepcopy(y, memo)

            self.assertEqual(x_copy.stop_gradient, y_copy.stop_gradient)
            self.assertEqual(x_copy.persistable, y_copy.persistable)
            self.assertEqual(x_copy.type, y_copy.type)
            self.assertEqual(x_copy.dtype, y_copy.dtype)
506 507
            np.testing.assert_array_equal(x.numpy(), x_copy.numpy())
            np.testing.assert_array_equal(y.numpy(), y_copy.numpy())
508 509

            self.assertNotEqual(id(x), id(x_copy))
510
            np.testing.assert_array_equal(x.numpy(), [2.0])
511

512
            with self.assertRaises(ValueError):
513
                x_copy[:] = 5.0
514

515 516 517 518 519 520 521 522 523
            with self.assertRaises(RuntimeError):
                copy.deepcopy(z)

            x_copy2 = copy.deepcopy(x, memo)
            y_copy2 = copy.deepcopy(y, memo)
            self.assertEqual(id(x_copy), id(x_copy2))
            self.assertEqual(id(y_copy), id(y_copy2))

            # test copy selected rows
姜永久 已提交
524 525 526 527 528 529 530
            x = core.eager.Tensor(
                core.VarDesc.VarType.FP32,
                [3, 100],
                "selected_rows",
                core.VarDesc.VarType.SELECTED_ROWS,
                True,
            )
531

532
            selected_rows = x.value().get_selected_rows()
533 534 535
            selected_rows.get_tensor().set(
                np.random.rand(3, 100), core.CPUPlace()
            )
536 537 538 539 540 541 542 543 544 545
            selected_rows.set_height(10)
            selected_rows.set_rows([3, 5, 7])
            x_copy = copy.deepcopy(x)

            self.assertEqual(x_copy.stop_gradient, x.stop_gradient)
            self.assertEqual(x_copy.persistable, x.persistable)
            self.assertEqual(x_copy.type, x.type)
            self.assertEqual(x_copy.dtype, x.dtype)

            copy_selected_rows = x_copy.value().get_selected_rows()
546 547 548
            self.assertEqual(
                copy_selected_rows.height(), selected_rows.height()
            )
549
            self.assertEqual(copy_selected_rows.rows(), selected_rows.rows())
550 551
            np.testing.assert_array_equal(
                np.array(copy_selected_rows.get_tensor()),
552 553
                np.array(selected_rows.get_tensor()),
            )
554

L
Leo Chen 已提交
555
    # test some patched methods
556
    def test_set_value(self):
557 558
        with base.dygraph.guard():
            var = base.dygraph.to_variable(self.array)
L
Leo Chen 已提交
559 560 561 562 563
            tmp1 = np.random.uniform(0.1, 1, [2, 2, 3]).astype(self.dtype)
            self.assertRaises(AssertionError, var.set_value, tmp1)

            tmp2 = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
            var.set_value(tmp2)
564
            np.testing.assert_array_equal(var.numpy(), tmp2)
L
Leo Chen 已提交
565

566
    def test_to_string(self):
567 568
        with base.dygraph.guard():
            var = base.dygraph.to_variable(self.array)
569
            self.assertTrue(isinstance(str(var), str))
L
Leo Chen 已提交
570

571
    def test_element_size(self):
572
        with base.dygraph.guard():
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
            x = paddle.to_tensor(1, dtype='bool')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='float16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='float32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='float64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='int8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='int16')
            self.assertEqual(x.element_size(), 2)

            x = paddle.to_tensor(1, dtype='int32')
            self.assertEqual(x.element_size(), 4)

            x = paddle.to_tensor(1, dtype='int64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='uint8')
            self.assertEqual(x.element_size(), 1)

            x = paddle.to_tensor(1, dtype='complex64')
            self.assertEqual(x.element_size(), 8)

            x = paddle.to_tensor(1, dtype='complex128')
            self.assertEqual(x.element_size(), 16)

606
    def test_backward(self):
607 608
        with base.dygraph.guard():
            var = base.dygraph.to_variable(self.array)
L
Leo Chen 已提交
609
            var.stop_gradient = False
610
            loss = F.relu(var)
L
Leo Chen 已提交
611 612 613 614
            loss.backward()
            grad_var = var._grad_ivar()
            self.assertEqual(grad_var.shape, self.shape)

615
    def test_gradient(self):
616 617
        with base.dygraph.guard():
            var = base.dygraph.to_variable(self.array)
L
Leo Chen 已提交
618
            var.stop_gradient = False
619
            loss = F.relu(var)
L
Leo Chen 已提交
620 621 622 623
            loss.backward()
            grad_var = var.gradient()
            self.assertEqual(grad_var.shape, self.array.shape)

624
    def test_block(self):
625 626
        with base.dygraph.guard():
            var = base.dygraph.to_variable(self.array)
627
            self.assertEqual(
628
                var.block, base.default_main_program().global_block()
629
            )
L
Leo Chen 已提交
630

631
    def _test_slice(self):
632
        w = base.dygraph.to_variable(
633 634
            np.random.random((784, 100, 100)).astype('float64')
        )
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650

        for i in range(3):
            nw = w[i]
            self.assertEqual((100, 100), tuple(nw.shape))

        nw = w[:]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :]
        self.assertEqual((784, 100, 100), tuple(nw.shape))

        nw = w[:, :, -1]
        self.assertEqual((784, 100), tuple(nw.shape))

        nw = w[1, 1, 1]

651
        self.assertEqual(len(nw.shape), 0)
652 653 654 655

        nw = w[:, :, :-1]
        self.assertEqual((784, 100, 99), tuple(nw.shape))

656 657 658 659 660 661 662
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
663
        var = base.dygraph.to_variable(tensor_array)
664 665 666 667 668
        var1 = var[0, 1, 1]
        var2 = var[1:]
        var3 = var[0:1]
        var4 = var[::-1]
        var5 = var[1, 1:, 1:]
669
        var_reshape = paddle.reshape(var, [3, -1, 3])
670 671 672 673 674 675 676 677 678 679
        var6 = var_reshape[:, :, -1]
        var7 = var[:, :, :-1]
        var8 = var[:1, :1, :1]
        var9 = var[:-1, :-1, :-1]
        var10 = var[::-1, :1, :-1]
        var11 = var[:-1, ::-1, -1:]
        var12 = var[1:2, 2:, ::-1]
        var13 = var[2:10, 2:, -2:-1]
        var14 = var[1:-1, 0:2, ::-1]
        var15 = var[::-1, ::-1, ::-1]
680
        var16 = var[-4:4]
681 682
        var17 = var[:, 0, 0:0]
        var18 = var[:, 1:1:2]
683 684

        vars = [
685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
            var17,
            var18,
704 705 706
        ]
        local_out = [var.numpy() for var in vars]

707 708 709 710 711 712
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
713 714
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
715 716 717
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
736 737 738
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
        np.testing.assert_array_equal(local_out[17], tensor_array[:, 0, 0:0])
        np.testing.assert_array_equal(local_out[18], tensor_array[:, 1:1:2])
739

740
    def _test_slice_for_tensor_attr(self):
741 742 743 744 745 746 747
        tensor_array = np.array(
            [
                [[1, 2, 3], [4, 5, 6], [7, 8, 9]],
                [[10, 11, 12], [13, 14, 15], [16, 17, 18]],
                [[19, 20, 21], [22, 23, 24], [25, 26, 27]],
            ]
        ).astype('float32')
748 749 750

        var = paddle.to_tensor(tensor_array)

751 752 753 754
        one = paddle.ones(shape=[], dtype="int32")
        two = paddle.full(shape=[], fill_value=2, dtype="int32")
        negative_one = paddle.full(shape=[], fill_value=-1, dtype="int32")
        four = paddle.full(shape=[], fill_value=4, dtype="int32")
755

756
        var = base.dygraph.to_variable(tensor_array)
757 758 759 760 761
        var1 = var[0, one, one]
        var2 = var[one:]
        var3 = var[0:one]
        var4 = var[::negative_one]
        var5 = var[one, one:, one:]
762
        var_reshape = paddle.reshape(var, [3, negative_one, 3])
763 764 765 766 767 768 769 770 771 772 773 774 775
        var6 = var_reshape[:, :, negative_one]
        var7 = var[:, :, :negative_one]
        var8 = var[:one, :one, :1]
        var9 = var[:-1, :negative_one, :negative_one]
        var10 = var[::negative_one, :one, :negative_one]
        var11 = var[:negative_one, ::-1, negative_one:]
        var12 = var[one:2, 2:, ::negative_one]
        var13 = var[two:10, 2:, -2:negative_one]
        var14 = var[1:negative_one, 0:2, ::negative_one]
        var15 = var[::negative_one, ::-1, ::negative_one]
        var16 = var[-4:4]

        vars = [
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
            var,
            var1,
            var2,
            var3,
            var4,
            var5,
            var6,
            var7,
            var8,
            var9,
            var10,
            var11,
            var12,
            var13,
            var14,
            var15,
            var16,
793 794 795
        ]
        local_out = [var.numpy() for var in vars]

796 797 798 799 800 801
        np.testing.assert_array_equal(local_out[1], tensor_array[0, 1, 1:2])
        np.testing.assert_array_equal(local_out[2], tensor_array[1:])
        np.testing.assert_array_equal(local_out[3], tensor_array[0:1])
        np.testing.assert_array_equal(local_out[4], tensor_array[::-1])
        np.testing.assert_array_equal(local_out[5], tensor_array[1, 1:, 1:])
        np.testing.assert_array_equal(
802 803
            local_out[6], tensor_array.reshape((3, -1, 3))[:, :, -1]
        )
804 805 806
        np.testing.assert_array_equal(local_out[7], tensor_array[:, :, :-1])
        np.testing.assert_array_equal(local_out[8], tensor_array[:1, :1, :1])
        np.testing.assert_array_equal(local_out[9], tensor_array[:-1, :-1, :-1])
807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
        np.testing.assert_array_equal(
            local_out[10], tensor_array[::-1, :1, :-1]
        )
        np.testing.assert_array_equal(
            local_out[11], tensor_array[:-1, ::-1, -1:]
        )
        np.testing.assert_array_equal(
            local_out[12], tensor_array[1:2, 2:, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[13], tensor_array[2:10, 2:, -2:-1]
        )
        np.testing.assert_array_equal(
            local_out[14], tensor_array[1:-1, 0:2, ::-1]
        )
        np.testing.assert_array_equal(
            local_out[15], tensor_array[::-1, ::-1, ::-1]
        )
825
        np.testing.assert_array_equal(local_out[16], tensor_array[-4:4])
826

827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847
    def _test_for_getitem_ellipsis_index(self):
        shape = (64, 3, 5, 256)
        np_fp32_value = np.random.random(shape).astype('float32')
        np_int_value = np.random.randint(1, 100, shape)

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        def assert_getitem_ellipsis_index(var_tensor, var_np):
            var = [
                var_tensor[..., 0].numpy(),
                var_tensor[..., 1, 0].numpy(),
                var_tensor[0, ..., 1, 0].numpy(),
                var_tensor[1, ..., 1].numpy(),
                var_tensor[2, ...].numpy(),
                var_tensor[2, 0, ...].numpy(),
                var_tensor[2, 0, 1, ...].numpy(),
                var_tensor[...].numpy(),
                var_tensor[:, ..., 100].numpy(),
            ]

848 849 850 851 852 853 854 855 856
            np.testing.assert_array_equal(var[0], var_np[..., 0])
            np.testing.assert_array_equal(var[1], var_np[..., 1, 0])
            np.testing.assert_array_equal(var[2], var_np[0, ..., 1, 0])
            np.testing.assert_array_equal(var[3], var_np[1, ..., 1])
            np.testing.assert_array_equal(var[4], var_np[2, ...])
            np.testing.assert_array_equal(var[5], var_np[2, 0, ...])
            np.testing.assert_array_equal(var[6], var_np[2, 0, 1, ...])
            np.testing.assert_array_equal(var[7], var_np[...])
            np.testing.assert_array_equal(var[8], var_np[:, ..., 100])
857 858 859 860 861 862 863

        var_fp32 = paddle.to_tensor(np_fp32_value)
        var_int = paddle.to_tensor(np_int_value)

        assert_getitem_ellipsis_index(var_fp32, np_fp32_value)
        assert_getitem_ellipsis_index(var_int, np_int_value)

864 865
        # test 1 dim tensor
        var_one_dim = paddle.to_tensor([1, 2, 3, 4])
866 867 868
        np.testing.assert_array_equal(
            var_one_dim[..., 0].numpy(), np.array([1])
        )
869

870 871 872 873 874 875 876 877 878 879 880 881 882 883 884
    def _test_none_index(self):
        shape = (8, 64, 5, 256)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)

        var = [
            var_tensor[1, 0, None].numpy(),
            var_tensor[None, ..., 1, 0].numpy(),
            var_tensor[:, :, :, None].numpy(),
            var_tensor[1, ..., 1, None].numpy(),
            var_tensor[2, ..., None, None].numpy(),
            var_tensor[None, 2, 0, ...].numpy(),
            var_tensor[None, 2, None, 1].numpy(),
            var_tensor[None].numpy(),
            var_tensor[0, 0, None, 0, 0, None].numpy(),
885
            var_tensor[None, None, 0, ..., None].numpy(),
886
            var_tensor[..., None, :, None].numpy(),
887 888 889
            var_tensor[0, 1:10:2, None, None, ...].numpy(),
        ]

890 891 892 893 894 895 896 897 898
        np.testing.assert_array_equal(var[0], np_value[1, 0, None])
        np.testing.assert_array_equal(var[1], np_value[None, ..., 1, 0])
        np.testing.assert_array_equal(var[2], np_value[:, :, :, None])
        np.testing.assert_array_equal(var[3], np_value[1, ..., 1, None])
        np.testing.assert_array_equal(var[4], np_value[2, ..., None, None])
        np.testing.assert_array_equal(var[5], np_value[None, 2, 0, ...])
        np.testing.assert_array_equal(var[6], np_value[None, 2, None, 1])
        np.testing.assert_array_equal(var[7], np_value[None])
        np.testing.assert_array_equal(var[8], np_value[0, 0, None, 0, 0, None])
899 900 901
        np.testing.assert_array_equal(
            var[9], np_value[None, None, 0, ..., None]
        )
902
        np.testing.assert_array_equal(var[10], np_value[..., None, :, None])
903

904 905
        # TODO(zyfncg) there is a bug of dimensions when slice step > 1 and
        #              indexs has int type
906
        # self.assertTrue(
907
        #     np.array_equal(var[11], np_value[0, 1:10:2, None, None, ...]))
908

Z
zyfncg 已提交
909 910 911 912
    def _test_bool_index(self):
        shape = (4, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
913 914 915 916 917 918 919 920 921 922
        index = [
            [True, True, True, True],
            [True, False, True, True],
            [True, False, False, True],
            [False, 0, 1, True, True],
            [False, False, False, False],
        ]
        index2d = np.array(
            [[True, True], [False, False], [True, False], [True, True]]
        )
Z
zyfncg 已提交
923 924
        tensor_index = paddle.to_tensor(index2d)
        var = [
925 926 927 928
            var_tensor[index[0]].numpy(),
            var_tensor[index[1]].numpy(),
            var_tensor[index[2]].numpy(),
            var_tensor[index[3]].numpy(),
Z
zyfncg 已提交
929 930
            var_tensor[paddle.to_tensor(index[0])].numpy(),
            var_tensor[tensor_index].numpy(),
931
            var_tensor[paddle.to_tensor(index[4])].numpy(),
Z
zyfncg 已提交
932
        ]
933 934 935 936 937 938 939
        np.testing.assert_array_equal(var[0], np_value[index[0]])
        np.testing.assert_array_equal(var[1], np_value[index[1]])
        np.testing.assert_array_equal(var[2], np_value[index[2]])
        np.testing.assert_array_equal(var[3], np_value[index[3]])
        np.testing.assert_array_equal(var[4], np_value[index[0]])
        np.testing.assert_array_equal(var[5], np_value[index2d])
        np.testing.assert_array_equal(var[6], np_value[index[4]])
940 941 942 943 944 945
        np.testing.assert_array_equal(
            var_tensor[var_tensor > 0.67], np_value[np_value > 0.67]
        )
        np.testing.assert_array_equal(
            var_tensor[var_tensor < 0.55], np_value[np_value < 0.55]
        )
Z
zyfncg 已提交
946

947
        with self.assertRaises(IndexError):
Z
zyfncg 已提交
948
            var_tensor[[True, False]]
949
        with self.assertRaises(IndexError):
Z
zyfncg 已提交
950 951 952 953
            var_tensor[[True, False, False, False, False]]
        with self.assertRaises(IndexError):
            var_tensor[paddle.to_tensor([[True, False, False, False]])]

954 955 956 957 958 959
    def _test_scalar_bool_index(self):
        shape = (1, 2, 5, 64)
        np_value = np.random.random(shape).astype('float32')
        var_tensor = paddle.to_tensor(np_value)
        index = [True]
        tensor_index = paddle.to_tensor(index)
960 961 962
        var = [
            var_tensor[tensor_index].numpy(),
        ]
963
        np.testing.assert_array_equal(var[0], np_value[index])
964

H
hong 已提交
965 966
    def _test_for_var(self):
        np_value = np.random.random((30, 100, 100)).astype('float32')
967
        w = base.dygraph.to_variable(np_value)
H
hong 已提交
968 969

        for i, e in enumerate(w):
970
            np.testing.assert_array_equal(e.numpy(), np_value[i])
H
hong 已提交
971

972 973 974
    def _test_numpy_index(self):
        array = np.arange(120).reshape([4, 5, 6])
        t = paddle.to_tensor(array)
975 976
        np.testing.assert_array_equal(t[np.longlong(0)].numpy(), array[0])
        np.testing.assert_array_equal(
977 978 979
            t[np.longlong(0) : np.longlong(4) : np.longlong(2)].numpy(),
            array[0:4:2],
        )
980 981
        np.testing.assert_array_equal(t[np.int64(0)].numpy(), array[0])
        np.testing.assert_array_equal(
982 983
            t[np.int32(1) : np.int32(4) : np.int32(2)].numpy(), array[1:4:2]
        )
984
        np.testing.assert_array_equal(
985 986
            t[np.int16(0) : np.int16(4) : np.int16(2)].numpy(), array[0:4:2]
        )
987 988 989 990 991 992

    def _test_list_index(self):
        # case1:
        array = np.arange(120).reshape([6, 5, 4])
        x = paddle.to_tensor(array)
        py_idx = [[0, 2, 0, 1, 3], [0, 0, 1, 2, 0]]
J
JYChen 已提交
993

994
        idx = [paddle.to_tensor(py_idx[0]), paddle.to_tensor(py_idx[1])]
995 996 997 998
        np.testing.assert_array_equal(x[idx].numpy(), array[np.array(py_idx)])
        np.testing.assert_array_equal(
            x[py_idx].numpy(), array[np.array(py_idx)]
        )
999 1000
        # case2:
        tensor_x = paddle.to_tensor(
1001 1002
            np.zeros(12).reshape(2, 6).astype(np.float32)
        )
1003 1004
        tensor_y1 = paddle.zeros([1], dtype='int32') + 2
        tensor_y2 = paddle.zeros([1], dtype='int32') + 5
1005 1006
        tensor_x[:, tensor_y1:tensor_y2] = 42
        res = tensor_x.numpy()
1007 1008 1009 1010 1011 1012
        exp = np.array(
            [
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
                [0.0, 0.0, 42.0, 42.0, 42.0, 0.0],
            ]
        )
1013
        np.testing.assert_array_equal(res, exp)
1014

W
WeiXin 已提交
1015 1016 1017
        # case3:
        row = np.array([0, 1, 2])
        col = np.array([2, 1, 3])
1018
        np.testing.assert_array_equal(array[row, col], x[row, col].numpy())
W
WeiXin 已提交
1019

1020
    def test_slice(self):
1021
        with base.dygraph.guard():
1022
            self._test_slice()
1023
            self._test_slice_for_tensor_attr()
H
hong 已提交
1024
            self._test_for_var()
1025
            self._test_for_getitem_ellipsis_index()
1026
            self._test_none_index()
Z
zyfncg 已提交
1027
            self._test_bool_index()
1028
            self._test_scalar_bool_index()
1029 1030
            self._test_numpy_index()
            self._test_list_index()
1031

1032
            var = base.dygraph.to_variable(self.array)
1033 1034
            np.testing.assert_array_equal(var[1, :].numpy(), self.array[1, :])
            np.testing.assert_array_equal(var[::-1].numpy(), self.array[::-1])
L
Leo Chen 已提交
1035

H
hong 已提交
1036 1037 1038
            with self.assertRaises(IndexError):
                y = var[self.shape[0]]

1039 1040 1041
            with self.assertRaises(IndexError):
                y = var[0 - self.shape[0] - 1]

W
WeiXin 已提交
1042 1043 1044 1045
            with self.assertRaises(IndexError):
                mask = np.array([1, 0, 1, 0], dtype=bool)
                var[paddle.to_tensor([0, 1]), mask]

1046
    def test_var_base_to_np(self):
1047 1048
        with base.dygraph.guard():
            var = base.dygraph.to_variable(self.array)
W
wanghuancoder 已提交
1049
            np.testing.assert_array_equal(var.numpy(), var.numpy(False))
L
Leo Chen 已提交
1050

1051
    def test_var_base_as_np(self):
1052 1053
        with base.dygraph.guard():
            var = base.dygraph.to_variable(self.array)
1054
            np.testing.assert_array_equal(var.numpy(), np.array(var))
1055 1056 1057
            np.testing.assert_array_equal(
                var.numpy(), np.array(var, dtype=np.float32)
            )
1058

1059
    def test_if(self):
1060 1061 1062
        with base.dygraph.guard():
            var1 = base.dygraph.to_variable(np.array([[[0]]]))
            var2 = base.dygraph.to_variable(np.array([[[1]]]))
1063 1064 1065 1066 1067 1068 1069 1070 1071 1072

            var1_bool = False
            var2_bool = False

            if var1:
                var1_bool = True

            if var2:
                var2_bool = True

1073 1074 1075 1076
            assert not var1_bool, "if var1 should be false"
            assert var2_bool, "if var2 should be true"
            assert not bool(var1), "bool(var1) is False"
            assert bool(var2), "bool(var2) is True"
1077

1078
    def test_to_static_var(self):
1079
        with base.dygraph.guard():
W
wanghuancoder 已提交
1080
            # Convert Tensor into Variable or Parameter
1081
            var_base = base.dygraph.to_variable(self.array, name="var_base_1")
1082 1083 1084
            static_var = var_base._to_static_var()
            self._assert_to_static(var_base, static_var)

1085
            var_base = base.dygraph.to_variable(self.array, name="var_base_2")
1086 1087 1088
            static_param = var_base._to_static_var(to_parameter=True)
            self._assert_to_static(var_base, static_param, True)

W
wanghuancoder 已提交
1089
            # Convert EagerParamBase into Parameter
1090
            fc = paddle.nn.Linear(
1091 1092
                10,
                20,
1093
                weight_attr=paddle.ParamAttr(
1094 1095
                    learning_rate=0.001,
                    do_model_average=True,
1096
                    regularizer=paddle.regularizer.L1Decay(),
1097 1098
                ),
            )
1099 1100 1101 1102 1103 1104
            weight = fc.parameters()[0]
            static_param = weight._to_static_var()
            self._assert_to_static(weight, static_param, True)

    def _assert_to_static(self, var_base, static_var, is_param=False):
        if is_param:
1105
            self.assertTrue(isinstance(static_var, base.framework.Parameter))
1106
            self.assertTrue(static_var.persistable, True)
1107
            if isinstance(var_base, base.framework.EagerParamBase):
1108
                for attr in ['trainable', 'is_distributed', 'do_model_average']:
1109 1110 1111
                    self.assertEqual(
                        getattr(var_base, attr), getattr(static_var, attr)
                    )
1112

1113 1114 1115
                self.assertEqual(
                    static_var.optimize_attr['learning_rate'], 0.001
                )
1116
                self.assertTrue(
1117
                    isinstance(
1118
                        static_var.regularizer, paddle.regularizer.L1Decay
1119 1120
                    )
                )
1121
        else:
1122
            self.assertTrue(isinstance(static_var, base.framework.Variable))
1123 1124 1125 1126 1127 1128 1129

        attr_keys = ['block', 'dtype', 'type', 'name']
        for attr in attr_keys:
            self.assertEqual(getattr(var_base, attr), getattr(static_var, attr))

        self.assertListEqual(list(var_base.shape), list(static_var.shape))

1130
    def test_tensor_str(self):
Z
Zhou Wei 已提交
1131
        paddle.enable_static()
1132
        paddle.disable_static(paddle.CPUPlace())
C
cnn 已提交
1133
        paddle.seed(10)
1134 1135 1136 1137
        a = paddle.rand([10, 20])
        paddle.set_printoptions(4, 100, 3)
        a_str = str(a)

1138
        expected = '''Tensor(shape=[10, 20], dtype=float32, place=Place(cpu), stop_gradient=True,
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148
       [[0.2727, 0.5489, 0.8655, ..., 0.2916, 0.8525, 0.9000],
        [0.3806, 0.8996, 0.0928, ..., 0.9535, 0.8378, 0.6409],
        [0.1484, 0.4038, 0.8294, ..., 0.0148, 0.6520, 0.4250],
        ...,
        [0.3426, 0.1909, 0.7240, ..., 0.4218, 0.2676, 0.5679],
        [0.5561, 0.2081, 0.0676, ..., 0.9778, 0.3302, 0.9559],
        [0.2665, 0.8483, 0.5389, ..., 0.4956, 0.6862, 0.9178]])'''

        self.assertEqual(a_str, expected)

1149
    def test_tensor_str2(self):
1150 1151 1152 1153
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5111111, 1.0], [0, 0]])
        a_str = str(a)

1154
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1155 1156 1157 1158 1159
       [[1.5111, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1160
    def test_tensor_str3(self):
1161 1162 1163 1164
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[-1.5111111, 1.0], [0, -0.5]])
        a_str = str(a)

1165
        expected = '''Tensor(shape=[2, 2], dtype=float32, place=Place(cpu), stop_gradient=True,
1166 1167 1168 1169 1170
       [[-1.5111,  1.    ],
        [ 0.    , -0.5000]])'''

        self.assertEqual(a_str, expected)

1171
    def test_tensor_str_scaler(self):
1172 1173 1174 1175
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor(np.array(False))
        a_str = str(a)

1176
        expected = '''Tensor(shape=[], dtype=bool, place=Place(cpu), stop_gradient=True,
1177 1178 1179 1180
       False)'''

        self.assertEqual(a_str, expected)

1181
    def test_tensor_str_shape_with_zero(self):
1182 1183
        paddle.disable_static(paddle.CPUPlace())
        x = paddle.ones((10, 10))
1184
        y = paddle.nonzero(x == 0)
1185 1186
        a_str = str(y)

1187
        expected = '''Tensor(shape=[0, 2], dtype=int64, place=Place(cpu), stop_gradient=True,
1188 1189 1190 1191
       [])'''

        self.assertEqual(a_str, expected)

1192
    def test_tensor_str_linewidth(self):
1193 1194 1195
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
1196 1197 1198
        paddle.set_printoptions(
            precision=4, threshold=1000, edgeitems=3, linewidth=80
        )
1199 1200
        a_str = str(x)

1201
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
       [0.3759, 0.0278, 0.2489, 0.3110, 0.9105, 0.7381, 0.1905, 0.4726, 0.2435,
        0.9142, 0.3367, 0.7243, 0.7664, 0.9915, 0.2921, 0.1363, 0.8096, 0.2915,
        0.9564, 0.9972, 0.2573, 0.2597, 0.3429, 0.2484, 0.9579, 0.7003, 0.4126,
        0.4274, 0.0074, 0.9686, 0.9910, 0.0144, 0.6564, 0.2932, 0.7114, 0.9301,
        0.6421, 0.0538, 0.1273, 0.5771, 0.9336, 0.6416, 0.1832, 0.9311, 0.7702,
        0.7474, 0.4479, 0.3382, 0.5579, 0.0444, 0.9802, 0.9874, 0.3038, 0.5640,
        0.2408, 0.5489, 0.8866, 0.1006, 0.5881, 0.7560, 0.7928, 0.8604, 0.4670,
        0.9285, 0.1482, 0.4541, 0.1307, 0.6221, 0.4902, 0.1147, 0.4415, 0.2987,
        0.7276, 0.2077, 0.7551, 0.9652, 0.4369, 0.2282, 0.0047, 0.2934, 0.4308,
        0.4190, 0.1442, 0.3650, 0.3056, 0.6535, 0.1211, 0.8721, 0.7408, 0.4220,
        0.5937, 0.3123, 0.9198, 0.0275, 0.5338, 0.4622, 0.7521, 0.3609, 0.4703,
        0.1736, 0.8976, 0.7616, 0.3756, 0.2416, 0.2907, 0.3246, 0.4305, 0.5717,
        0.0735, 0.0361, 0.5534, 0.4399, 0.9260, 0.6525, 0.3064, 0.4573, 0.9210,
        0.8269, 0.2424, 0.7494, 0.8945, 0.7098, 0.8078, 0.4707, 0.5715, 0.7232,
        0.4678, 0.5047])'''

        self.assertEqual(a_str, expected)

1220
    def test_tensor_str_linewidth2(self):
1221 1222 1223 1224 1225 1226
        paddle.disable_static(paddle.CPUPlace())
        paddle.seed(2021)
        x = paddle.rand([128])
        paddle.set_printoptions(precision=4, linewidth=160, sci_mode=True)
        a_str = str(x)

1227
        expected = '''Tensor(shape=[128], dtype=float32, place=Place(cpu), stop_gradient=True,
1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
       [3.7587e-01, 2.7798e-02, 2.4891e-01, 3.1097e-01, 9.1053e-01, 7.3811e-01, 1.9045e-01, 4.7258e-01, 2.4354e-01, 9.1415e-01, 3.3666e-01, 7.2428e-01,
        7.6640e-01, 9.9146e-01, 2.9215e-01, 1.3625e-01, 8.0957e-01, 2.9153e-01, 9.5642e-01, 9.9718e-01, 2.5732e-01, 2.5973e-01, 3.4292e-01, 2.4841e-01,
        9.5794e-01, 7.0029e-01, 4.1260e-01, 4.2737e-01, 7.3788e-03, 9.6863e-01, 9.9102e-01, 1.4416e-02, 6.5640e-01, 2.9318e-01, 7.1136e-01, 9.3008e-01,
        6.4209e-01, 5.3849e-02, 1.2730e-01, 5.7712e-01, 9.3359e-01, 6.4155e-01, 1.8320e-01, 9.3110e-01, 7.7021e-01, 7.4736e-01, 4.4793e-01, 3.3817e-01,
        5.5794e-01, 4.4412e-02, 9.8023e-01, 9.8735e-01, 3.0376e-01, 5.6397e-01, 2.4082e-01, 5.4893e-01, 8.8659e-01, 1.0065e-01, 5.8812e-01, 7.5600e-01,
        7.9280e-01, 8.6041e-01, 4.6701e-01, 9.2852e-01, 1.4821e-01, 4.5410e-01, 1.3074e-01, 6.2210e-01, 4.9024e-01, 1.1466e-01, 4.4154e-01, 2.9868e-01,
        7.2758e-01, 2.0766e-01, 7.5508e-01, 9.6522e-01, 4.3688e-01, 2.2823e-01, 4.7394e-03, 2.9342e-01, 4.3083e-01, 4.1902e-01, 1.4416e-01, 3.6500e-01,
        3.0560e-01, 6.5350e-01, 1.2115e-01, 8.7206e-01, 7.4081e-01, 4.2203e-01, 5.9372e-01, 3.1230e-01, 9.1979e-01, 2.7486e-02, 5.3383e-01, 4.6224e-01,
        7.5211e-01, 3.6094e-01, 4.7034e-01, 1.7355e-01, 8.9763e-01, 7.6165e-01, 3.7557e-01, 2.4157e-01, 2.9074e-01, 3.2458e-01, 4.3049e-01, 5.7171e-01,
        7.3509e-02, 3.6087e-02, 5.5341e-01, 4.3993e-01, 9.2601e-01, 6.5248e-01, 3.0640e-01, 4.5727e-01, 9.2104e-01, 8.2688e-01, 2.4243e-01, 7.4937e-01,
        8.9448e-01, 7.0981e-01, 8.0783e-01, 4.7065e-01, 5.7154e-01, 7.2319e-01, 4.6777e-01, 5.0465e-01])'''

        self.assertEqual(a_str, expected)

1242
    def test_tensor_str_bf16(self):
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.to_tensor([[1.5, 1.0], [0, 0]])
        a = paddle.cast(a, dtype=core.VarDesc.VarType.BF16)
        paddle.set_printoptions(precision=4)
        a_str = str(a)

        expected = '''Tensor(shape=[2, 2], dtype=bfloat16, place=Place(cpu), stop_gradient=True,
       [[1.5000, 1.    ],
        [0.    , 0.    ]])'''

        self.assertEqual(a_str, expected)

1255
    def test_print_tensor_dtype(self):
L
Leo Chen 已提交
1256 1257 1258 1259 1260 1261 1262
        paddle.disable_static(paddle.CPUPlace())
        a = paddle.rand([1])
        a_str = str(a.dtype)

        expected = 'paddle.float32'

        self.assertEqual(a_str, expected)
1263

L
Leo Chen 已提交
1264

1265
class TestVarBaseSetitem(unittest.TestCase):
1266
    def func_setUp(self):
1267 1268 1269
        self.set_dtype()
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
1270 1271
        self.tensor_value = paddle.to_tensor(self.np_value)

1272 1273 1274
    def set_dtype(self):
        self.dtype = "int32"

1275
    def _test(self, value):
1276
        id_origin = id(self.tensor_x)
1277
        self.tensor_x[0] = value
1278
        if isinstance(value, (int, float)):
1279
            result = np.zeros((2, 3)).astype(self.dtype) + value
1280 1281 1282 1283

        else:
            result = self.np_value

1284
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1285 1286 1287
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[1:2] = value
1288
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1289 1290 1291
        self.assertEqual(id_origin, id(self.tensor_x))

        self.tensor_x[...] = value
1292
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1293 1294
        self.assertEqual(id_origin, id(self.tensor_x))

W
wanghuancoder 已提交
1295
    def func_test_value_tensor(self):
1296 1297
        self._test(self.tensor_value)

W
wanghuancoder 已提交
1298
    def test_value_tensor(self):
1299
        self.func_setUp()
W
wanghuancoder 已提交
1300 1301 1302
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1303 1304
        self._test(self.np_value)

W
wanghuancoder 已提交
1305
    def test_value_numpy(self):
1306
        self.func_setUp()
W
wanghuancoder 已提交
1307 1308 1309
        self.func_test_value_numpy()

    def func_test_value_int(self):
1310 1311
        self._test(10)

W
wanghuancoder 已提交
1312
    def test_value_int(self):
1313
        self.func_setUp()
W
wanghuancoder 已提交
1314 1315
        self.func_test_value_int()

1316 1317 1318 1319 1320 1321 1322 1323 1324 1325

class TestVarBaseSetitemInt64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "int64"


class TestVarBaseSetitemFp32(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float32"

1326
    def func_test_value_float(self):
1327 1328 1329
        paddle.disable_static()
        self._test(3.3)

1330 1331 1332 1333
    def test_value_float(self):
        self.func_setUp()
        self.func_test_value_float()

1334

1335 1336 1337 1338 1339
class TestVarBaseSetitemFp64(TestVarBaseSetitem):
    def set_dtype(self):
        self.dtype = "float64"


1340
class TestVarBaseSetitemBoolIndex(unittest.TestCase):
1341
    def func_setUp(self):
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360
        paddle.disable_static()
        self.set_dtype()
        self.set_input()

    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((4, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def set_dtype(self):
        self.dtype = "int32"

    def _test(self, value):
        paddle.disable_static()

        id_origin = id(self.tensor_x)
        index_1 = paddle.to_tensor(np.array([True, False, False, False]))
        self.tensor_x[index_1] = value

1361
        if isinstance(value, (int, float)):
1362 1363 1364 1365 1366
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1367
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1368 1369 1370 1371
        self.assertEqual(id_origin, id(self.tensor_x))

        index_2 = paddle.to_tensor(np.array([False, True, False, False]))
        self.tensor_x[index_2] = value
1372
        np.testing.assert_array_equal(self.tensor_x[1].numpy(), result)
1373 1374 1375 1376
        self.assertEqual(id_origin, id(self.tensor_x))

        index_3 = paddle.to_tensor(np.array([True, True, True, True]))
        self.tensor_x[index_3] = value
1377
        np.testing.assert_array_equal(self.tensor_x[3].numpy(), result)
1378 1379
        self.assertEqual(id_origin, id(self.tensor_x))

1380
    def func_test_value_tensor(self):
1381 1382 1383
        paddle.disable_static()
        self._test(self.tensor_value)

1384 1385 1386 1387 1388
    def test_value_tensor(self):
        self.func_setUp()
        self.func_test_value_tensor()

    def func_test_value_numpy(self):
1389 1390 1391
        paddle.disable_static()
        self._test(self.np_value)

1392 1393 1394 1395 1396
    def test_value_numpy(self):
        self.func_setUp()
        self.func_test_value_numpy()

    def func_test_value_int(self):
1397 1398 1399
        paddle.disable_static()
        self._test(10)

1400 1401 1402 1403
    def test_value_int(self):
        self.func_setUp()
        self.func_test_value_int()

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419

class TestVarBaseSetitemBoolScalarIndex(unittest.TestCase):
    def set_input(self):
        self.tensor_x = paddle.to_tensor(np.ones((1, 2, 3)).astype(self.dtype))
        self.np_value = np.random.random((2, 3)).astype(self.dtype)
        self.tensor_value = paddle.to_tensor(self.np_value)

    def _test(self, value):
        paddle.disable_static()
        self.assertEqual(self.tensor_x.inplace_version, 0)

        id_origin = id(self.tensor_x)
        index = paddle.to_tensor(np.array([True]))
        self.tensor_x[index] = value
        self.assertEqual(self.tensor_x.inplace_version, 1)

1420
        if isinstance(value, (int, float)):
1421 1422 1423 1424 1425
            result = np.zeros((2, 3)).astype(self.dtype) + value

        else:
            result = self.np_value

1426
        np.testing.assert_array_equal(self.tensor_x[0].numpy(), result)
1427 1428 1429
        self.assertEqual(id_origin, id(self.tensor_x))


1430
class TestVarBaseInplaceVersion(unittest.TestCase):
1431
    def test_setitem(self):
1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
        paddle.disable_static()

        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var[1] = 1
        self.assertEqual(var.inplace_version, 1)

        var[1:2] = 1
        self.assertEqual(var.inplace_version, 2)

1443
    def test_bump_inplace_version(self):
1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454
        paddle.disable_static()
        var = paddle.ones(shape=[4, 2, 3], dtype="float32")
        self.assertEqual(var.inplace_version, 0)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 1)

        var._bump_inplace_version()
        self.assertEqual(var.inplace_version, 2)


1455
class TestVarBaseSlice(unittest.TestCase):
1456
    def test_slice(self):
1457 1458 1459 1460 1461 1462 1463 1464 1465
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        actual_x = x._slice(0, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x.numpy().all(), np_x[0:1].all())


class TestVarBaseClear(unittest.TestCase):
1466
    def test_clear(self):
1467 1468 1469 1470 1471 1472 1473 1474
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x._clear()
        self.assertEqual(str(x), "Tensor(Not initialized)")


class TestVarBaseOffset(unittest.TestCase):
1475
    def test_offset(self):
1476 1477 1478 1479 1480 1481 1482 1483 1484
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        expected_offset = 0
        actual_x = x._slice(expected_offset, 1)
        actual_x = paddle.to_tensor(actual_x)
        self.assertEqual(actual_x._offset(), expected_offset)


1485
class TestVarBaseShareBufferTo(unittest.TestCase):
1486
    def test_share_buffer_To(self):
1487
        paddle.disable_static()
1488 1489 1490
        np_src = np.random.random((3, 8, 8))
        src = paddle.to_tensor(np_src, dtype="float64")
        # empty_var
姜永久 已提交
1491
        dst = core.eager.Tensor()
1492 1493
        src._share_buffer_to(dst)
        self.assertEqual(src._is_shared_buffer_with(dst), True)
1494 1495 1496


class TestVarBaseTo(unittest.TestCase):
1497
    def func_setUp(self):
1498 1499 1500 1501
        paddle.disable_static()
        self.np_x = np.random.random((3, 8, 8))
        self.x = paddle.to_tensor(self.np_x, dtype="float32")

1502
    def func_test_to_api(self):
1503
        x_double = self.x._to(dtype='double')
1504
        self.assertEqual(x_double.dtype, paddle.base.core.VarDesc.VarType.FP64)
1505
        np.testing.assert_allclose(self.np_x, x_double, rtol=1e-05)
1506 1507

        x_ = self.x._to()
1508
        self.assertEqual(self.x.dtype, paddle.base.core.VarDesc.VarType.FP64)
1509
        np.testing.assert_allclose(self.np_x, x_, rtol=1e-05)
1510

1511
        if paddle.base.is_compiled_with_cuda():
1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522
            x_gpu = self.x._to(device=paddle.CUDAPlace(0))
            self.assertTrue(x_gpu.place.is_gpu_place())
            self.assertEqual(x_gpu.place.gpu_device_id(), 0)

            x_gpu0 = self.x._to(device='gpu:0')
            self.assertTrue(x_gpu0.place.is_gpu_place())
            self.assertEqual(x_gpu0.place.gpu_device_id(), 0)

            x_gpu1 = self.x._to(device='gpu:0', dtype="float64")
            self.assertTrue(x_gpu1.place.is_gpu_place())
            self.assertEqual(x_gpu1.place.gpu_device_id(), 0)
1523
            self.assertEqual(
1524
                x_gpu1.dtype, paddle.base.core.VarDesc.VarType.FP64
1525
            )
1526 1527 1528 1529

            x_gpu2 = self.x._to(device='gpu:0', dtype="float16")
            self.assertTrue(x_gpu2.place.is_gpu_place())
            self.assertEqual(x_gpu2.place.gpu_device_id(), 0)
1530
            self.assertEqual(
1531
                x_gpu2.dtype, paddle.base.core.VarDesc.VarType.FP16
1532
            )
1533 1534 1535 1536 1537 1538 1539 1540 1541

        x_cpu = self.x._to(device=paddle.CPUPlace())
        self.assertTrue(x_cpu.place.is_cpu_place())

        x_cpu0 = self.x._to(device='cpu')
        self.assertTrue(x_cpu0.place.is_cpu_place())

        x_cpu1 = self.x._to(device=paddle.CPUPlace(), dtype="float64")
        self.assertTrue(x_cpu1.place.is_cpu_place())
1542
        self.assertEqual(x_cpu1.dtype, paddle.base.core.VarDesc.VarType.FP64)
1543 1544 1545

        x_cpu2 = self.x._to(device='cpu', dtype="float16")
        self.assertTrue(x_cpu2.place.is_cpu_place())
1546
        self.assertEqual(x_cpu2.dtype, paddle.base.core.VarDesc.VarType.FP16)
1547 1548 1549 1550

        self.assertRaises(ValueError, self.x._to, device=1)
        self.assertRaises(AssertionError, self.x._to, blocking=1)

1551 1552 1553 1554
    def test_to_api(self):
        self.func_setUp()
        self.func_test_to_api()

1555 1556

class TestVarBaseInitVarBaseFromTensorWithDevice(unittest.TestCase):
1557
    def test_varbase_init(self):
1558
        paddle.disable_static()
1559
        t = base.Tensor()
1560
        np_x = np.random.random((3, 8, 8))
1561
        t.set(np_x, base.CPUPlace())
1562

1563
        if paddle.base.is_compiled_with_cuda():
1564
            device = paddle.CUDAPlace(0)
1565
            tmp = base.core.eager.Tensor(t, device)
1566 1567 1568 1569
            self.assertTrue(tmp.place.is_gpu_place())
            self.assertEqual(tmp.numpy().all(), np_x.all())

        device = paddle.CPUPlace()
1570
        tmp = base.core.eager.Tensor(t, device)
1571 1572 1573 1574
        self.assertEqual(tmp.numpy().all(), np_x.all())


class TestVarBaseNumel(unittest.TestCase):
1575
    def test_numel_normal(self):
1576 1577 1578 1579 1580 1581 1582
        paddle.disable_static()
        np_x = np.random.random((3, 8, 8))
        x = paddle.to_tensor(np_x, dtype="float64")
        x_actual_numel = x._numel()
        x_expected_numel = np.product((3, 8, 8))
        self.assertEqual(x_actual_numel, x_expected_numel)

1583
    def test_numel_without_holder(self):
1584
        paddle.disable_static()
姜永久 已提交
1585
        x_without_holder = core.eager.Tensor()
1586 1587 1588
        x_actual_numel = x_without_holder._numel()
        self.assertEqual(x_actual_numel, 0)

1589 1590

class TestVarBaseCopyGradientFrom(unittest.TestCase):
1591
    def test_copy_gradient_from(self):
1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
        paddle.disable_static()
        np_x = np.random.random((2, 2))
        np_y = np.random.random((2, 2))
        x = paddle.to_tensor(np_x, dtype="float64", stop_gradient=False)
        y = paddle.to_tensor(np_y, dtype="float64")
        out = x + x
        out.backward()
        x._copy_gradient_from(y)
        self.assertEqual(x.grad.numpy().all(), np_y.all())


1603 1604
class TestEagerTensorGradNameValue(unittest.TestCase):
    def test_eager_tensor_grad_name_value(self):
1605 1606 1607 1608 1609 1610 1611 1612
        a_np = np.array([2, 3]).astype('float32')
        a = paddle.to_tensor(a_np)
        a.stop_gradient = False
        b = a**2
        self.assertIsNone(a._grad_value())
        b.backward()
        # Note, for new dygraph, there are no generated grad name, so we skip the name check.
        self.assertIsNotNone(a._grad_value())
1613 1614


L
Leo Chen 已提交
1615 1616
if __name__ == '__main__':
    unittest.main()