cinn_launch_context.cc 22.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/operators/cinn/cinn_launch_context.h"
16

17
#include <algorithm>
18
#include <functional>
19
#include <utility>
20
#include <vector>
21

22
#include "cinn/frontend/op_mapper_registry.h"
23 24
#include "cinn/hlir/framework/graph_compiler.h"
#include "cinn/hlir/framework/instruction.h"
25 26 27
#include "cinn/hlir/framework/scope.h"
#include "cinn/hlir/framework/tensor.h"
#include "cinn/runtime/cinn_runtime.h"
28 29
#include "cinn/runtime/intrinsic.h"
#include "paddle/fluid/framework/convert_utils.h"
30 31 32 33 34 35
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
36
#include "paddle/fluid/framework/paddle2cinn/transform_type.h"
37 38
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
39
#include "paddle/fluid/framework/variable_helper.h"
40
#include "paddle/fluid/operators/cinn/cinn_op_helper.h"
41
#include "paddle/fluid/platform/device_context.h"
42
#include "paddle/fluid/platform/place.h"
43
#include "paddle/fluid/string/printf.h"
44
#include "paddle/phi/core/ddim.h"
45
#include "paddle/utils/string/string_helper.h"
46

47
namespace paddle {
48 49
namespace operators::details {

50
using framework::ParallelExecutor;
51
using framework::Scope;
52 53
using CinnInstruction = ::cinn::hlir::framework::Instruction;
using CinnRuntimeProgram = ::cinn::hlir::framework::Program;
54 55
using ::cinn::frontend::paddle::InplaceOutSuffix;
using framework::paddle2cinn::kInplaceVarNames;
56
using framework::paddle2cinn::kMemOptVarInfoFromMainGraph;
57
using framework::paddle2cinn::kSkipGcVarNames;
58
using framework::paddle2cinn::Name2VarInfoMap;
59

60 61 62 63
CinnLaunchContext::CinnLaunchContext(const framework::ir::Graph& graph,
                                     const CinnCompiledObject& compiled_obj)
    : cinn_scope_(compiled_obj.scope) {
  // collect all names of the CINN execution arguments
64
  auto var_names = cinn_scope_->var_names();
65
  cinn_argument_names_.reserve(var_names.size());
66
  std::transform(
67 68
      var_names.begin(),
      var_names.end(),
69
      std::inserter(cinn_argument_names_, cinn_argument_names_.end()),
70
      [](const auto& name_view) { return std::string(name_view.data()); });
71
  // build name map between the original variables and compiled ones
72 73 74 75 76 77
  BuildVarNameMap(compiled_obj.paddle2cinn_varmap, cinn_argument_names_);

  const auto& input_var_names =
      graph.Get<std::vector<std::string>>(framework::paddle2cinn::kInputVars);
  const auto& output_var_names =
      graph.Get<std::vector<std::string>>(framework::paddle2cinn::kOutputVars);
78 79
  inplace_var_names_ =
      graph.Get<std::unordered_set<std::string>>(kInplaceVarNames);
80 81 82 83 84 85 86 87 88 89 90
  internal_var_names_ =
      ExtractInternalVarNames(input_var_names, output_var_names);
  // initialize all execution arguments
  InitializeArguments();
  // DEPRECATED(CtfGo): following callback assignment will be deprecated soon
  for (auto&& var_name : input_var_names) {
    if (IsVariableUsed(var_name)) {
      AssignExternalVariable(var_name);
    }
  }
  for (auto&& var_name : output_var_names) {
91 92 93 94 95 96 97
    if (inplace_var_names_.count(var_name)) {
      VLOG(4) << "Inplaced variable:" << var_name << " -> "
              << var_name + InplaceOutSuffix << " as paddle2cinn varmap key";
      AssignExternalVariable(var_name + InplaceOutSuffix);
    } else {
      AssignExternalVariable(var_name);
    }
98 99 100 101 102 103
  }
  for (auto&& var_name : internal_var_names_) {
    AssignInternalVariable(var_name);
  }

  // Convert the CINN runtime program to a Paddle graph
104 105 106
  runtime_program_desc_ = BuildCompiledProgram(graph, compiled_obj);
  runtime_graph_ =
      std::make_unique<framework::ir::Graph>(*runtime_program_desc_.get());
107 108 109
  auto& outer_varinfo = graph.Get<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph);
  runtime_graph_->SetNotOwned<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph,
                                               &outer_varinfo);
110 111 112 113 114 115 116 117 118 119
  // use kSkipGcVarNames attr of graph to initialize skip_gc_vars_
  if (graph.Has(kSkipGcVarNames)) {
    const auto& skip_gc_vars =
        graph.Get<std::unordered_set<std::string>>(kSkipGcVarNames);
    skip_gc_vars_.insert(skip_gc_vars.begin(), skip_gc_vars.end());
    VLOG(4) << "Append skip_gc_vars:["
            << string::join_strings(skip_gc_vars, ',') << "]";
  }

  // collect variables name list to be skipped in GC
120 121
  skip_eager_vars_.reserve(input_var_names.size() + output_var_names.size());
  auto add_skip_var_fn = [&outer_varinfo, this](const std::string& var_name) {
122 123 124 125 126
    // Always consider Input/Output of Graph as skip_gc_vars, because
    // InterpreterCore has no eager_deletion_op to deal with it.

    VLOG(4) << "Append a skip_gc_var for InterpreterCore:" << var_name;
    skip_gc_vars_.insert(var_name);
127 128
    // if a var exists at the outer_varinfo map, that means it will be
    // erased by the following eager_deletion_op of current cinn_launch op
129 130
    if (!outer_varinfo.count(var_name)) {
      skip_eager_vars_.emplace_back(var_name);
131
      VLOG(4) << "Append a skip_gc_var for PE:" << var_name;
132 133
    }
  };
134 135 136 137
  std::for_each(
      input_var_names.begin(), input_var_names.end(), add_skip_var_fn);
  std::for_each(
      output_var_names.begin(), output_var_names.end(), add_skip_var_fn);
138 139 140 141
  VLOG(4) << string::Sprintf(
      "Distribution of variables in the graph compiled:"
      "input[%lu],internal[%lu],output[%lu],"
      "outer_eager_deletion[%lu],skip_eager_deletion[%lu],"
142
      "skip_gc_vars_[%lu]",
143 144 145 146 147
      input_var_names.size(),
      internal_var_names_.size(),
      output_var_names.size(),
      outer_varinfo.size(),
      skip_eager_vars_.size(),
148
      skip_gc_vars_.size());
149 150 151 152 153 154 155 156 157 158 159 160 161
}

void CinnLaunchContext::BuildVarNameMap(
    const std::unordered_map<std::string, std::string>& compiled_varmap,
    const std::unordered_set<std::string>& argument_names) {
  for (const auto& x : compiled_varmap) {
    if (!argument_names.count(x.second)) {
      // exclude variables not used
      continue;
    }
    // copy to local paddle2cinn map
    paddle2cinn_varmap_.emplace(x.first, x.second);
    // add an entry to local cinn2paddle map reversely
162 163
    auto res = cinn2paddle_varmap_.emplace(x.second, x.first);
    PADDLE_ENFORCE_EQ(
164 165
        res.second,
        true,
166 167
        platform::errors::InvalidArgument(
            "Cinn variable(%s) maps to more than one paddle variable(%s,%s)",
168 169 170
            x.second,
            res.first->second,
            x.first));
171
  }
172 173 174 175
  // supplement the relations of the remain variables
  // not appearing in above map, which are internal variables
  // and here we use the names from cinn compiled.
  for (const auto& var_name : argument_names) {
176 177 178 179 180
    if (!cinn2paddle_varmap_.count(var_name)) {
      cinn2paddle_varmap_.emplace(var_name, var_name);
      paddle2cinn_varmap_.emplace(var_name, var_name);
    }
  }
181 182

  PADDLE_ENFORCE_EQ(
183 184
      paddle2cinn_varmap_.size(),
      cinn2paddle_varmap_.size(),
185 186
      platform::errors::PreconditionNotMet(
          "Size of variables is not euqal, paddle[%ld] vs cinn[%ld]",
187 188
          paddle2cinn_varmap_.size(),
          cinn2paddle_varmap_.size()));
189 190
}

191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
void CinnLaunchContext::UpdateCapturedEnv(const framework::Scope& scope,
                                          const platform::Place& place) {
  if (std::addressof(scope) == cached_scope_ &&
      std::addressof(place) == cached_place_) {
    VLOG(4) << "Captured scope:" << cached_scope_ << ", place:" << cached_place_
            << " are not changed";
    return;
  }
  cached_scope_ = std::addressof(scope);
  cached_place_ = std::addressof(place);
  cached_temp_scope_ = scope.NewTmpScope();
  VLOG(4) << "Captured env is update, scope:" << cached_scope_ << "->"
          << std::addressof(scope) << ", place:" << cached_place_ << "->"
          << std::addressof(place);
}

207 208
bool CinnLaunchContext::IsVariableUsed(const std::string& var_name) const {
  return paddle2cinn_varmap_.count(var_name) > 0;
209 210
}

211 212
CinnTensor CinnLaunchContext::GetCinnTensorOfVar(const std::string& var_name) {
  PADDLE_ENFORCE_EQ(
213 214
      IsVariableUsed(var_name),
      true,
215 216
      platform::errors::NotFound("Variable(%s) not applied in CINN", var_name));
  const auto& arg_name = paddle2cinn_varmap_.at(var_name);
217
  return cinn_scope_->GetTensor(arg_name);
218 219
}

220 221 222 223 224
std::unordered_set<std::string> CinnLaunchContext::ExtractInternalVarNames(
    const std::vector<std::string>& input_var_names,
    const std::vector<std::string>& output_var_names) {
  std::unordered_set<std::string> remain_var_names;
  remain_var_names.reserve(paddle2cinn_varmap_.size());
225 226
  std::transform(paddle2cinn_varmap_.begin(),
                 paddle2cinn_varmap_.end(),
227 228 229 230
                 std::inserter(remain_var_names, remain_var_names.end()),
                 [](const auto& name_pair) { return name_pair.first; });

  // exclude the input variables and output variables
231 232
  auto exclude_names_fn = [this,
                           &remain_var_names](const std::string& var_name) {
233
    remain_var_names.erase(var_name);
234 235 236
    if (inplace_var_names_.count(var_name)) {
      remain_var_names.erase(var_name + InplaceOutSuffix);
    }
237
  };
238 239 240 241
  std::for_each(
      input_var_names.begin(), input_var_names.end(), exclude_names_fn);
  std::for_each(
      output_var_names.begin(), output_var_names.end(), exclude_names_fn);
242
  return remain_var_names;
243 244
}

245
void CinnLaunchContext::CheckTensorEquivalent(
246
    const std::string& var_name, const phi::DenseTensor& paddle_tensor) {
247 248
  PADDLE_ENFORCE_EQ(IsVariableUsed(var_name),
                    true,
249 250
                    platform::errors::InvalidArgument(
                        "Variable(%s) not applied in cinn", var_name));
251
  // check dimension
252
  auto cinn_tensor = GetCinnTensorOfVar(var_name);
253
  auto cinn_dims = phi::make_ddim(cinn_tensor->shape().data());
254 255
  PADDLE_ENFORCE_EQ(paddle_tensor.dims(),
                    cinn_dims,
256 257
                    platform::errors::PreconditionNotMet(
                        "Tensors' shape in variable(%s) are not equivalent, "
258
                        "paddle is = [%s], but cinn is = [%s].",
259 260 261
                        var_name,
                        paddle_tensor.dims(),
                        cinn_dims));
262

263 264
  auto cinn_dtype =
      framework::paddle2cinn::TransToPaddleDataType(cinn_tensor->type());
265 266
  PADDLE_ENFORCE_EQ(paddle_tensor.dtype(),
                    cinn_dtype,
267 268 269
                    platform::errors::PreconditionNotMet(
                        "Tensors' dtype in variable(%s) are not equivalent, "
                        "paddle is = [%s], but cinn is = [%s].",
270 271 272
                        var_name,
                        paddle_tensor.dtype(),
                        cinn_dtype));
273 274
}

275 276 277 278 279 280 281
void CinnLaunchContext::InitializeArguments() {
  for (auto&& arg : cinn_argument_names_) {
    auto cinn_buffer = std::make_unique<cinn_buffer_t>();
    auto cinn_tensor = GetCinnTensorOfVar(cinn2paddle_varmap_.at(arg));
    // assign dimensions with corresponding compiled tensor
    cinn_buffer->resize(cinn_tensor->shape().data().data(),
                        cinn_tensor->shape().data().size());
282
    cinn_buffer->type = cinn::runtime::ToRuntimeType(cinn_tensor->type());
283
    VLOG(4) << string::Sprintf(
284 285
        "Append an argument:name(%s),dims(%s),type(%s)",
        arg,
286
        framework::DDim(cinn_buffer->dims, cinn_buffer->dimensions).to_str(),
287
        cinn_tensor->type());
288
    name2argument_.emplace(arg, cinn_buffer.get());
289 290
    auto pdvar2cinnbuf_ = cinn2paddle_varmap_.at(arg);
    paddle2argument_.emplace(pdvar2cinnbuf_, cinn_buffer.get());
291 292
    hold_buffers_.emplace_back(std::move(cinn_buffer));
  }
293
  VLOG(4) << "Total argument size:" << name2argument_.size();
294 295
}

296
void CinnLaunchContext::AssignExternalVariable(const std::string& var_name) {
297 298
  PADDLE_ENFORCE_EQ(IsVariableUsed(var_name),
                    true,
299 300
                    platform::errors::InvalidArgument(
                        "Variable(%s) not applied in cinn", var_name));
301
  auto* cinn_buffer = GetCinnBufferOfVar(var_name);
302
  std::string revise_var_name = RedirectVarName(var_name);
303
  // assign external malloc/free callbacks of cinn_buffer_t
304
  cinn_buffer->external_malloc = new std::function<int(void*, cinn_buffer_t*)>(
305 306 307
      [this, revise_var_name](void* ctx, cinn_buffer_t* buffer) {
        auto* tensor = cached_scope_->GetVar(revise_var_name)
                           ->GetMutable<phi::DenseTensor>();
308
        tensor->Resize(framework::DDim(buffer->dims, buffer->dimensions));
309 310 311
        buffer->memory = reinterpret_cast<uint8_t*>(tensor->mutable_data(
            *cached_place_,
            framework::paddle2cinn::TransToPaddleDataType(buffer->type)));
312 313 314 315 316 317 318 319 320
        return 0;
      });

  // external variables will be recycled by global gc, so do nothing here
  cinn_buffer->external_free = new std::function<int(void*, cinn_buffer_t*)>(
      [](void* ctx, cinn_buffer_t* buffer) {
        // Do nothing
        return 0;
      });
321
}
322

323
void CinnLaunchContext::AssignInternalVariable(const std::string& var_name) {
324 325
  PADDLE_ENFORCE_EQ(IsVariableUsed(var_name),
                    true,
326 327
                    platform::errors::InvalidArgument(
                        "Variable(%s) not applied in cinn", var_name));
328
  auto* cinn_buffer = GetCinnBufferOfVar(var_name);
329
  std::string revise_var_name = RedirectVarName(var_name);
330
  // assign external malloc/free callbacks of cinn_buffer_t
331
  cinn_buffer->external_malloc = new std::function<int(void*, cinn_buffer_t*)>(
332 333 334
      [this, revise_var_name](void* ctx, cinn_buffer_t* buffer) {
        auto* tensor = cached_temp_scope_->Var(revise_var_name)
                           ->GetMutable<phi::DenseTensor>();
335
        tensor->Resize(framework::DDim(buffer->dims, buffer->dimensions));
336 337 338
        buffer->memory = reinterpret_cast<uint8_t*>(tensor->mutable_data(
            *cached_place_,
            framework::paddle2cinn::TransToPaddleDataType(buffer->type)));
339 340 341
        return 0;
      });

342 343
  // internal variables should release its buffer immediately
  // if no instruction use it
344
  cinn_buffer->external_free = new std::function<int(void*, cinn_buffer_t*)>(
345 346
      [this, revise_var_name](void* ctx, cinn_buffer_t* buffer) {
        auto* tensor = cached_temp_scope_->GetVar(revise_var_name)
347
                           ->GetMutable<phi::DenseTensor>();
348
        tensor->clear();
349 350
        return 0;
      });
351 352
}

353
std::unique_ptr<framework::ProgramDesc> CinnLaunchContext::BuildCompiledProgram(
354 355 356
    const framework::ir::Graph& graph, const CinnCompiledObject& compiled_obj) {
  CinnRuntimeProgram* runtime_program = compiled_obj.runtime_program.get();
  // Step 0: Create an empty program_desc, there will be only one block
357 358 359 360
  // framework::ProgramDesc program_desc;
  std::unique_ptr<framework::ProgramDesc> program_desc(
      new framework::ProgramDesc());
  auto* block = program_desc->MutableBlock(0);
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
  const std::vector<std::unique_ptr<CinnInstruction>>& instructions =
      runtime_program->GetRunInstructions();

  // build a map that links the name of a Paddle variable to its VarDesc
  const std::unordered_set<framework::ir::Node*>& nodes = graph.Nodes();
  std::unordered_map<std::string, framework::VarDesc*> original_vardescs;
  for (auto* node : nodes) {
    if (node->IsVar() && node->Var()) {
      original_vardescs.emplace(node->Name(), node->Var());
    }
  }

  // Step 1: Create a VarDesc for each execution argument:
  //   (1) For those variables that are input or output variables of the
  //   original subgraph, there must exist an original VarDesc, so
  //   we copy some useful info(such as IsParameter,Persistable)
  //   to the new VarDesc.
  //   (2) For all variables, the shape, data type of their VarDescs
  //   are set by values of the corresponding compiled tensors,
  //   including the in/out variables where the equiality between their tensors
  //   and the CINN compiled ones is verified in corresponding cinn_launch_op.
  for (auto&& arg : cinn_argument_names_) {
    const std::string& var_name = cinn2paddle_varmap_.at(arg);
    framework::VarDesc* var_desc = block->Var(var_name);
    var_desc->SetType(framework::proto::VarType::LOD_TENSOR);

    auto res = original_vardescs.find(var_name);
    if (res != original_vardescs.end()) {
      auto* ori_desc = res->second;
      var_desc->SetPersistable(ori_desc->Persistable());
      var_desc->SetIsParameter(ori_desc->IsParameter());
    }

    auto cinn_tensor = GetCinnTensorOfVar(var_name);
395 396
    var_desc->SetDataType(framework::TransToProtoVarType(
        framework::paddle2cinn::TransToPaddleDataType(cinn_tensor->type())));
397 398 399 400 401 402 403 404 405 406 407 408 409
    var_desc->SetShape(std::vector<int64_t>(cinn_tensor->shape().data().begin(),
                                            cinn_tensor->shape().data().end()));
  }

  // transform names of the input or output arguments of a CINN instruction
  // to the corresponding Paddle variable names, and repack them as one vector
  auto trans_and_pack_args_fn =
      [this](const std::vector<std::vector<std::string>>& cinn_args_array) {
        std::vector<std::string> var_names;
        for (auto&& cinn_args : cinn_args_array) {
          for (auto&& arg : cinn_args) {
            auto res = cinn2paddle_varmap_.find(arg);
            PADDLE_ENFORCE_NE(
410 411
                res,
                cinn2paddle_varmap_.end(),
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
                platform::errors::NotFound("Argument(%s) not found", arg));
            var_names.emplace_back(res->second);
          }
        }
        return var_names;
      };

  // Step 2: create a VarDesc of cinn_instruction_run op for
  //         each CINN instruction and append it to the main block
  for (auto ins_idx = 0; ins_idx < instructions.size(); ++ins_idx) {
    auto* ins = instructions.at(ins_idx).get();
    auto in_args = trans_and_pack_args_fn(ins->GetInArgs());
    auto out_args = trans_and_pack_args_fn(ins->GetOutArgs());
    auto* op_desc = block->AppendOp();
    op_desc->SetType("cinn_instruction_run");
    op_desc->SetInput(kX, in_args);
    op_desc->SetOutput(kOutputs, out_args);
    op_desc->SetAttr(kCachedIndex,
                     {static_cast<int64_t>(compiled_obj.cached_index)});
    op_desc->SetAttr(kInstructionIndex, {static_cast<int64_t>(ins_idx)});
  }

  return program_desc;
435 436
}

437 438 439 440
ParallelExecutor* CinnLaunchContext::InitializePE(const platform::Place& place,
                                                  framework::Scope* scope) {
  if (!parallel_executor_) {
    framework::details::ExecutionStrategy exec_strategy;
441 442
    exec_strategy.num_threads_ = 1;
    exec_strategy.use_device_ = platform::Place2DeviceType(place);
443 444 445 446 447 448
    framework::details::BuildStrategy build_strategy;
    parallel_executor_ = std::make_unique<ParallelExecutor>(
        place, scope, exec_strategy, build_strategy, runtime_graph_.get());
  }

  // update the scope bound to an OpHandle and rebuild temporary variables
449
  VLOG(4) << "Reset scope and initialize temporary variables";
450 451 452
  std::unordered_map<Scope*, Scope*> scope_map = {
      {parallel_executor_->GetLocalScopes().front(), scope}};
  parallel_executor_->ResetOpHandleScopeMapOfGraphs(scope_map);
453 454 455 456 457 458 459 460 461 462 463 464 465 466
  // instead of using the PrepareVariables function of ParallelExecutor to
  // initialize all variables, here we only initialize internal variables
  // because external variables are already included in parent scope.
  for (auto&& var_name : internal_var_names_) {
    auto* var = scope->FindVar(var_name);
    if (var != nullptr) {
      VLOG(5) << "internal variable:" << var_name
              << " has been initialized beforehand in global scope, skipped.";
      continue;
    }
    framework::InitializeVariable(scope->Var(var_name),
                                  framework::proto::VarType::LOD_TENSOR);
  }

467
  return parallel_executor_.get();
468 469
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
framework::InterpreterCore* CinnLaunchContext::InitializeInterpreterCore(
    const platform::Place& place, framework::Scope* scope) {
  if (!interpreter_core_ || scope != cached_scope_) {
    VLOG(1) << "interpreter_core_ is null or scope != cached_scope_: "
               "interpreter_core_: "
            << interpreter_core_.get() << "; scope: " << scope
            << "; cached_scope_: " << cached_scope_;
    for (auto&& var_name : internal_var_names_) {
      auto* var = scope->FindVar(var_name);
      if (var != nullptr) {
        continue;
      }
      framework::InitializeVariable(scope->Var(var_name),
                                    framework::proto::VarType::LOD_TENSOR);
    }
    if (!interpreter_core_) {
      interpreter_core_ = std::make_unique<framework::InterpreterCore>(
          place,
          runtime_program_desc_->Block(0),
          skip_gc_vars_,
          scope,
          /*used_for_jit*/ false,
          /*used_for_control_flow_op*/ false,
          /*used_for_cinn*/ true);
    } else {
      interpreter_core_->reset_scope(scope);
    }
    UpdateCapturedEnv(*scope, place);
  }
  return interpreter_core_.get();
}

502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
std::string CinnLaunchContext::RedirectVarName(const std::string& var_name) {
  auto pos = var_name.find(InplaceOutSuffix);
  if (pos == std::string::npos) {
    return var_name;
  }
  std::string remove_suffix_name = var_name.substr(0, pos);
  if (!inplace_var_names_.count(remove_suffix_name)) {
    LOG(WARNING) << "Variable:" << remove_suffix_name
                 << " was not marked as inplaced by Paddle, but CINN does";
  }
  VLOG(4) << "Inplaced variable:" << var_name << " redirect to "
          << remove_suffix_name;
  return remove_suffix_name;
}

517
cinn_buffer_t* CinnLaunchContext::GetCinnBufferOfVar(
518
    const std::string& var_name) {
519
  auto res = paddle2argument_.find(var_name);
520
  PADDLE_ENFORCE_NE(
521 522 523 524
      res,
      paddle2argument_.end(),
      platform::errors::NotFound("Variable(%s) not found in compilation result",
                                 var_name));
525
  return static_cast<cinn_buffer_t*>(res->second);
526 527
}

528
}  // namespace operators::details
529
}  // namespace paddle