cinn_launch_context.cc 19.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/operators/cinn/cinn_launch_context.h"
16

17
#include <algorithm>
18
#include <functional>
19
#include <utility>
20
#include <vector>
21

22 23
#include "cinn/hlir/framework/graph_compiler.h"
#include "cinn/hlir/framework/instruction.h"
24 25 26
#include "cinn/hlir/framework/scope.h"
#include "cinn/hlir/framework/tensor.h"
#include "cinn/runtime/cinn_runtime.h"
27 28
#include "cinn/runtime/intrinsic.h"
#include "paddle/fluid/framework/convert_utils.h"
29 30 31 32 33 34
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
35
#include "paddle/fluid/framework/paddle2cinn/transform_type.h"
36 37
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
38
#include "paddle/fluid/framework/variable_helper.h"
39
#include "paddle/fluid/operators/cinn/cinn_op_helper.h"
40
#include "paddle/fluid/platform/device_context.h"
41
#include "paddle/fluid/platform/place.h"
42
#include "paddle/fluid/string/printf.h"
43
#include "paddle/phi/core/ddim.h"
44

45
namespace paddle {
46 47
namespace operators::details {

48 49
using framework::LoDTensor;
using framework::ParallelExecutor;
50
using framework::Scope;
51 52 53
using CinnInstruction = ::cinn::hlir::framework::Instruction;
using CinnRuntimeProgram = ::cinn::hlir::framework::Program;
using framework::paddle2cinn::kMemOptVarInfoFromMainGraph;
54
using framework::paddle2cinn::Name2VarInfoMap;
55

56 57 58 59
CinnLaunchContext::CinnLaunchContext(const framework::ir::Graph& graph,
                                     const CinnCompiledObject& compiled_obj)
    : cinn_scope_(compiled_obj.scope) {
  // collect all names of the CINN execution arguments
60
  auto var_names = cinn_scope_->var_names();
61
  cinn_argument_names_.reserve(var_names.size());
62
  std::transform(
63 64
      var_names.begin(),
      var_names.end(),
65
      std::inserter(cinn_argument_names_, cinn_argument_names_.end()),
66
      [](const auto& name_view) { return std::string(name_view.data()); });
67
  // build name map between the original variables and compiled ones
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93
  BuildVarNameMap(compiled_obj.paddle2cinn_varmap, cinn_argument_names_);

  const auto& input_var_names =
      graph.Get<std::vector<std::string>>(framework::paddle2cinn::kInputVars);
  const auto& output_var_names =
      graph.Get<std::vector<std::string>>(framework::paddle2cinn::kOutputVars);
  internal_var_names_ =
      ExtractInternalVarNames(input_var_names, output_var_names);
  // initialize all execution arguments
  InitializeArguments();
  // DEPRECATED(CtfGo): following callback assignment will be deprecated soon
  for (auto&& var_name : input_var_names) {
    if (IsVariableUsed(var_name)) {
      AssignExternalVariable(var_name);
    }
  }
  for (auto&& var_name : output_var_names) {
    AssignExternalVariable(var_name);
  }
  for (auto&& var_name : internal_var_names_) {
    AssignInternalVariable(var_name);
  }

  // Convert the CINN runtime program to a Paddle graph
  runtime_graph_ = std::make_unique<framework::ir::Graph>(
      BuildCompiledProgram(graph, compiled_obj));
94 95 96 97 98 99 100 101 102 103 104 105
  auto& outer_varinfo = graph.Get<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph);
  runtime_graph_->SetNotOwned<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph,
                                               &outer_varinfo);
  // collect skip_eager_vars
  skip_eager_vars_.reserve(input_var_names.size() + output_var_names.size());
  auto add_skip_var_fn = [&outer_varinfo, this](const std::string& var_name) {
    // if a var exists at outer_varinfo map,
    // that means it can be erased after graph execution
    if (!outer_varinfo.count(var_name)) {
      skip_eager_vars_.emplace_back(var_name);
    }
  };
106 107 108 109
  std::for_each(
      input_var_names.begin(), input_var_names.end(), add_skip_var_fn);
  std::for_each(
      output_var_names.begin(), output_var_names.end(), add_skip_var_fn);
110 111 112 113 114
  VLOG(4) << string::Sprintf(
      "Distribution of variables in the graph compiled:"
      "input[%lu],internal[%lu],output[%lu],"
      "outer_eager_deletion[%lu],skip_eager_deletion[%lu],"
      "initialized_beforehand[%lu]",
115 116 117 118 119
      input_var_names.size(),
      internal_var_names_.size(),
      output_var_names.size(),
      outer_varinfo.size(),
      skip_eager_vars_.size(),
120
      initialized_beforehand_vars_.size());
121 122 123 124 125 126 127 128 129 130 131 132 133
}

void CinnLaunchContext::BuildVarNameMap(
    const std::unordered_map<std::string, std::string>& compiled_varmap,
    const std::unordered_set<std::string>& argument_names) {
  for (const auto& x : compiled_varmap) {
    if (!argument_names.count(x.second)) {
      // exclude variables not used
      continue;
    }
    // copy to local paddle2cinn map
    paddle2cinn_varmap_.emplace(x.first, x.second);
    // add an entry to local cinn2paddle map reversely
134 135
    auto res = cinn2paddle_varmap_.emplace(x.second, x.first);
    PADDLE_ENFORCE_EQ(
136 137
        res.second,
        true,
138 139
        platform::errors::InvalidArgument(
            "Cinn variable(%s) maps to more than one paddle variable(%s,%s)",
140 141 142
            x.second,
            res.first->second,
            x.first));
143
  }
144 145 146 147
  // supplement the relations of the remain variables
  // not appearing in above map, which are internal variables
  // and here we use the names from cinn compiled.
  for (const auto& var_name : argument_names) {
148 149 150 151 152
    if (!cinn2paddle_varmap_.count(var_name)) {
      cinn2paddle_varmap_.emplace(var_name, var_name);
      paddle2cinn_varmap_.emplace(var_name, var_name);
    }
  }
153 154

  PADDLE_ENFORCE_EQ(
155 156
      paddle2cinn_varmap_.size(),
      cinn2paddle_varmap_.size(),
157 158
      platform::errors::PreconditionNotMet(
          "Size of variables is not euqal, paddle[%ld] vs cinn[%ld]",
159 160
          paddle2cinn_varmap_.size(),
          cinn2paddle_varmap_.size()));
161 162
}

163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
void CinnLaunchContext::UpdateCapturedEnv(const framework::Scope& scope,
                                          const platform::Place& place) {
  if (std::addressof(scope) == cached_scope_ &&
      std::addressof(place) == cached_place_) {
    VLOG(4) << "Captured scope:" << cached_scope_ << ", place:" << cached_place_
            << " are not changed";
    return;
  }
  cached_scope_ = std::addressof(scope);
  cached_place_ = std::addressof(place);
  cached_temp_scope_ = scope.NewTmpScope();
  VLOG(4) << "Captured env is update, scope:" << cached_scope_ << "->"
          << std::addressof(scope) << ", place:" << cached_place_ << "->"
          << std::addressof(place);
}

179 180
bool CinnLaunchContext::IsVariableUsed(const std::string& var_name) const {
  return paddle2cinn_varmap_.count(var_name) > 0;
181 182
}

183 184
CinnTensor CinnLaunchContext::GetCinnTensorOfVar(const std::string& var_name) {
  PADDLE_ENFORCE_EQ(
185 186
      IsVariableUsed(var_name),
      true,
187 188
      platform::errors::NotFound("Variable(%s) not applied in CINN", var_name));
  const auto& arg_name = paddle2cinn_varmap_.at(var_name);
189
  return cinn_scope_->GetTensor(arg_name);
190 191
}

192 193 194 195 196
std::unordered_set<std::string> CinnLaunchContext::ExtractInternalVarNames(
    const std::vector<std::string>& input_var_names,
    const std::vector<std::string>& output_var_names) {
  std::unordered_set<std::string> remain_var_names;
  remain_var_names.reserve(paddle2cinn_varmap_.size());
197 198
  std::transform(paddle2cinn_varmap_.begin(),
                 paddle2cinn_varmap_.end(),
199 200 201 202 203 204 205
                 std::inserter(remain_var_names, remain_var_names.end()),
                 [](const auto& name_pair) { return name_pair.first; });

  // exclude the input variables and output variables
  auto exclude_names_fn = [&remain_var_names](const std::string& var_name) {
    remain_var_names.erase(var_name);
  };
206 207 208 209
  std::for_each(
      input_var_names.begin(), input_var_names.end(), exclude_names_fn);
  std::for_each(
      output_var_names.begin(), output_var_names.end(), exclude_names_fn);
210
  return remain_var_names;
211 212
}

213 214
void CinnLaunchContext::CheckTensorEquivalent(
    const std::string& var_name, const framework::LoDTensor& paddle_tensor) {
215 216
  PADDLE_ENFORCE_EQ(IsVariableUsed(var_name),
                    true,
217 218
                    platform::errors::InvalidArgument(
                        "Variable(%s) not applied in cinn", var_name));
219
  // check dimension
220
  auto cinn_tensor = GetCinnTensorOfVar(var_name);
221
  auto cinn_dims = phi::make_ddim(cinn_tensor->shape().data());
222 223
  PADDLE_ENFORCE_EQ(paddle_tensor.dims(),
                    cinn_dims,
224 225
                    platform::errors::PreconditionNotMet(
                        "Tensors' shape in variable(%s) are not equivalent, "
226
                        "paddle is = [%s], but cinn is = [%s].",
227 228 229
                        var_name,
                        paddle_tensor.dims(),
                        cinn_dims));
230

231 232
  auto cinn_dtype =
      framework::paddle2cinn::TransToPaddleDataType(cinn_tensor->type());
233 234
  PADDLE_ENFORCE_EQ(paddle_tensor.dtype(),
                    cinn_dtype,
235 236 237
                    platform::errors::PreconditionNotMet(
                        "Tensors' dtype in variable(%s) are not equivalent, "
                        "paddle is = [%s], but cinn is = [%s].",
238 239 240
                        var_name,
                        paddle_tensor.dtype(),
                        cinn_dtype));
241 242
}

243 244 245 246 247 248 249
void CinnLaunchContext::InitializeArguments() {
  for (auto&& arg : cinn_argument_names_) {
    auto cinn_buffer = std::make_unique<cinn_buffer_t>();
    auto cinn_tensor = GetCinnTensorOfVar(cinn2paddle_varmap_.at(arg));
    // assign dimensions with corresponding compiled tensor
    cinn_buffer->resize(cinn_tensor->shape().data().data(),
                        cinn_tensor->shape().data().size());
250
    cinn_buffer->type = cinn::runtime::ToRuntimeType(cinn_tensor->type());
251
    VLOG(4) << string::Sprintf(
252 253
        "Append an argument:name(%s),dims(%s),type(%s)",
        arg,
254
        framework::DDim(cinn_buffer->dims, cinn_buffer->dimensions).to_str(),
255
        cinn_tensor->type());
256 257 258
    name2argument_.emplace(arg, cinn_buffer.get());
    hold_buffers_.emplace_back(std::move(cinn_buffer));
  }
259
  VLOG(4) << "Total argument size:" << name2argument_.size();
260 261
}

262
void CinnLaunchContext::AssignExternalVariable(const std::string& var_name) {
263 264
  PADDLE_ENFORCE_EQ(IsVariableUsed(var_name),
                    true,
265 266
                    platform::errors::InvalidArgument(
                        "Variable(%s) not applied in cinn", var_name));
267 268
  auto* cinn_buffer = GetCinnBufferOfVar(var_name);
  // assign external malloc/free callbacks of cinn_buffer_t
269
  cinn_buffer->external_malloc = new std::function<int(void*, cinn_buffer_t*)>(
270 271
      [this, var_name](void* ctx, cinn_buffer_t* buffer) {
        auto* tensor = cached_scope_->GetVar(var_name)->GetMutable<LoDTensor>();
272
        tensor->Resize(framework::DDim(buffer->dims, buffer->dimensions));
273 274 275
        buffer->memory = reinterpret_cast<uint8_t*>(tensor->mutable_data(
            *cached_place_,
            framework::paddle2cinn::TransToPaddleDataType(buffer->type)));
276 277 278 279 280 281 282 283 284
        return 0;
      });

  // external variables will be recycled by global gc, so do nothing here
  cinn_buffer->external_free = new std::function<int(void*, cinn_buffer_t*)>(
      [](void* ctx, cinn_buffer_t* buffer) {
        // Do nothing
        return 0;
      });
285
}
286

287
void CinnLaunchContext::AssignInternalVariable(const std::string& var_name) {
288 289
  PADDLE_ENFORCE_EQ(IsVariableUsed(var_name),
                    true,
290 291
                    platform::errors::InvalidArgument(
                        "Variable(%s) not applied in cinn", var_name));
292 293
  auto* cinn_buffer = GetCinnBufferOfVar(var_name);
  // assign external malloc/free callbacks of cinn_buffer_t
294
  cinn_buffer->external_malloc = new std::function<int(void*, cinn_buffer_t*)>(
295
      [this, var_name](void* ctx, cinn_buffer_t* buffer) {
296
        auto* tensor =
297
            cached_temp_scope_->Var(var_name)->GetMutable<LoDTensor>();
298
        tensor->Resize(framework::DDim(buffer->dims, buffer->dimensions));
299 300 301
        buffer->memory = reinterpret_cast<uint8_t*>(tensor->mutable_data(
            *cached_place_,
            framework::paddle2cinn::TransToPaddleDataType(buffer->type)));
302 303 304
        return 0;
      });

305 306
  // internal variables should release its buffer immediately
  // if no instruction use it
307
  cinn_buffer->external_free = new std::function<int(void*, cinn_buffer_t*)>(
308
      [this, var_name](void* ctx, cinn_buffer_t* buffer) {
309
        auto* tensor =
310
            cached_temp_scope_->GetVar(var_name)->GetMutable<LoDTensor>();
311
        tensor->clear();
312 313
        return 0;
      });
314 315
}

316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
framework::ProgramDesc CinnLaunchContext::BuildCompiledProgram(
    const framework::ir::Graph& graph, const CinnCompiledObject& compiled_obj) {
  CinnRuntimeProgram* runtime_program = compiled_obj.runtime_program.get();
  // Step 0: Create an empty program_desc, there will be only one block
  framework::ProgramDesc program_desc;
  auto* block = program_desc.MutableBlock(0);
  const std::vector<std::unique_ptr<CinnInstruction>>& instructions =
      runtime_program->GetRunInstructions();

  // build a map that links the name of a Paddle variable to its VarDesc
  const std::unordered_set<framework::ir::Node*>& nodes = graph.Nodes();
  std::unordered_map<std::string, framework::VarDesc*> original_vardescs;
  for (auto* node : nodes) {
    if (node->IsVar() && node->Var()) {
      original_vardescs.emplace(node->Name(), node->Var());
    }
  }

  // Step 1: Create a VarDesc for each execution argument:
  //   (1) For those variables that are input or output variables of the
  //   original subgraph, there must exist an original VarDesc, so
  //   we copy some useful info(such as IsParameter,Persistable)
  //   to the new VarDesc.
  //   (2) For all variables, the shape, data type of their VarDescs
  //   are set by values of the corresponding compiled tensors,
  //   including the in/out variables where the equiality between their tensors
  //   and the CINN compiled ones is verified in corresponding cinn_launch_op.
343
  std::unordered_set<std::string> has_refer_vars;
344 345 346 347 348 349 350 351 352 353
  for (auto&& arg : cinn_argument_names_) {
    const std::string& var_name = cinn2paddle_varmap_.at(arg);
    framework::VarDesc* var_desc = block->Var(var_name);
    var_desc->SetType(framework::proto::VarType::LOD_TENSOR);

    auto res = original_vardescs.find(var_name);
    if (res != original_vardescs.end()) {
      auto* ori_desc = res->second;
      var_desc->SetPersistable(ori_desc->Persistable());
      var_desc->SetIsParameter(ori_desc->IsParameter());
354
      has_refer_vars.insert(var_name);
355 356 357
    }

    auto cinn_tensor = GetCinnTensorOfVar(var_name);
358 359
    var_desc->SetDataType(framework::TransToProtoVarType(
        framework::paddle2cinn::TransToPaddleDataType(cinn_tensor->type())));
360 361 362 363 364 365 366 367 368 369 370 371 372
    var_desc->SetShape(std::vector<int64_t>(cinn_tensor->shape().data().begin(),
                                            cinn_tensor->shape().data().end()));
  }

  // transform names of the input or output arguments of a CINN instruction
  // to the corresponding Paddle variable names, and repack them as one vector
  auto trans_and_pack_args_fn =
      [this](const std::vector<std::vector<std::string>>& cinn_args_array) {
        std::vector<std::string> var_names;
        for (auto&& cinn_args : cinn_args_array) {
          for (auto&& arg : cinn_args) {
            auto res = cinn2paddle_varmap_.find(arg);
            PADDLE_ENFORCE_NE(
373 374
                res,
                cinn2paddle_varmap_.end(),
375 376 377 378 379 380 381 382 383 384 385 386 387
                platform::errors::NotFound("Argument(%s) not found", arg));
            var_names.emplace_back(res->second);
          }
        }
        return var_names;
      };

  // Step 2: create a VarDesc of cinn_instruction_run op for
  //         each CINN instruction and append it to the main block
  for (auto ins_idx = 0; ins_idx < instructions.size(); ++ins_idx) {
    auto* ins = instructions.at(ins_idx).get();
    auto in_args = trans_and_pack_args_fn(ins->GetInArgs());
    auto out_args = trans_and_pack_args_fn(ins->GetOutArgs());
388 389 390 391 392 393
    for (auto&& var_name : in_args) {
      if (!has_refer_vars.count(var_name)) {
        initialized_beforehand_vars_.emplace_back(var_name);
      }
    }
    has_refer_vars.insert(out_args.begin(), out_args.end());
394 395 396 397 398 399 400 401 402 403 404

    auto* op_desc = block->AppendOp();
    op_desc->SetType("cinn_instruction_run");
    op_desc->SetInput(kX, in_args);
    op_desc->SetOutput(kOutputs, out_args);
    op_desc->SetAttr(kCachedIndex,
                     {static_cast<int64_t>(compiled_obj.cached_index)});
    op_desc->SetAttr(kInstructionIndex, {static_cast<int64_t>(ins_idx)});
  }

  return program_desc;
405 406
}

407 408 409 410
ParallelExecutor* CinnLaunchContext::InitializePE(const platform::Place& place,
                                                  framework::Scope* scope) {
  if (!parallel_executor_) {
    framework::details::ExecutionStrategy exec_strategy;
411 412
    exec_strategy.num_threads_ = 1;
    exec_strategy.use_device_ = platform::Place2DeviceType(place);
413 414 415 416 417 418
    framework::details::BuildStrategy build_strategy;
    parallel_executor_ = std::make_unique<ParallelExecutor>(
        place, scope, exec_strategy, build_strategy, runtime_graph_.get());
  }

  // update the scope bound to an OpHandle and rebuild temporary variables
419
  VLOG(4) << "Reset scope and initialize temporary variables";
420 421 422
  std::unordered_map<Scope*, Scope*> scope_map = {
      {parallel_executor_->GetLocalScopes().front(), scope}};
  parallel_executor_->ResetOpHandleScopeMapOfGraphs(scope_map);
423 424 425 426 427 428 429 430 431 432 433 434 435 436
  // instead of using the PrepareVariables function of ParallelExecutor to
  // initialize all variables, here we only initialize internal variables
  // because external variables are already included in parent scope.
  for (auto&& var_name : internal_var_names_) {
    auto* var = scope->FindVar(var_name);
    if (var != nullptr) {
      VLOG(5) << "internal variable:" << var_name
              << " has been initialized beforehand in global scope, skipped.";
      continue;
    }
    framework::InitializeVariable(scope->Var(var_name),
                                  framework::proto::VarType::LOD_TENSOR);
  }

437 438 439 440 441
  for (auto&& var_name : initialized_beforehand_vars_) {
    auto* var = scope->GetVar(var_name);
    auto* buffer = GetCinnBufferOfVar(var_name);
    auto dim = framework::DDim(buffer->dims, buffer->dimensions);
    var->GetMutable<LoDTensor>()->Resize(dim);
442 443
    var->GetMutable<LoDTensor>()->mutable_data(
        place, framework::paddle2cinn::TransToPaddleDataType(buffer->type));
444
  }
445
  return parallel_executor_.get();
446 447
}

448
cinn_buffer_t* CinnLaunchContext::GetCinnBufferOfVar(
449 450
    const std::string& var_name) {
  auto it = paddle2cinn_varmap_.find(var_name);
451
  PADDLE_ENFORCE_NE(
452 453
      it,
      paddle2cinn_varmap_.end(),
454
      platform::errors::InvalidArgument(
455 456
          "Variable(%s) not found in compilation result", var_name));
  auto res = name2argument_.find(it->second);
457 458
  PADDLE_ENFORCE_NE(res,
                    name2argument_.end(),
459 460 461
                    platform::errors::NotFound(
                        "Argument(%s) not be initialized", it->second));
  return static_cast<cinn_buffer_t*>(res->second);
462 463
}

464
}  // namespace operators::details
465
}  // namespace paddle