cinn_launch_context.cc 21.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include "paddle/fluid/operators/cinn/cinn_launch_context.h"
16

17
#include <algorithm>
18
#include <functional>
19
#include <utility>
20
#include <vector>
21

22 23
#include "cinn/hlir/framework/graph_compiler.h"
#include "cinn/hlir/framework/instruction.h"
24 25 26
#include "cinn/hlir/framework/scope.h"
#include "cinn/hlir/framework/tensor.h"
#include "cinn/runtime/cinn_runtime.h"
27 28
#include "cinn/runtime/intrinsic.h"
#include "paddle/fluid/framework/convert_utils.h"
29 30 31 32 33 34
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
35
#include "paddle/fluid/framework/paddle2cinn/transform_type.h"
36 37
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
38
#include "paddle/fluid/framework/variable_helper.h"
39
#include "paddle/fluid/operators/cinn/cinn_op_helper.h"
40
#include "paddle/fluid/platform/device_context.h"
41
#include "paddle/fluid/platform/place.h"
42
#include "paddle/fluid/string/printf.h"
43
#include "paddle/phi/core/ddim.h"
44

45
namespace paddle {
46 47
namespace operators::details {

48
using framework::ParallelExecutor;
49
using framework::Scope;
50 51 52
using CinnInstruction = ::cinn::hlir::framework::Instruction;
using CinnRuntimeProgram = ::cinn::hlir::framework::Program;
using framework::paddle2cinn::kMemOptVarInfoFromMainGraph;
53
using framework::paddle2cinn::Name2VarInfoMap;
54

55 56 57 58
CinnLaunchContext::CinnLaunchContext(const framework::ir::Graph& graph,
                                     const CinnCompiledObject& compiled_obj)
    : cinn_scope_(compiled_obj.scope) {
  // collect all names of the CINN execution arguments
59
  auto var_names = cinn_scope_->var_names();
60
  cinn_argument_names_.reserve(var_names.size());
61
  std::transform(
62 63
      var_names.begin(),
      var_names.end(),
64
      std::inserter(cinn_argument_names_, cinn_argument_names_.end()),
65
      [](const auto& name_view) { return std::string(name_view.data()); });
66
  // build name map between the original variables and compiled ones
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
  BuildVarNameMap(compiled_obj.paddle2cinn_varmap, cinn_argument_names_);

  const auto& input_var_names =
      graph.Get<std::vector<std::string>>(framework::paddle2cinn::kInputVars);
  const auto& output_var_names =
      graph.Get<std::vector<std::string>>(framework::paddle2cinn::kOutputVars);
  internal_var_names_ =
      ExtractInternalVarNames(input_var_names, output_var_names);
  // initialize all execution arguments
  InitializeArguments();
  // DEPRECATED(CtfGo): following callback assignment will be deprecated soon
  for (auto&& var_name : input_var_names) {
    if (IsVariableUsed(var_name)) {
      AssignExternalVariable(var_name);
    }
  }
  for (auto&& var_name : output_var_names) {
    AssignExternalVariable(var_name);
  }
  for (auto&& var_name : internal_var_names_) {
    AssignInternalVariable(var_name);
  }

  // Convert the CINN runtime program to a Paddle graph
91 92 93
  runtime_program_desc_ = BuildCompiledProgram(graph, compiled_obj);
  runtime_graph_ =
      std::make_unique<framework::ir::Graph>(*runtime_program_desc_.get());
94 95 96 97 98 99 100 101 102 103
  auto& outer_varinfo = graph.Get<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph);
  runtime_graph_->SetNotOwned<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph,
                                               &outer_varinfo);
  // collect skip_eager_vars
  skip_eager_vars_.reserve(input_var_names.size() + output_var_names.size());
  auto add_skip_var_fn = [&outer_varinfo, this](const std::string& var_name) {
    // if a var exists at outer_varinfo map,
    // that means it can be erased after graph execution
    if (!outer_varinfo.count(var_name)) {
      skip_eager_vars_.emplace_back(var_name);
104
      skip_gc_vars_.insert(var_name);
105 106
    }
  };
107 108 109 110
  std::for_each(
      input_var_names.begin(), input_var_names.end(), add_skip_var_fn);
  std::for_each(
      output_var_names.begin(), output_var_names.end(), add_skip_var_fn);
111 112 113 114 115
  VLOG(4) << string::Sprintf(
      "Distribution of variables in the graph compiled:"
      "input[%lu],internal[%lu],output[%lu],"
      "outer_eager_deletion[%lu],skip_eager_deletion[%lu],"
      "initialized_beforehand[%lu]",
116 117 118 119 120
      input_var_names.size(),
      internal_var_names_.size(),
      output_var_names.size(),
      outer_varinfo.size(),
      skip_eager_vars_.size(),
121
      initialized_beforehand_vars_.size());
122 123 124 125 126 127 128 129 130 131 132 133 134
}

void CinnLaunchContext::BuildVarNameMap(
    const std::unordered_map<std::string, std::string>& compiled_varmap,
    const std::unordered_set<std::string>& argument_names) {
  for (const auto& x : compiled_varmap) {
    if (!argument_names.count(x.second)) {
      // exclude variables not used
      continue;
    }
    // copy to local paddle2cinn map
    paddle2cinn_varmap_.emplace(x.first, x.second);
    // add an entry to local cinn2paddle map reversely
135 136
    auto res = cinn2paddle_varmap_.emplace(x.second, x.first);
    PADDLE_ENFORCE_EQ(
137 138
        res.second,
        true,
139 140
        platform::errors::InvalidArgument(
            "Cinn variable(%s) maps to more than one paddle variable(%s,%s)",
141 142 143
            x.second,
            res.first->second,
            x.first));
144
  }
145 146 147 148
  // supplement the relations of the remain variables
  // not appearing in above map, which are internal variables
  // and here we use the names from cinn compiled.
  for (const auto& var_name : argument_names) {
149 150 151 152 153
    if (!cinn2paddle_varmap_.count(var_name)) {
      cinn2paddle_varmap_.emplace(var_name, var_name);
      paddle2cinn_varmap_.emplace(var_name, var_name);
    }
  }
154 155

  PADDLE_ENFORCE_EQ(
156 157
      paddle2cinn_varmap_.size(),
      cinn2paddle_varmap_.size(),
158 159
      platform::errors::PreconditionNotMet(
          "Size of variables is not euqal, paddle[%ld] vs cinn[%ld]",
160 161
          paddle2cinn_varmap_.size(),
          cinn2paddle_varmap_.size()));
162 163
}

164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
void CinnLaunchContext::UpdateCapturedEnv(const framework::Scope& scope,
                                          const platform::Place& place) {
  if (std::addressof(scope) == cached_scope_ &&
      std::addressof(place) == cached_place_) {
    VLOG(4) << "Captured scope:" << cached_scope_ << ", place:" << cached_place_
            << " are not changed";
    return;
  }
  cached_scope_ = std::addressof(scope);
  cached_place_ = std::addressof(place);
  cached_temp_scope_ = scope.NewTmpScope();
  VLOG(4) << "Captured env is update, scope:" << cached_scope_ << "->"
          << std::addressof(scope) << ", place:" << cached_place_ << "->"
          << std::addressof(place);
}

180 181
bool CinnLaunchContext::IsVariableUsed(const std::string& var_name) const {
  return paddle2cinn_varmap_.count(var_name) > 0;
182 183
}

184 185
CinnTensor CinnLaunchContext::GetCinnTensorOfVar(const std::string& var_name) {
  PADDLE_ENFORCE_EQ(
186 187
      IsVariableUsed(var_name),
      true,
188 189
      platform::errors::NotFound("Variable(%s) not applied in CINN", var_name));
  const auto& arg_name = paddle2cinn_varmap_.at(var_name);
190
  return cinn_scope_->GetTensor(arg_name);
191 192
}

193 194 195 196 197
std::unordered_set<std::string> CinnLaunchContext::ExtractInternalVarNames(
    const std::vector<std::string>& input_var_names,
    const std::vector<std::string>& output_var_names) {
  std::unordered_set<std::string> remain_var_names;
  remain_var_names.reserve(paddle2cinn_varmap_.size());
198 199
  std::transform(paddle2cinn_varmap_.begin(),
                 paddle2cinn_varmap_.end(),
200 201 202 203 204 205 206
                 std::inserter(remain_var_names, remain_var_names.end()),
                 [](const auto& name_pair) { return name_pair.first; });

  // exclude the input variables and output variables
  auto exclude_names_fn = [&remain_var_names](const std::string& var_name) {
    remain_var_names.erase(var_name);
  };
207 208 209 210
  std::for_each(
      input_var_names.begin(), input_var_names.end(), exclude_names_fn);
  std::for_each(
      output_var_names.begin(), output_var_names.end(), exclude_names_fn);
211
  return remain_var_names;
212 213
}

214
void CinnLaunchContext::CheckTensorEquivalent(
215
    const std::string& var_name, const phi::DenseTensor& paddle_tensor) {
216 217
  PADDLE_ENFORCE_EQ(IsVariableUsed(var_name),
                    true,
218 219
                    platform::errors::InvalidArgument(
                        "Variable(%s) not applied in cinn", var_name));
220
  // check dimension
221
  auto cinn_tensor = GetCinnTensorOfVar(var_name);
222
  auto cinn_dims = phi::make_ddim(cinn_tensor->shape().data());
223 224
  PADDLE_ENFORCE_EQ(paddle_tensor.dims(),
                    cinn_dims,
225 226
                    platform::errors::PreconditionNotMet(
                        "Tensors' shape in variable(%s) are not equivalent, "
227
                        "paddle is = [%s], but cinn is = [%s].",
228 229 230
                        var_name,
                        paddle_tensor.dims(),
                        cinn_dims));
231

232 233
  auto cinn_dtype =
      framework::paddle2cinn::TransToPaddleDataType(cinn_tensor->type());
234 235
  PADDLE_ENFORCE_EQ(paddle_tensor.dtype(),
                    cinn_dtype,
236 237 238
                    platform::errors::PreconditionNotMet(
                        "Tensors' dtype in variable(%s) are not equivalent, "
                        "paddle is = [%s], but cinn is = [%s].",
239 240 241
                        var_name,
                        paddle_tensor.dtype(),
                        cinn_dtype));
242 243
}

244 245 246 247 248 249 250
void CinnLaunchContext::InitializeArguments() {
  for (auto&& arg : cinn_argument_names_) {
    auto cinn_buffer = std::make_unique<cinn_buffer_t>();
    auto cinn_tensor = GetCinnTensorOfVar(cinn2paddle_varmap_.at(arg));
    // assign dimensions with corresponding compiled tensor
    cinn_buffer->resize(cinn_tensor->shape().data().data(),
                        cinn_tensor->shape().data().size());
251
    cinn_buffer->type = cinn::runtime::ToRuntimeType(cinn_tensor->type());
252
    VLOG(4) << string::Sprintf(
253 254
        "Append an argument:name(%s),dims(%s),type(%s)",
        arg,
255
        framework::DDim(cinn_buffer->dims, cinn_buffer->dimensions).to_str(),
256
        cinn_tensor->type());
257 258 259
    name2argument_.emplace(arg, cinn_buffer.get());
    hold_buffers_.emplace_back(std::move(cinn_buffer));
  }
260
  VLOG(4) << "Total argument size:" << name2argument_.size();
261 262
}

263
void CinnLaunchContext::AssignExternalVariable(const std::string& var_name) {
264 265
  PADDLE_ENFORCE_EQ(IsVariableUsed(var_name),
                    true,
266 267
                    platform::errors::InvalidArgument(
                        "Variable(%s) not applied in cinn", var_name));
268 269
  auto* cinn_buffer = GetCinnBufferOfVar(var_name);
  // assign external malloc/free callbacks of cinn_buffer_t
270
  cinn_buffer->external_malloc = new std::function<int(void*, cinn_buffer_t*)>(
271
      [this, var_name](void* ctx, cinn_buffer_t* buffer) {
272 273
        auto* tensor =
            cached_scope_->GetVar(var_name)->GetMutable<phi::DenseTensor>();
274
        tensor->Resize(framework::DDim(buffer->dims, buffer->dimensions));
275 276 277
        buffer->memory = reinterpret_cast<uint8_t*>(tensor->mutable_data(
            *cached_place_,
            framework::paddle2cinn::TransToPaddleDataType(buffer->type)));
278 279 280 281 282 283 284 285 286
        return 0;
      });

  // external variables will be recycled by global gc, so do nothing here
  cinn_buffer->external_free = new std::function<int(void*, cinn_buffer_t*)>(
      [](void* ctx, cinn_buffer_t* buffer) {
        // Do nothing
        return 0;
      });
287
}
288

289
void CinnLaunchContext::AssignInternalVariable(const std::string& var_name) {
290 291
  PADDLE_ENFORCE_EQ(IsVariableUsed(var_name),
                    true,
292 293
                    platform::errors::InvalidArgument(
                        "Variable(%s) not applied in cinn", var_name));
294 295
  auto* cinn_buffer = GetCinnBufferOfVar(var_name);
  // assign external malloc/free callbacks of cinn_buffer_t
296
  cinn_buffer->external_malloc = new std::function<int(void*, cinn_buffer_t*)>(
297
      [this, var_name](void* ctx, cinn_buffer_t* buffer) {
298
        auto* tensor =
299
            cached_temp_scope_->Var(var_name)->GetMutable<phi::DenseTensor>();
300
        tensor->Resize(framework::DDim(buffer->dims, buffer->dimensions));
301 302 303
        buffer->memory = reinterpret_cast<uint8_t*>(tensor->mutable_data(
            *cached_place_,
            framework::paddle2cinn::TransToPaddleDataType(buffer->type)));
304 305 306
        return 0;
      });

307 308
  // internal variables should release its buffer immediately
  // if no instruction use it
309
  cinn_buffer->external_free = new std::function<int(void*, cinn_buffer_t*)>(
310
      [this, var_name](void* ctx, cinn_buffer_t* buffer) {
311 312
        auto* tensor = cached_temp_scope_->GetVar(var_name)
                           ->GetMutable<phi::DenseTensor>();
313
        tensor->clear();
314 315
        return 0;
      });
316 317
}

318
std::unique_ptr<framework::ProgramDesc> CinnLaunchContext::BuildCompiledProgram(
319 320 321
    const framework::ir::Graph& graph, const CinnCompiledObject& compiled_obj) {
  CinnRuntimeProgram* runtime_program = compiled_obj.runtime_program.get();
  // Step 0: Create an empty program_desc, there will be only one block
322 323 324 325
  // framework::ProgramDesc program_desc;
  std::unique_ptr<framework::ProgramDesc> program_desc(
      new framework::ProgramDesc());
  auto* block = program_desc->MutableBlock(0);
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
  const std::vector<std::unique_ptr<CinnInstruction>>& instructions =
      runtime_program->GetRunInstructions();

  // build a map that links the name of a Paddle variable to its VarDesc
  const std::unordered_set<framework::ir::Node*>& nodes = graph.Nodes();
  std::unordered_map<std::string, framework::VarDesc*> original_vardescs;
  for (auto* node : nodes) {
    if (node->IsVar() && node->Var()) {
      original_vardescs.emplace(node->Name(), node->Var());
    }
  }

  // Step 1: Create a VarDesc for each execution argument:
  //   (1) For those variables that are input or output variables of the
  //   original subgraph, there must exist an original VarDesc, so
  //   we copy some useful info(such as IsParameter,Persistable)
  //   to the new VarDesc.
  //   (2) For all variables, the shape, data type of their VarDescs
  //   are set by values of the corresponding compiled tensors,
  //   including the in/out variables where the equiality between their tensors
  //   and the CINN compiled ones is verified in corresponding cinn_launch_op.
347
  std::unordered_set<std::string> has_refer_vars;
348 349 350 351 352 353 354 355 356 357
  for (auto&& arg : cinn_argument_names_) {
    const std::string& var_name = cinn2paddle_varmap_.at(arg);
    framework::VarDesc* var_desc = block->Var(var_name);
    var_desc->SetType(framework::proto::VarType::LOD_TENSOR);

    auto res = original_vardescs.find(var_name);
    if (res != original_vardescs.end()) {
      auto* ori_desc = res->second;
      var_desc->SetPersistable(ori_desc->Persistable());
      var_desc->SetIsParameter(ori_desc->IsParameter());
358
      has_refer_vars.insert(var_name);
359 360 361
    }

    auto cinn_tensor = GetCinnTensorOfVar(var_name);
362 363
    var_desc->SetDataType(framework::TransToProtoVarType(
        framework::paddle2cinn::TransToPaddleDataType(cinn_tensor->type())));
364 365 366 367 368 369 370 371 372 373 374 375 376
    var_desc->SetShape(std::vector<int64_t>(cinn_tensor->shape().data().begin(),
                                            cinn_tensor->shape().data().end()));
  }

  // transform names of the input or output arguments of a CINN instruction
  // to the corresponding Paddle variable names, and repack them as one vector
  auto trans_and_pack_args_fn =
      [this](const std::vector<std::vector<std::string>>& cinn_args_array) {
        std::vector<std::string> var_names;
        for (auto&& cinn_args : cinn_args_array) {
          for (auto&& arg : cinn_args) {
            auto res = cinn2paddle_varmap_.find(arg);
            PADDLE_ENFORCE_NE(
377 378
                res,
                cinn2paddle_varmap_.end(),
379 380 381 382 383 384 385 386 387 388 389 390 391
                platform::errors::NotFound("Argument(%s) not found", arg));
            var_names.emplace_back(res->second);
          }
        }
        return var_names;
      };

  // Step 2: create a VarDesc of cinn_instruction_run op for
  //         each CINN instruction and append it to the main block
  for (auto ins_idx = 0; ins_idx < instructions.size(); ++ins_idx) {
    auto* ins = instructions.at(ins_idx).get();
    auto in_args = trans_and_pack_args_fn(ins->GetInArgs());
    auto out_args = trans_and_pack_args_fn(ins->GetOutArgs());
392 393 394 395 396 397
    for (auto&& var_name : in_args) {
      if (!has_refer_vars.count(var_name)) {
        initialized_beforehand_vars_.emplace_back(var_name);
      }
    }
    has_refer_vars.insert(out_args.begin(), out_args.end());
398 399 400 401 402 403 404 405 406 407 408

    auto* op_desc = block->AppendOp();
    op_desc->SetType("cinn_instruction_run");
    op_desc->SetInput(kX, in_args);
    op_desc->SetOutput(kOutputs, out_args);
    op_desc->SetAttr(kCachedIndex,
                     {static_cast<int64_t>(compiled_obj.cached_index)});
    op_desc->SetAttr(kInstructionIndex, {static_cast<int64_t>(ins_idx)});
  }

  return program_desc;
409 410
}

411 412 413 414
ParallelExecutor* CinnLaunchContext::InitializePE(const platform::Place& place,
                                                  framework::Scope* scope) {
  if (!parallel_executor_) {
    framework::details::ExecutionStrategy exec_strategy;
415 416
    exec_strategy.num_threads_ = 1;
    exec_strategy.use_device_ = platform::Place2DeviceType(place);
417 418 419 420 421 422
    framework::details::BuildStrategy build_strategy;
    parallel_executor_ = std::make_unique<ParallelExecutor>(
        place, scope, exec_strategy, build_strategy, runtime_graph_.get());
  }

  // update the scope bound to an OpHandle and rebuild temporary variables
423
  VLOG(4) << "Reset scope and initialize temporary variables";
424 425 426
  std::unordered_map<Scope*, Scope*> scope_map = {
      {parallel_executor_->GetLocalScopes().front(), scope}};
  parallel_executor_->ResetOpHandleScopeMapOfGraphs(scope_map);
427 428 429 430 431 432 433 434 435 436 437 438 439 440
  // instead of using the PrepareVariables function of ParallelExecutor to
  // initialize all variables, here we only initialize internal variables
  // because external variables are already included in parent scope.
  for (auto&& var_name : internal_var_names_) {
    auto* var = scope->FindVar(var_name);
    if (var != nullptr) {
      VLOG(5) << "internal variable:" << var_name
              << " has been initialized beforehand in global scope, skipped.";
      continue;
    }
    framework::InitializeVariable(scope->Var(var_name),
                                  framework::proto::VarType::LOD_TENSOR);
  }

441 442 443 444
  for (auto&& var_name : initialized_beforehand_vars_) {
    auto* var = scope->GetVar(var_name);
    auto* buffer = GetCinnBufferOfVar(var_name);
    auto dim = framework::DDim(buffer->dims, buffer->dimensions);
445 446
    var->GetMutable<phi::DenseTensor>()->Resize(dim);
    var->GetMutable<phi::DenseTensor>()->mutable_data(
447
        place, framework::paddle2cinn::TransToPaddleDataType(buffer->type));
448
  }
449
  return parallel_executor_.get();
450 451
}

452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
framework::InterpreterCore* CinnLaunchContext::InitializeInterpreterCore(
    const platform::Place& place, framework::Scope* scope) {
  if (!interpreter_core_ || scope != cached_scope_) {
    VLOG(1) << "interpreter_core_ is null or scope != cached_scope_: "
               "interpreter_core_: "
            << interpreter_core_.get() << "; scope: " << scope
            << "; cached_scope_: " << cached_scope_;
    for (auto&& var_name : internal_var_names_) {
      auto* var = scope->FindVar(var_name);
      if (var != nullptr) {
        continue;
      }
      framework::InitializeVariable(scope->Var(var_name),
                                    framework::proto::VarType::LOD_TENSOR);
    }
    if (!interpreter_core_) {
      interpreter_core_ = std::make_unique<framework::InterpreterCore>(
          place,
          runtime_program_desc_->Block(0),
          skip_gc_vars_,
          scope,
          /*used_for_jit*/ false,
          /*used_for_control_flow_op*/ false,
          /*used_for_cinn*/ true);
    } else {
      interpreter_core_->reset_scope(scope);
    }
    UpdateCapturedEnv(*scope, place);
  }
  for (auto&& var_name : initialized_beforehand_vars_) {
    auto* var = scope->GetVar(var_name);
    auto* buffer = GetCinnBufferOfVar(var_name);
    auto dim = framework::DDim(buffer->dims, buffer->dimensions);
    var->GetMutable<phi::DenseTensor>()->Resize(dim);
    var->GetMutable<phi::DenseTensor>()->mutable_data(
        place, framework::paddle2cinn::TransToPaddleDataType(buffer->type));
  }
  return interpreter_core_.get();
}

492
cinn_buffer_t* CinnLaunchContext::GetCinnBufferOfVar(
493 494
    const std::string& var_name) {
  auto it = paddle2cinn_varmap_.find(var_name);
495
  PADDLE_ENFORCE_NE(
496 497
      it,
      paddle2cinn_varmap_.end(),
498
      platform::errors::InvalidArgument(
499 500
          "Variable(%s) not found in compilation result", var_name));
  auto res = name2argument_.find(it->second);
501 502
  PADDLE_ENFORCE_NE(res,
                    name2argument_.end(),
503 504 505
                    platform::errors::NotFound(
                        "Argument(%s) not be initialized", it->second));
  return static_cast<cinn_buffer_t*>(res->second);
506 507
}

508
}  // namespace operators::details
509
}  // namespace paddle